
websec A. Barth

Internet-Draft Google, Inc.

Intended status: Informational February 2011

Expires: August 03, 2011

Principles of the Same-Origin Policy 

draft-abarth-principles-of-origin-00

Abstract

The security model of the web platform has evolved over time to meet

the needs of new applications and to correct earlier mistakes. Although

web security has evolved largely organically, the security model has

converged towards a handful of key concepts. This document presents

those concepts and provides advice to designers of new pieces of the

web platform.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on August 03, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Trust

*

*



2.1. Pitfalls

3. Origin

4. Authority

4.1. Pitfalls

5. Policy

5.1. Object Access

5.2. Network Access

5.3. Pitfalls

6. Conclusion

7. References

Appendix A. Acknowledgements

Author's Address

1. Introduction

The security model of the web platform has evolved over time to meet

the needs of new applications and to correct earlier mistakes. Although

web security has evolved largely organically, the security model has

converged towards a handful of key concepts. This document presents

those concepts and provides advice to designers of new pieces of the

web platform.

2. Trust

<script src="https://example.com/library.js"></script>

On the web, trust is specified by URL. For example, HTML documents

designate which script to run with a URL: 

When a user agent process this element, the user agent will fetch the

script at that URL and execute the script with the privileges of the

document. In this way, the document grants all the privileges it has to

the resource specified by the URL. In essence, the document declares

that it trusts the integrity of information retrieved from that URL.

*

*

*

*

*

*

*

*

*

*

*

*



<form method="POST" action="https://example.com/login">

 ... <input type="password"> ...

</form>

In addition to importing libraries from URLs, user agents also let

principals export data to URLs. For example, consider the HTML form

element: 

When the user enters his or her password and submits the form, the

password is sent to the network endpoint designated by the URL. In this

way, the document exports its secret data to that URL. In essence, the

document declares that it trusts the confidentiality of information

sent to that URL.

2.1. Pitfalls

When designing new pieces of the web platform, make sure that important

trust distinctions are visible in URLs. For example, if both TLS and

non-TLS protected resources used the "http" URL scheme, a document

would be unable to specify that it wished to retrieve a script over

TLS. By using the "https" URL scheme, documents are able to indicate

that they wish to interact with resources that are protected from

active network attackers.

3. Origin

In principle, user agents could treat every URL as a separate principal

and isolate each document from every other URL unless the document

explicitly indicated that it trusted that URL. Unfortunately, this

design is cumbersome for developers because web applications often

consist of a number of resource acting in concert.

As an approximation, user agents group URLs together into protection

domains called origins. In particular, two URLs are part of the same

origin (i.e., represent the same principal) if they have the same

scheme, host, and port.

Q: Why not just use the host?

A: Including the scheme in the origin tuple is essential for security.

If user agents did not include the scheme, there would be no isolation

between documents from http://example.com and https://example.com

because the two have the same host. However, without this isolation, an

active network attacker could corrupt the document retrieved from

http://example.com and then use that document as a stepping stone to

compromise the confidentiality and integrity of the document retrieved

from https://example.com, bypassing the protections afforded by TLS.

Q: Why use the fully qualified host name instead of just the "top-

level" domain?

A: Although the DNS has hierarchical delegation, the trust

relationships between host names vary by deployment. For example, at



many educational institutions, students can host content at https://

example.edu/~student/, but that does not mean a document authored by a

student should be part of the same origin (i.e., represent the same

principal) as a web application for managing grades hosted at https://

grades.example.edu/.

4. Authority

Although user agents group URLs into origins, not every resource in an

origin carries the same authority. For example, an image is passive

content and, therefore, carries no authority, meaning the image has no

access to the objects and resources available to its origin. By

contrast, an HTML document contains active content and, therefore,

carries the full authority of its origin. The user agent determines how

much authority to grant a resource by examining its MIME type. For

example, resources with a MIME type of image/png are treated as images

and resources with a MIME type of text/html are treated as HTML

documents.

When hosting untrusted content (such as user-generated content), web

applications can limit that content’s authority by restricting its MIME

type. For example, serving user-generated content as image/png is less

risky than serving user-generated content as text/html. Of course many

web applications incorporate untrusted content in their HTML documents.

If not done carefully, these applications risk leaking their origin’s

authority to the untrusted content, a vulnerability commonly known as

cross-site scripting.

4.1. Pitfalls

When designing new pieces of the web platform, be careful not to grant

authority to resources irrespective of MIME type. Many web applications

server untrusted content with restricted MIME types. A new web platform

feature that grants authority to these pieces of content risks

introducing vulnerabilities into existing applications. Instead, prefer

to grant authority to MIME types that already possess the origin’s full

authority or to new MIME types designed specifically to carry the new

authority.

5. Policy

Generally speaking, user agents isolate different origins and permit

controlled communication between origins. The details of how user

agents provide isolation and communication vary depending on several

factors.

5.1. Object Access

Most objects (also known as application programming interfaces or APIs)

exposed by the user agent respect the same-origin policy. Specifically,

a script running on behalf of one document can access objects



associated with another document if, and only if, the two documents

belong to the same origin, e.g., were retrieved from URLs with the same

scheme, host, and port.

There are some exceptions to this general policy. For example, some

parts of HTML’s Location interface are available across origins (e.g.,

to allow for navigating other browsing contexts). As another sample,

HTML’s postMessage interface is visible across origins to facilitate

cross-origin communication. Exposing objects to foreign origins is

dangerous and should be done only with great care because doing so

exposes these objects to potential attackers.

5.2. Network Access

Access to network resources varies depending on whether the resources

are in the same origin as the document attempting to access them.

Generally, reading information from another origin is forbidden.

However, a document is permitted use some kinds of resources retrieved

from other origins. For example, a document is permitted to execute

script, render images, and apply style sheets from any origin.

Likewise, a document can display a document from another origin in a

frame.

Generally, sending information to another origin is permitted. However,

sending information over the network in arbitrary formats is dangerous.

For this reason, user agents restrict documents to sending information

using particular protocols, such as in an HTTP request without custom

headers.

5.3. Pitfalls

Whenever user agents allow documents from one origin to interact with

resources in another origin, they invite security issues. For example,

the ability to display images from another origin leaks their height

and width across origins. Similarly, the ability to send network

requests to another origin gives rise to cross-site request forgery

vulnerabilities. However, user agents tolerate these risks when the

value proposition is high enough. For example, a user agent that

blocked cross-origin network requests would prevent its users from

following hyperlinks, a core component of the web architecture.

When designing new pieces of the web platform, it can be tempting to

grant a privilege to one document but to withhold that privilege from

another document in the same origin. However, withholding privileges in

this way is ineffective because the document without the privilege can

usually obtain the privilege anyway because user agents do not isolate

documents within an origin. Instead, new pieces of the platform should

grant or withhold privileges from origins as a whole (rather than

discriminating between individual documents within an origin).



6. Conclusion

The web security model designates trust relationships with URLs. URLs

are grouped together into origins, which represent principals. Some

resources in an origin (active content) are granted the origin’s full

authority, whereas other resources in the origin (passive content) are

not granted the origin’s authority. Documents that carry their origin’s

authority are granted access to objects and network resources within

their own origin. These documents are also granted limited access to

objects and network resources of other origins, but these cross-origin

privileges must be carefully designed to avoid introducing security

vulnerabilities into the web platform.

7. References

Appendix A. Acknowledgements

We would like to thank Ian Hickson, Collin Jackson, Thomas Roessler,

Jesse Ruderman, and Daniel Veditz for their valuable feedback on this

document.

Author's Address

Adam Barth Barth Google, Inc. EMail: ietf@adambarth.com URI: http://

www.adambarth.com/

mailto:ietf@adambarth.com
http://www.adambarth.com/
http://www.adambarth.com/

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Trust
	2.1. Pitfalls
	3. Origin
	4. Authority
	4.1. Pitfalls
	5. Policy
	5.1. Object Access
	5.2. Network Access
	5.3. Pitfalls
	6. Conclusion
	7. References
	Appendix A. Acknowledgements
	Author's Address

