None A. Barth T0C

Internet-Draft U.C. Berkeley
Expires: July 29, 2011 I. Hickson
Google, Inc.

January 25, 2011

Media Type Sniffing
draft-abarth-mime-sniff-06

Abstract

Many web servers supply incorrect Content-Type header fields with their
HTTP responses. In order to be compatible with these servers, user
agents consider the content of HTTP responses as well as the Content-
Type header fields when determining the effective media type of the
response. This document describes an algorithm for determining the
effective media type of HTTP responses that balances security and
compatibility considerations.

Please send feedback on this draft to apps-discuss@ietf.org.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on July 29, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

Introduction

Metadata

Web Pages

Text or Binary

Unknown Type

Image

Feed or HTML

References
Authors' Addresses

W (00 N [0 (01 [[o |

1. Introduction TOC

The HTTP Content-Type header field indicates the media type of an HTTP
response. However, many HTTP servers supply a Content-Type that does
not match the actual contents of the response. Historically, web
browsers have tolerated these servers by examining the content of HTTP
responses in addition to the Content-Type header field to determine the
effective media type of the response.

wWithout a clear specification of how to "sniff" the media type, each
user agent implementor was forced to reverse engineer the behavior of
the other user agents and to develop their own algorithm. These
divergent algorithms have lead to a lack of interoperability between
user agents and to security issues when the server intends an HTTP
response to be interpreted as one media type but some user agents
interpret the responses as another media type.

These security issues are most severe when an "honest" server lets
potentially malicious users upload files and then serves the contents
of those files with a low-privilege media type (such as text/plain or
image/jpeg). (Malicious servers, of course, can specify an arbitrary
media type in the Content-Type header field.) In the absence of media
type sniffing, this user-generated content would not be interpreted as
a high-privilege media type, such as text/html. However, if a user
agent does interpret a low-privilege media type, such as image/gif, as
a high-privilege media type, such as text/html, the user agent has
created a privilege escalation vulnerability in the server. For
example, a malicious user might be able to leverage content sniffing to
mount a cross-site script attack by including JavaScript code in the
uploaded file that a user agent treats as text/html.

This document describes a content sniffing algorithm that carefully
balances the compatibility needs of user agent implementors with the
security constraints. The algorithm has been constructed with reference
to content sniffing algorithms present in popular user agents, an
extensive database of existing web content, and metrics collected from
implementations deployed to a sizable number of users
[BarthCaballeroSong2009] (Barth, A., Caballero, J., and D. Song,
“Secure Content Sniffing for Web Browsers, or How to Stop Papers from
Reviewing Themselves,” 2009.).

WARNING! Whenever possible, user agents SHOULD NOT employ a content
sniffing algorithm. However, if a user agent does employ a content
sniffing algorithm, the user agent SHOULD use the algorithm in this
document because using a different content sniffing algorithm than
servers expect causes security problems. For example, if a server
believes that the client will treat a contributed file as an image (and
thus treat it as benign), but a user agent believes the content to be
HTML (and thus privileged to execute any scripts contained therein), an
attacker might be able to steal the user's authentication credentials
and mount other cross-site scripting attacks.

Conformance requirements phrased as algorithms or specific steps MAY be
implemented in any manner, so long as the end result is equivalent. (In
particular, the algorithms defined in this specification are intended
to be easy to follow, and not intended to be performant.)

2. Metadata TOC

The explicit media type metadata information associated with sequence
of octets depends on the protocol that was used to fetch the octets.
For octets received via HTTP, the Content-Type HTTP header field, if
present, indicates the media type. Let the official-type be the media
type indicted by the HTTP Content-Type header field, if present. If the
Content-Type header field is absent or if its value cannot be
interpreted as a media type (e.g. because its value doesn't contain a
U+002F SOLIDUS ('/') character), then there is no official-type.

Note: If an HTTP response contains multiple Content-Type header
fields, the user agent MUST use the textually last Content-Type
header field to the official-type. For example, if the last Content-
Type header field contains the value "foo", then there is no
official media type because "foo" cannot be interpreted as a media
type (even if the HTTP response contains another Content-Type header
field that could be interpreted as a media type).

For octets fetched from the file system, user agents should use
platform-specific conventions (e.g., operating system file extension/
type mappings) to determine the official-type.

Note: It is essential that file extensions are not used for
determining the media type for octets fetched over HTTP because, in
some cases, file extensions can be supplied by malicious parties.
For example, most PHP installations let the attacker append
arbitrary path information to URLs (e.g., http://example.com/
foo.php/bar.html) and thereby determine the file extension.

For octets fetched over some other protocols, e.g. FTP, there is no
type information.

Note: Comparisons between media types, as defined by MIME
specifications, are done in an ASCII case-insensitive manner. [RFC2046]

3. Web Pages TOC

The user agent MUST use the following algorithm to determine the
sniffed-type of a sequence of octets:

1. If the user agent is configured to strictly obey the official-
type, then let the sniffed-type be the official-type and abort
these steps.

2. If the octets were fetched via HTTP and there is an HTTP
Content-Type header field and the value of the last such header
field has octets that *exactly* match the octets contained in
one of the following lines:

U S OO
| Bytes in Hexadecimal | Textual Representation
B o m e e e e e memao-o-
| 74 65 78 74 2f 70 6¢c 61 69 6e | text/plain

oo e e e e e oo oo e e e e oo oo -

...then jump to the "text or binary" section below.

3. If there is no official-type, jump to the "unknown type"
section below.

4. If the official-type is "unknown/unknown", "application/
unknown", or "*/*"_ jump to the "unknown" type section below.

5. If the official-type ends in "+xml", or if it is either "text/
xml" or "application/xml", then let the sniffed-type be the
official-type and abort these steps.

6. If the official-type is an image type supported by the user
agent (e.g., "image/png", "image/gif", "image/jpeg", etc), then

jump to the "images" section below.

7. If the official-type is "text/html", then jump to the "feed or
HTML" section below.

8. Let the sniffed-type be the official type.

4. Text or Binary TOC

This section defines the *rules for distingushing if a resource is text
or binary*.

1. The user agent MAY wait for 512 or more octets be to arrive.

Note: Waiting for 512 octets octets to arrive causes the
text-or-binary algorithm to be deterministic for a given
sequence of octets. However, in some cases, the user agent
might need to wait an arbitrary length of time for these
octets to arrive. User agents SHOULD wait for 512 octets to
arrive, when feasible.

2. Let n be the smaller of either 512 or the number of octets that
have already arrived.

3. If n is greater than or equal to 3, and the first 2 or 3 octets
match one of the following octet sequences:

oo oo +
FE FF	UTF-16BE BOM
FF FE	UTF-16LE BOM
EF BB BF	UTF-8 BOM
e oo +

...then let the sniffed-type be "text/plain" and abort these
steps.

4. If none of the first n octets are binary data octets then let
the sniffed-type be "text/plain" and abort these steps.

o e emm oo +
| Binary Data Byte Ranges |
R +
OXx00 -- 0Ox08
Ox0B

I I
I I
| OXOE -- Ox1A |
| 0x1C -- Ox1F |

5. If the first octets match one of the octet sequences in the
"pattern" column of the table in the "unknown type" section
below, ignoring any rows whose cell in the "security" column
says '"scriptable" (or "n/a"), then let the sniffed-type be the
type given in the corresponding cell in the "sniffed type"
column on that row and abort these steps.

WARNING! It is critical that this step not ever return a
scriptable type (e.g., text/html), because otherwise that
would allow a privilege escalation attack.

6. Otherwise, let the sniffed-type be "application/octet-stream"
and abort these steps.

5. Unknown Type TOC

1. The user agent MAY wait for 512 or more octets to arrive for
the same reason as in the "text or binary" section above.

2. Let n be the smaller of either 512 or the number of octets that
have already arrived.

3. For each row in the table below:

*If the row has no "WS" octets:

Let pattern-length be the length of the pattern.

If n is smaller than pattern-length then skip this row.

. Apply the bit-wise "and" operator to the first pattern-

length octets and the given mask, and let the result be
the masked-data.

If the octets of the masked-data matches the given
pattern octets exactly, then let the sniffed-type be
the type given in the cell of the third column in that
row and abort these steps.

*If the row has a "WS" octet or a "_>" octet:

1.

Let index-pattern be an index into the mask and pattern
octet strings of the row.

Let index-stream be an index into the octet stream
being examined.

LOOP: If index-stream points beyond the end of the
octet stream, then this row doesn't match and skip this
row.

Examine the index-stream-th octet of the octet stream
as follows:

-If the index-pattern-th octet of the pattern is a
normal hexadecimal octet and not a "WS" octet or a
"SB" octet:

If the bit-wise "and" operator, applied to the
index-stream-th octet of the stream and the
index-pattern-th octet of the mask, yield a value
different than the index-pattern-th octet of the
pattern, then skip this row.

Otherwise, increment index-pattern to the next
octet in the mask and pattern and index-stream to
the next octet in the octet stream.

-Otherwise, if the index-pattern-th octet of the
pattern is a "WS" octet:

"WS" means "whitespace", and allows insignificant
whitespace to be skipped when sniffing for a type
signature.

If the index-stream-th octet of the stream is one
of 0x09 (ASCII TAB), OxOA (ASCII LF), OxOC (ASCII
FF), 0x0D (ASCII CR), or 0x20 (ASCII space), then
increment only the index-stream to the next octet
in the octet stream.

Otherwise, increment only the index-pattern to
the next octet in the mask and pattern.

-Otherwise, if the index-pattern-th octet of the
pattern is a "_>" octet:

"_>" means "space-or-bracket", and allows HTML
tag names to terminate with either a space or a
greater than sign.

If index-stream-th octet of the stream different
than 0x20 (ASCII space) or Ox3E (ASCII ">"), then
skip this row.

Otherwise, increment index-pattern to the next
octet in the mask and pattern and index-stream to
the next octet in the octet stream.

5. If index-pattern does not point beyond the end of the
mask and pattern octet strings, then jump back to the
LOOP step in this algorithm.

6. Otherwise, let the sniffed-type be the type given in
the cell of the third column in that row and abort
these steps.

4. If none of the first n octets are binary data (as defined in
the "text or binary" section), then let the sniffed-type be

"text/plain" and abort these steps.

5. Otherwise, let the sniffed-type be "application/octet-stream"
and abort these steps.

The table used by the above algorithm is:

FF FF FF
DF DF DF
DF DF DF
Comment:

FF FF DF
FF
Comment:

FF FF DF
FF
Comment:

FF FF DF
DF DF FF
Comment:

FF FF DF
DF DF FF
Comment:

FF FF DF
Comment:

FF FF DF
Comment:

FF FF DF
FF
Comment:

FF FF DF
DF FF
Comment:

FF FF DF
Comment:

FF FF DF
DF FF
Comment:

FF FF DF
DF FF
Comment:

DF FF DF

DF DF DF

<SCRIPT

DF DF DF

<IFRAME

<DIV

DF DF DF

<TABLE

DF DF DF

<STYLE

DF DF DF

<TITLE

text/html

text/html

Scriptable

FF FF DF
Comment:

FF FF DF
FF
Comment:

FF FF DF
Comment:

FF FF DF
Comment:

FF FF FF
Comment:

FF FF FF
Comment:

FF FF FF
Comment:

FF FF FF
FF FF FF
Comment:

FF FF 00
Comment:

FF FF 00
Comment:

FF FF FF
Comment:

FF FF FF
Comment:

FF FF FF
Comment:

FF FF FF
FF FF
Comment:

FF FF FF

--------- Ty T ySeyp T -
FF | wsS 3C 42 _> | text/html | Scriptable
<B
--------- TS T R pppup—
DF DF DF | WS 3C 42 4f 44 59 | text/html | Scriptable
| > I I
<BODY
--------- T e T e ——
DF FF | WS 3C 42 52 _> | text/html | Scriptable
<BR
--------- Ty
FF | WS 3C 50 _> | text/html | Scriptable
<P
--------- T Ty YT yeepp T
FF FF FF | WS 3C 21 2d 2d _> | text/html | Scriptable
<l--
--------- T
FF FF FF | WS 3C 3f 78 6d 6Cc | text/xml | Scriptable
<?xml (Note the case sensitivity and lack of trailing _>) |
--------- T
FF FF | 25 50 44 46 2D | application/pdf | Scriptable
The string "%PDF-", the PDF signature.
--------- e
FF FF FF | 25 21 50 53 2D 41 | application/ | safe
FF FF | 64 6F 62 65 2D | postscript |
The string "%!PS-Adobe-", the PostScript signature.
--------- R T L r e
00 | FE FF 00 00 | text/plain | n/a
UTF-16BE BOM
--------- TSy T g
00 | FF FE 00 00 | text/plain | n/a
UTF-16LE BOM
--------- T S T gy
00 | EF BB BF 00 | text/plain | n/a
UTF-8 BOM
--------- s
FF FF FF | 47 49 46 38 37 61 | image/gif | Safe
The string "GIF87a", a GIF signature.
--------- i
FF FF FF | 47 49 46 38 39 61 | image/gif | safe
The string "GIF89a", a GIF signature.
--------- TS T R pppup—
FF FF FF | 89 50 4E 47 0D OA | image/png | Safe
| 1A GA | |
The PNG signature.
--------- T S T T g
| FF D8 FF | image/jpeg | Safe

Comment: A JPEG SOI marker followed by a octet of another marker.

| FF FF | 42 4D | image/bmp | safe
| Comment: The string "BM", a BMP signature.

| FF FF FF FF 00 00 | 52 49 46 46 00 00 | image/webp | Safe

| 60 60 FF FF FF FF | 00 00 57 45 42 50 | |

| FF FF | 56 50 | |

| Comment: "RIFF" followed by four bytes, followed by "WEBPVP".

Fom e e e e oo oo oo S U
| FF FF FF FF | 60 00 01 00 | image/vnd. | Safe

| | | microsoft.icon |
| Comment: A Windows Icon signature.

S o e e oo o R
| FF FF FF FF FF | 4F 67 67 53 00 | application/ogg | Safe

| Comment: An 0gg Vorbis audio or video signature.

B S o e e e oooooo - B S Fomm e e oo oo
| FF FF FF FF 00 00 | 52 49 46 46 00 00 | audio/x-wave | Safe

| 0 00 FF FF FF FF | 00 00 57 41 56 45 | [
| Comment: "RIFF" followed by four bytes, followed by "WAVE".

Fom e e e m e oo e Fom e e e e o - o m e
| FF FF FF FF | 1A 45 DF A3 | vidow/webm | Safe

| Comment: The WebM signature [TODO: Use more octets?]
S oo e oo e S S SE S
| FF FF FF FF FF FF | 52 61 72 20 1A 07 | application/ | safe

| FF | 00 | X-rar-compressed|

| Comment: A RAR archive.

S S S S
| FF FF FF FF | 50 4B 03 04 | application/zip | Safe

| Comment: A ZIP archive.

Fom e e m oo oo o S RS
| FF FF FF | 1F 8B 08 | application/ | safe

| | | x-gzip |

| Comment: A GZIP archive.

[TODO: MP3 audio and H.264 video.]

User agents MAY support additional types if necessary, by implicitly
adding to the above table. However, user agents SHOULD NOT not use any
other patterns for types already mentioned in the table above because
this could then be used for privilege escalation (where, e.g., a server
uses the above table to determine that content is not HTML and thus
safe from cross-site scripting attacks, but then a user agent detects
it as HTML anyway and allows script to execute). In extending this
table, user agents SHOULD NOT introduce any privilege escalation
vulnerabilities.

Note: The column marked "security" is used by the algorithm in the
"text or binary" section, to avoid sniffing text/plain content as a
type that can be used for a privilege escalation attack.

6. Image

TOC

This section defines the *rules for sniffing images specifically*.

If the official-type is "image/svg+xml", then let the sniffed-type be
the official-type (an XML type) and abort these steps.

If the first octets match one of the octet sequences in the first

column of the following table,

then let the sniffed-type be the type

given in the corresponding cell in the second column on the same row
and abort these steps:

o m e e e e m e e e oo oo Fom e e e e oo oo Fom e e e o -
| Bytes in Hexadecimal | Sniffed Type | Comment

o m e oo e e oo S
| 47 49 46 38 37 61 | image/gif | "GIF87a"

| 47 49 46 38 39 61 | image/gif | "GIF89a"

| 89 50 4E 47 0D OA 1A OA | image/png |

| FF D8 FF | image/jpeg |

| 42 4D | image/bmp | "BM"

| 60 00 01 00 | image/vnd.microsoft.icon |

| (see Section ??) | image/webp | "RIFF????WEBPVP
e e oo e e S

Otherwise, let the sniffed-type be the official-type and abort these

steps.

7. Feed or

1. The
the

2. Let
in s with position i, treating
octet is at i=0).

HTML

T0C

user agent MAY wait for 512 or more octets to arrive for
same reason as in the "text or binary" section above.

s be the stream of octets,

3. If at any point this algorithm
determine the value of a octet
or which is past the first 512

end of the octet stream,

type is "text/html".

and let s[i] represent the octet
s as zero-indexed (so the first

requires the user agent to
in s which has not yet arrived,
octets, or which is beyond the

the algorithm stops and the sniffed-

Note: User agents are allowed, by the first step of this

algorithm,

4, Initialize pos to 0.

to wait until the first 512 octets have arrived.

5. If s[0] equals OxEF, s[1] equals 0xBB, and s[2] equals OxBF,
then set pos to 3. (This skips over a leading UTF-8 BOM, if
any.)

6. LOOP: Examine s[pos].

*If it equals Ox09 (ASCII tab), 0x20 (ASCII space), Ox0A
(ASCII LF), or Ox0D (ASCII CR)

Increase pos by 1 and repeat this step.
*If it equals 0x3C (ASCII "<")

Increase pos by 1 and go to the next step.
*If it is anything else

Let the sniffed-type be "text/html" and abort these
steps.

7. If the octets with positions pos to pos+2 in s are exactly
equal to Ox21, Ox2D, Ox2D respectively (ASCII for "!--"), then:

1. Increase pos by 3.

2. If the octets with positions pos to pos+2 in s are exactly
equal to Ox2D, O0x2D, Ox3E respectively (ASCII for "-->"),
then increase pos by 3 and jump back to the previous step
(the step labeled loop start) in the overall algorithm in
this section.

3. Otherwise, increase pos by 1.

4. Return to step 2 in these substeps.

8. If s[pos] equals Ox21 (ASCII "!"):

1. Increase pos by 1.

2. If s[pos] equals Ox3E, then increase pos by 1 and jump
back to the step labeled LOOP in the overall algorithm in
this section.

3. Otherwise, return to step 1 in these substeps.

9. If s[pos] equals Ox3F (ASCII "?"):

1. Increase pos by 1.

10.

11.

12.

13.

14.

2. If s[pos] and s[pos+1l] equal Ox3F and Ox3E respectively,
then increase pos by 1 and jump back to the step labeled
LOOP in the overall algorithm in this section.

3. Otherwise, return to step 1 in these substeps.

Otherwise, if the octets in s starting at pos match any of the
sequences of octets in the first column of the following table,
then the user agent MUST follow the steps given in the
corresponding cell in the second column of the same row.

e oo e e oooo oo ot oo o o oo
| 72 73 73 | Let the sniffed-type be

| | "application/rss+xml" and abort

| | these steps.

e oo e e oo ot oo e e e oo
| 66 65 65 64 | Let the sniffed-type be

| | "application/atom+xml" and abort

| | these steps.

e oo e e oo ot oo o o o oo

| 72 64 66 3A 52 44 46 | Continue to the next step in this
| | algorithm.

If none of the octet sequences above match the octets in s
starting at pos, then let the sniffed-type be "text/html" and
abort these steps.

Initialize RDF-flag to O.
Initialize RSS-flag to 0.

If the octets with positions pos to pos+23 in s are exactly
equal to Ox68, 0x74, 0x74, 0x70, Ox3A, Ox2F, Ox2F, 0x70, 0x75,
0x72, Ox6C, OX2E, Ox6F, Ox72, 0x67, Ox2F, 0x72, Ox73, 0Ox73,
OX2F, 0x31, Ox2E, 0x30, Ox2F respectively (ASCII for "http://
purl.org/rss/1.0/"), then:

1. Increase pos by 23.
2. Set RSS-flag to 1.

If the octets with positions pos to pos+42 in s are exactly
equal to Ox68, 0x74, Ox74, 0x70, Ox3A, Ox2F, Ox2F, Ox77, 0x77,
OX77, Ox2E, 0Ox77, 0x33, Ox2E, Ox6F, 0x72, 0x67, Ox2F, 0x31,
0x39, 0x39, 0x39, Ox2F, 0x30, 0x32, Ox2F, 0x32, 0x32, 0x2D,
0x72, Ox64, 0x66, 0x2D, Ox73, 0x79, Ox6E, 0x74, 0Ox61, 0Ox78,

15.

16.

17.

18.

19.

0x2D, Ox6E, 0x73, 0x23 respectively (ASCII for "http://
www.w3.0rg/1999/02/22-rdf-syntax-ns#"), then:

1. Increase pos by 42.
2. Set RDF-flag to 1.
Increase pos by 1.

If RDF-flag is 1 and RSS-flag is 1, then let the sniffed-type
be "application/rss+xml" and abort these steps.

If pos points beyond the end of the octet stream s, then
continue to step 19 of this algorithm.

Jump back to step 13 of this algorithm.

Let the sniffed-type be "text/html" and abort these steps.

For efficiency reasons, implementations might wish to implement this
algorithm and the algorithm for detecting the character encoding of
HTML documents in parallel.

8. References

T0C

[BarthCaballeroSong2009] Barth, A., Caballero, J., and D. Song,

“Secure Content Sniffing for Web Browsers,

or How to Stop Papers from Reviewing
Themselves,” 2009.

Authors' Addresses

_T0C
Adam Barth
University of California, Berkeley
Email: abarth@eecs.berkeley.edu
URI: http://www.adambarth.com/

Ian Hickson
Google, Inc.

Email: ian@hixie.ch
URI: http://ln.hixie.ch/

http://www.adambarth.com/papers/2009/barth-caballero-song.pdf
http://www.adambarth.com/papers/2009/barth-caballero-song.pdf
http://www.adambarth.com/papers/2009/barth-caballero-song.pdf
mailto:abarth@eecs.berkeley.edu
http://www.adambarth.com/
mailto:ian@hixie.ch
http://ln.hixie.ch/

	Media Type Sniffingdraft-abarth-mime-sniff-06
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Metadata
	3. Web Pages
	4. Text or Binary
	5. Unknown Type
	6. Image
	7. Feed or HTML
	8. References
	Authors' Addresses

