Working Group A. Barth ToC

Internet-Draft U.C. Berkeley
Expires: July 26, 2009 C. Jackson
Stanford University
I. Hickson
Google, Inc.
January 22, 2009

The HTTP Origin Header
draft-abarth-origin-00

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The 1list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on July 26, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

This document defines the HTTP Origin header. The Origin header is
added by the user agent to describe the security context that initiated
an HTTP request. HTTP servers can use the Origin header to defend
themselves against Cross-Site Request Forgery (CSRF) attacks.


http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Table of Contents

Introduction
Origin
Comparing Origins
Serializing Origins
4.1. Unicode Serialization of an Origin
4.2. ASCII Serialization of an Origin
User Agent Behavior
HTTP Server Behavior
Privacy Considerations
Security Considerations
IANA Considerations
TODO
Authors' Addresses

[

‘H ‘(O ‘00 ‘\l ‘07 ‘U‘I

fun

1. Introduction TOC
This document describes the HTTP Origin header. The Origin header
identifies the security context that initiated an HTTP request and can

be used by Web sites to mitigate cross-site request forgery (CSRF)
vulnerabilities.

2. Origin _TOC
The following algoritm MUST be used to compute the origin of a URL.
1. Let /url/ be the URL for which the origin is being determined.
2. Parse /url/.
3. If /url/ does not use a server-based naming authority, or if
parsing /url/ failed, or if /url/ is not an absolute URL, then

return an implementation-defined value.

4. Let /scheme/ be the scheme component of /url/, converted to
lowercase.

5. If the implementation doesn't support the protocol given by /
scheme/, then return an implementaion-defined value.



10.

11.

12.

If /scheme/ is "file", then the implementation MAY return a
implementation-defined value.

Let /host/ be the host component of /url/.

. Apply the IDNA TOASCII algorithm to /host/, with both the

AllowUnassigned and UseSTD3ASCIIRules flags set. Let /host/ be
the result of the ToASCII algorithm.

If TOASCII fails to convert one of the components of the string
(e.g. because it is too long or because it contains invalid
characters), then return an implementation-defined value.

Let /host/ be the result of converting /host/ to lowercase.
If there is no port component of /url/, then let /port/ be the
default port for the protocol given by /scheme/. Otherwise, let

/port/ be the port component of /url/.

Return the tuple (/scheme/, /host/, /port/).

Implementations MAY define other types of origins in addition to the
scheme/host/port tuple type defined above. (For example, user agents
could implement globally unique origins or certificate-based origins.)

3. Comparing Origins TOC

Implementations MUST use the following algorithm to test whether two
origins are the '"same origin".

1.

Let /A/ be the first origin being compared, and let B be the
second origin being compared.

If either /A/ or /B/ is not a scheme/host/port tuple, return an
implementation-defined value.

If /A/ and /B/ have scheme components that are not identical,
return false.

If /A/ and /B/ have host components that are not identical,
return false.

If /A/ and /B/ have port components that are not identical,
return false.

Return true.



4. Serializing Origins TOC

4.1.

Unicode Serialization of an Origin TOC

Implementations MUST using the following algorithm to compute the
Unicode serialization of an origin:

1.

4.2.

If the origin in question is not a scheme/host/port tuple, then
return the string

null
(i.e., the character sequence U+006E, U+0075, U+Q06C, U+006C)
and abort these steps.
Otherwise, let /result/ be the scheme part of the origin tuple.

. Append the string "://" to /result/.

. Apply the IDNA ToUnicode algorithm to each component of the

host part of the origin tuple, and append the results of each
component, in the same order, separated by U+@02E FULL STOP
characters (".") to /result/.
If the port part of the origin tuple gives a port that is
different from the default port for the protocol given by the
scheme part of the origin tuple, then append a U+@03A COLON
character (":") and the given port, in base ten, to /result/.
Return /result/.

ASCII Serialization of an Origin TOC

Implementations MUST using the following algorithm to compute the ASCII
serialization of an origin:

1.

If the origin in question is not a scheme/host/port tuple, then
return the string

null



(i.e., the character sequence U+006E, U+0075, U+Q@06C, U+006C)
and abort these steps.

2. Otherwise, let /result/ be the scheme part of the origin tuple.
3. Append the string "://" to /result/.

4. Apply the IDNA TOASCII algorithm the host part of the origin
tuple, with both the AllowUnassigned and UseSTD3ASCIIRules
flags set, and append the result to /result/.

5. If ToASCII fails to convert one of the components of the
string, e.g. because it is too long or because it contains
invalid characters, then return the literal string "null" and
abort these steps.

6. If the port part of the origin tuple gives a port that is
different from the default port for the protocol given by the
scheme part of the origin tuple, then append a U+Q03A COLON
character (":") and the given port, in base ten, to /result/.

7. Return /result/.

5. User Agent Behavior TOC

Whenever a user agent issues an HTTP request, the user agent MAY
include an HTTP header named "Origin".

Whenever a user agent issues an HTTP request whose method is neither
"GET" nor "HEAD", the user agent MUST include exactly one HTTP header
named "Origin".

Whenever a user agent issues an HTTP request that contains an HTTP
header named "Origin", the value of that header MUST either be

1. the string "null" (i.e., the character sequence U+Q06E, U+0075,
U+006C, U+006C) or

2. the ASCII serialization of the origin that initiated the HTTP
request.

Whenever a user agent issues an HTTP request that contains an HTTP
header named "Origin", if the request was initiated on behalf of an
origin, the user agent SHOULD use the ASCII serialization of that
origin as the value of the Origin header.



Note: This behavior differs from that of the HTTP Referer header,
which user agents often suppress when an origin with an "https"
scheme issues a request for a URL with an "http" scheme.

If a user agent issues an HTTP request in reaction to an HTTP redirect,
the Origin header MUST contain the same value as the Origin header in
the HTTP request that generated the redirect.

6. HTTP Server Behavior TOC

HTTP Servers MAY use the Origin header to "defend themselves against
CSRF attacks." Such servers are known as "participating servers" in
this section.

Let the /origin white list/ of a participating server be a set of
strings selected by the operator of that server.

The string "null" MUST NOT be a member of the /origin white list/ for
any participating server.

Example: The origin white list for the example.com Web server could
be the strings "http://example.com", "https://example.com", "http://
www.example.com", and "https://www.example.com".

A participating server MUST use the following algorithm when
determining whether to modify state in response to an HTTP request:

1. If the request method is "GET", return "MUST NOT modify state"
and abort these steps.

2. If the request method is "HEAD", return "MUST NOT modify state"
and abort these steps.

3. If the request does not contain a header named "Origin", return
"MAY modify state" abort these stepts.

4. For each request header named "Origin", let /initiating origin/
be the value of the header:

1. If /initiating origin/ is not a member of the /origin
white list/ for this server, return "MUST NOT modify
state" and abort these steps.

5. Return "MAY modify state".

Example: A Web server could modify state in response to POST
requests that lack an Origin header (because these requests are sent
by non-supporting user agents) and could modify state in response to
POST requests that have an Origin header of "http://example.com",



"https://example.com", "http://www.example.com", or "https://
www . example.com".

A participating server MUST NOT instruct a user agent to issue an HTTP
request for a given URL unless the following algorithm returns "Safe".

1. If the request method is "GET", return "Safe" and abort these
steps.

2. If the request method is "HEAD", return "Safe" and abort these
steps.

3. Let /url/ be the URL in question.
4. Let /target origin/ be the origin of /url/.

5. If the ASCII serialization of /target origin/ is a member of
the server's /origin white list/, then return "Safe" and abort
these steps.

6. Return "Unsafe".

Example: A Web server would be vulnerable to a CSRF attack if it
responded to an HTTP request with HTML that generated a POST request
to http://attacker.com/ because the attacker's server could respond
with an HTTP 307 status and redirect the POST back to the original
server.

7. Privacy Considerations TOC

This section is not normative.

The Origin header improves on the Referer header by respecting the
user's privacy: The Origin header includes only the information
required to identify the principal that initiated the request
(typically the scheme, host, and port of initiating origin). In
particular, the Origin header does not contain the path or query
portions of the URL included in the Referer header that invade privacy
without providing additional security.

The Origin header also improves on the Referer header by NOT leaking
intranet host names to external Web sites when a user follows a
hyperlink from an intranet host to an external site because hyperlinks
generate GET requests.

T0C



8. Security Considerations

This section is not normative.

Because a supporting user agent will always include the Origin header
when making HTTP requests, HTTP servers can detect that a request was
initiated by a supporting user agent by observing the presence of the
header. This design prevents an attacker from making a supporting user
agent appear to be a non-supporting user agent. Unlike the Referer
header, which is absent when suppressed by the user agent, the Origin
header takes on the value "null" when suppressed by the user agent.

In existing user agents, The Origin header can be spoofed for same-site
XMLHttpRequests. Sites that rely only on network connectivity for
authentication should use a DNS rebinding defense, such as validating
the HTTP Host header, in addition to CSRF protection.

9. IANA Considerations TOC

TODO: The "Origin" header should be registered.

10. TODO T0C

Think about how this interacts with proxies.
Think about how this interacts with caches.

Authors' Addresses
TOC

Adam Barth
University of California, Berkeley
Email: abarth@eecs.berkeley.edu
URI: http://www.adambarth.com/

Collin Jackson
Stanford University
Email: collinj@cs.stanford.edu
URI: http://www.collinjackson.com/

Ian Hickson

Google, Inc.

Email: ian@hixie.ch
URI: http://1n.hixie.ch/



mailto:abarth@eecs.berkeley.edu
http://www.adambarth.com/
mailto:collinj@cs.stanford.edu
http://www.collinjackson.com/
mailto:ian@hixie.ch
http://ln.hixie.ch/

	The HTTP Origin Headerdraft-abarth-origin-00
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1.  Introduction
	2.  Origin
	3.  Comparing Origins
	4.  Serializing Origins
	4.1.  Unicode Serialization of an Origin
	4.2.  ASCII Serialization of an Origin
	5.  User Agent Behavior
	6.  HTTP Server Behavior
	7.  Privacy Considerations
	8.  Security Considerations
	9.  IANA Considerations
	10.  TODO
	Authors' Addresses


