
Network Working Group A. Biggs
Internet-Draft S. Cooley
Intended status: Standards Track Cisco Systems
Expires: May 21, 2015 November 17, 2014

Key Management Service Architecture
draft-abiggs-saag-key-management-service-00

Abstract

 In the interest of addressing pervasive threats to the
 confidentiality and integrity of online communications identified by
 the Internet community [I-D.barnes-pervasive-problem] this
 specification introduces an open architecture for the establishment,
 management, and secure distribution of cryptographic keys for use in
 the end-to-end (E2E) encryption of online communications and shared
 content. This architecture allows for the independent deployment of
 dedicated key management services in a manner that supports the
 adoption of third-party communications and data sharing services by
 individuals and organizations that require full and exclusive
 discretion over the confidentiality of their data.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 21, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Biggs & Cooley Expires May 21, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft key-management-service November 2014

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 4
1.2. Security Terms . 5
1.3. Notational Conventions 5

2. Architectural Overview 6
3. Use Cases . 7
3.1. Securing an HTTP File Sharing Service 9
3.2. Securing an XMPP Multi-User Chat 10
3.3. KMS to KMS Key Federation 12

4. KMS Protocol . 14
4.1. Secure Channel . 15
4.2. User Identity . 16
4.3. KMS Identity . 16
4.4. Object Types . 17
4.4.1. KMS Key Objects 17
4.4.2. KMS Authorization Objects 19
4.4.3. KMS Resource Objects (KRO) 20

4.5. Request Types . 21
4.6. Message Structure . 22
4.6.1. Basic Request Payload 22
4.6.2. Basic Response Payload 24
4.6.3. Error Response Payload 25

4.7. Requests . 25
4.7.1. Create Ephemeral Key 25
4.7.2. Delete Ephemeral Key 28
4.7.3. Create Resource 29
4.7.4. Create Unbound Keys 32
4.7.5. Update Unbound Key (Bind) 35
4.7.6. Retrieve Keys . 37
4.7.7. Create Authorizations 41
4.7.8. Delete Authorization 43

5. Mandatory-to-Implement 44
6. Security Considerations 45
7. Appendix A. Acknowledgments 45
8. Appendix B. Document History 45
9. References . 45
9.1. Normative References 46
9.2. Informative References 47

 Authors' Addresses . 47

Biggs & Cooley Expires May 21, 2015 [Page 2]

Internet-Draft key-management-service November 2014

1. Introduction

 Providers of cloud-based services commonly secure user data at the
 transport level using established protocols such as TLS [RFC5246] or
 IPSec [RFC4301]. These protocols can be effective in protecting
 transmitted user data from third party tampering and eavesdropping;
 however, by themselves these protocols do not secure user data from
 abuses, negligence, or coerced behavior on the part of the cloud
 provider. This is a concern for individuals and organizations that
 wish to take advantage of cloud-based communications and
 collaboration but cannot accept the risk of trusting cloud providers
 with unfettered access to the contents of their communications.

 E2E encryption describes a category of solutions that can be employed
 to address this problem by establishing secure channels among
 clients. To the extent that a user can trust their collaboration
 client software, E2E encryption mitigates exposure of user data to
 untrusted parties by ensuring that intermediaries never possess
 unencrypted user data or have access to the keying material necessary
 to decrypt it.

 Existing E2E strategies such as ECS [RFC5652], PGP [RFC4880], and
 Off-the-Record Messaging [OTR] can be effective at securing two-party
 communications. However, E2E encryption for the growing domain of
 multiparty communications and online content sharing remains a
 generally unsolved problem to which these existing approaches do not
 readily adapt. In particular, a core challenge exists in providing
 for the secure distribution and rotation of E2E encryption keys among
 an arbitrary and potentially dynamic set of communicating clients.
 In cases where the communications to be secured are persistent or
 archived, the additional challenge exists for providing trusted long-
 term storage and retrieval of these keys.

 Equally problematic is the paucity of E2E encryption options that
 satisfy common organizational obligations such as regulatory
 compliance and legal discovery. Entities that must operate within
 such frameworks require mechanisms by which they (and they alone) may
 recover the keys used to secure their communications. Existing E2E
 encryption solutions are not, by themselves, well suited for this
 purpose.

 In the interest of addressing these challenges this document presents
 an architecture for the deployment of E2E encryption key management
 services (KMS). In this architecture a KMS service provides to its
 users a means by which their communications clients may securely
 create, share, rotate, and store E2E encryption keying material. It
 does so in a fashion that permits the decoupling of such services
 from the communications media, thereby permitting the former to

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc4880

Biggs & Cooley Expires May 21, 2015 [Page 3]

Internet-Draft key-management-service November 2014

 reside under the direct control of the communicating parties or the
 organizations within which they do business.

1.1. Terminology

 This document uses the terminology from
 [I-D.ietf-jose-json-web-signature],
 [I-D.ietf-jose-json-web-encryption], [I-D.ietf-jose-json-web-key],
 and [I-D.ietf-jose-json-web-algorithms] when discussing JOSE
 technologies.

 This document makes use of the following terminology, and
 additionally adopts nomenclature defined in
 [I-D.barnes-pervasive-problem] for the purpose of describing aspects
 of pervasive attacks.

 communications resource

 A communications resource is any uniquely identifiable continuous
 data channel or discrete shared content that represents an
 exchange of personal communications between two or more users.

 communications resource client

 A communications resource client consumes communications resources
 on behalf of a user and, when deployed in conformance with the KMS
 architecture, consumes the services of KMS server(s) to facilitate
 the E2E encryption of those communications resources.

 communications resource server

 A communications resource server is a provider of services through
 which communications resources are made available.

 cloud provider

 An individual or organization responsible for, and in control of,
 one or more communications resource servers.

 E2E encryption

 Shorthand for end-to-end encryption, as defined in [RFC4949],
 particularly as it applies to the establishment of confidentiality
 and integrity of communications resources.

 KMS server

https://datatracker.ietf.org/doc/html/rfc4949

Biggs & Cooley Expires May 21, 2015 [Page 4]

Internet-Draft key-management-service November 2014

 A key management server (KMS) is responsible for creating,
 storing, and providing access to E2E encryption keying material by
 communications resource clients.

 KMS protocol

 The protocol through which communications resource clients
 interoperate with KMS servers.

 KMS provider

 An individual or organization responsible for, and in control of,
 a KMS server deployment.

 KMS transport

 Any service or protocol that provides the basic transport over
 which KMS protocol messages are exchanged.

 resource client

 See communications resource client.

 resource server

 See communications resource server.

 trusted party

 A trusted party is an individual or organization that is trusted
 by one or more communicating users to maintain the confidentiality
 and integrity of their communications resources.

1.2. Security Terms

 Most security-related terms in this document are to be understood in
 the sense defined in [RFC4949]; such terms include, but are not
 limited to, "attack", "authentication", "authorization",
 "certification authority", "certification path", "certificate",
 "credential", "identity", "self-signed certificate", "trust", "trust
 anchor", "trust chain", "validate", and "verify".

1.3. Notational Conventions

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Biggs & Cooley Expires May 21, 2015 [Page 5]

Internet-Draft key-management-service November 2014

2. Architectural Overview

 The architectural reference model for this specification is
 illustrated in Figure 1. Central to this model is the
 communications resource server which is presumed to be operated by
 a _cloud provider_ for the purpose of offering some form of
 communications service. The nature of this service is not prescribed
 by this specification and may take the form of any of a variety of
 communications or collaboration services including file sharing,
 messaging, and VoIP. Consuming the services of the communications
 resource server are _communications resource clients_ which may be
 supplied by the cloud provider or developed by third parties.

 +-----------------+
 | Communications |
 +-------------------| Resource Server |-------------------+
 | | (Cloud Provider)| |
 | +-----------------+ |
 | |
 | |
 | +-----------------+ |
 | +-----------| KMS Transport |-----------+ | |
 | | +-----------------+ | |
 | | | | |
 | | Untrusted | | |
 - - -|- - - -|- - - - - - - - - - | - - - - - - - - - -|- - - -|- - -
 | | Trusted | | |
 | | | | |
 +-----------------+ +-----------------+ +-----------------+
 | Communications | | KMS Server | | Communications |
 | Resource Client | | (KMS Provider) | | Resource Client |
 +-----------------+ +-----------------+ +-----------------+
 | |
 +-----------------+ +-----------------+
 | Alice | | Bob |
 +-----------------+ +-----------------+

 Figure 1: KMS Architecture Reference Model

 In addition to the familiar elements described above, this model also
 includes a key management server, or _KMS_, operated by a _KMS
 provider_. The KMS server exposes an API through which clients may
 securely establish and share cryptographic keying material used for
 the E2E encryption of content that is transited through the cloud
 provider's services. This API is secured in such a way as to ensure
 these keys are visible to none but the KMS server itself and the
 clients authorized to consume the content they protect. This
 highlights an important distinction between the KMS provider and the

Biggs & Cooley Expires May 21, 2015 [Page 6]

Internet-Draft key-management-service November 2014

 cloud provider: while the KMS provider is necessarily a _trusted
 party_, the cloud provider need not be.

 It is an explicit objective of this specification to promote an
 ecosystem of providers of KMS implementations and KMS services that
 are distinct and independent of the cloud providers over whose
 services users communicate. To that end, this specification seeks to
 standardize a KMS service protocol though which clients and KMS
 servers interoperate. This protocol provides for the establishment
 of a confidential and authenticated channel between each client and
 KMS server, and defines an API of request and response messages to be
 exchanged over this secure channel for the purpose of creating,
 retrieving, and exchanging keys.

 While the KMS service protocol constitutes a central focus of this
 specification, the means by which this protocol is transported is
 expressly out of scope. This role may be readily addressed through
 either standards-based or proprietary protocols, and so we refer to
 this simply as the _KMS transport_ for the remainder of this
 document. Over this transport, the communication paths between
 clients and KMS server are encrypted using keys established through
 an authenticated ephemeral key agreement. As such, the KMS transport
 provider need not be regarded as a trusted party, and in fact may be
 the cloud provider itself.

 An important non-goal of this specification is the standardization of
 any aspect of the cloud provider's services or the means by which
 clients utilize shared keys for the E2E encryption of data transiting
 those services. By avoiding the application of constraints on the
 communications services and protocols we enable the use of this
 specification in the context of existing service deployments, both
 standards-based and proprietary. It is similarly a non-goal of this
 specification to enable federation of secure communications between
 vendors of different cloud services, as that is the realm of
 standardized application protocols. The scope of this specification
 is intended to be narrowly focused on the task of separating E2E
 encryption key management from the communications services they
 secure, thereby facilitating the broadest possible adoption of secure
 communications though existing services.

3. Use Cases

 The use cases described in this section are non-normative examples
 meant to illustrate how the KMS architecture may be deployed to
 provide E2E encryption of different types of communications
 resources. These use cases differ in detail, but generally follow a
 common logical sequence as given below.

Biggs & Cooley Expires May 21, 2015 [Page 7]

Internet-Draft key-management-service November 2014

 Note that all requests to the KMS server are via the KMS transport
 which, for clarity, has been omitted from the sequence diagrams
 included in this section.

 Resource Resource Resource KMS
 Client B Client A Server Server
 | | | |
 | | | (1) |
 | |-----------------|---------------->|
 | | (2) | |
 | |---------------->| |
 | | | (3) |
 | |-----------------|---------------->|
 | | (4) | |
 |-----------------|---------------->| |
 | | | |
 (5) | | | |
 | | | (6) |
 |-----------------|-----------------|---------------->|
 | | | |
 (7) | | | |
 | | | |

 Figure 2: Nominal Use Case

 1. Client A requests the generation of a new unbound key from the
 KMS.

 2. Client A encrypts a communications resource using the unbound KMS
 key and shares it via a resource server.

 3. Client A requests the creation of a new KMS resource object (KRO)
 to represent the communications resource. Client A also
 instructs the KMS to bind the KMS key used in step (2) to the new
 KRO and to authorize user B to retrieve keys bound to the KRO.

 4. Client B accesses the communications resource shared by client A
 and receives the encrypted data.

 5. Client B obtains, through some means not defined by this
 specification, the URL of the KMS key used to encrypt the
 communications resource.

 6. Client B requests the KMS key from the KMS server. The KMS
 server, recognizing user B as authorized on the KRO to which the
 key is bound, returns the KMS key.

Biggs & Cooley Expires May 21, 2015 [Page 8]

Internet-Draft key-management-service November 2014

 7. Client B decrypts the communications resource using the KMS key.

3.1. Securing an HTTP File Sharing Service

 Let A be a user that wishes to share a file with users B and C
 through some HTTP based file sharing service. In the context of the
 KMS architecture we may regard the file sharing provider's HTTP API
 as the resource server and the users' HTTP clients as the resource
 clients.

 For this scenario we also assume that the file sharing service is
 trusted by user A with the role of providing a file sharing service
 but is not necessarily trusted to adequately protect the
 confidentiality of the file contents. User A's concerns may then be
 addressed through the introduction of an HTTP based KMS transport
 (not shown) and KMS server deployed by an entity that A regards as a
 trusted party.

 HTTP HTTP HTTP HTTP File KMS
 Client C Client B Client A Share Server Server
 | | | | |
 | | | | (1) |
 | | |--------------|------------>|
 | | | (2) | |
 | | |------------->| |
 | (3) | (3) | | |
 |<-------------|<-------------|--------------| |
 | | | | (4) |
 | | |--------------|------------>|
 | | | (5) | |
 | |--------------|------------->| |
 | | | | (6) |
 | |--------------|--------------|------------>|
 | | | | |
 | (7) | | | |
 | | | | |
 (8) | | | | |
 | | | | |

 Figure 3: File Sharing Use Case

 This sequence begins with the assumption that each client has, at
 some point, already established a secure channel to the KMS via
 authenticated key agreement.

 1. Client A requests from the KMS some number of unbound KMS keys.

Biggs & Cooley Expires May 21, 2015 [Page 9]

Internet-Draft key-management-service November 2014

 2. Client A selects an unbound key from the set of keys obtained
 step (1), encrypts the file to be shared, and posts the encrypted
 content to the file sharing service. The file sharing service
 responds with a URL that uniquely identifies the shared file.

 3. Clients B and C learn of the newly shared file from the file
 sharing service (the mechanism by which this occurs is out of
 scope for this specification).

 4. Client A requests the creation of a KMS resource object (KRO) on
 the KMS to represent the shared file. In this message the client
 also requests that the key from step (2) be bound to the newly
 created KRO and that the users of clients B and C be authorized
 to retrieve keys bound to the KRO.

 5. Client B retrieves the shared file from the file sharing service.

 6. Client B requests from the KMS all keys bound to the KRO
 associated with the shared file's URL. Recognizing client B as
 authorized on the KRO, the KMS returns the key bound to the KRO
 by client A in step (4).

 7. Client B decrypts the shared file using the key obtained in step
 (6).

 8. Client C performs steps (5) through (7) in the same fashion as
 client B.

 It is worth noting that a race condition does exist where step (6)
 could occur before step (4) completes. This will result in a client
 being temporarily denied access to the key used to encrypt the shared
 file.

3.2. Securing an XMPP Multi-User Chat

 Let A, B and C be users that wish to engage in secure chat through an
 existing XMPP multi-user chat room. In the context of the KMS
 architecture we may regard the XMPP MUC service as the resource
 server, the users' XMPP clients as the resource clients, and the XMPP
 service itself (not shown) as the KMS transport.

Biggs & Cooley Expires May 21, 2015 [Page 10]

Internet-Draft key-management-service November 2014

 XMPP XMPP XMPP XMPP MUC KMS
 Client C Client B Client A Server Server
 | | | | |
 | | | | (1) |
 | | |--------------|------------>|
 | | | | (2) |
 | | |--------------|------------>|
 | | | (3) | |
 | | |------------->| |
 | (4) | (4) | | |
 |<-------------|<-------------|--------------| |
 | | | | (5) |
 | |--------------|--------------|------------>|
 | | | | |
 | (6) | | | |
 | | | | |
 (7) | | | | |

 Figure 4: Multi-User Chat Use Case

 This sequence begins with the assumption that a MUC room already
 exists on the MUC server and that each client has already established
 a secure channel to the KMS via authenticated key agreement. All
 messages are transmitted over XMPP.

 1. Client A requests from the KMS some number of unbound KMS keys.
 Client A selects one of these keys for encrypting MUC room
 messages.

 2. Client A requests the creation of a KMS resource object (KRO) on
 the KMS to represent the MUC room. In this message the client
 also requests that the key selected in step (1) be bound to the
 newly created KRO and that the users of clients B and C be
 authorized to retrieve keys bound to the KRO.

 3. Client A encrypts a message with the key selected in step (1) and
 sends it to the MUC room.

 4. The MUC service delivers client A's encrypted message to clients
 B and C.

 5. Client B requests from the KMS all keys bound to the KRO
 associated with the MUC room's URI. Recognizing client B as
 authorized on the KRO, the KMS returns the key bound to the KRO
 by client A in step (2).

 6. Client B decrypts the shared file using the key selected in step
 (1).

Biggs & Cooley Expires May 21, 2015 [Page 11]

Internet-Draft key-management-service November 2014

 7. Client C performs steps (5) and (6) in the same fashion as client
 B.

3.3. KMS to KMS Key Federation

 This use case illustrates two KMS instances federating keys
 associated with a resource. As KMS servers are deployed to serve
 groups of users it is inevitable that users will want to share
 resources across groups or organizations. This cross-organization
 sharing of keys leads to several problems. First, each user is only
 known to and only knows of one logical KMS. Second, each
 organization might have very different archiving requirements due to
 differing legal compliance regulations due to jurisdiction or
 industry differences. Lastly, one or both of the users might be
 employees of enterprises that need to be able to respond to legal
 discovery requests. To address these issues, KMS servers may
 federate in such a way as to allow for limited copying of keys from
 one KMS to another. This permits each KMS' owning organization the
 ability to control the ongoing policy regarding access to keys for
 which their respective users are authorized.

 Let Alice@DomainA and Bob@DomainB be users of a common file sharing
 service and who happen to use different KMS servers to secure their
 communications. Assume then that Alice wishes to share a file with
 Bob and therefore relies on KMS server federation to facilitate the
 key exchange.

Biggs & Cooley Expires May 21, 2015 [Page 12]

Internet-Draft key-management-service November 2014

 HTTP Client HTTP Client HTTP File KMS Server KMS Server
 Bob@DomainB Alice@DomainA Share Server DomainA DomainB
 | | | (1) | |
 | |--------------|------------->| |
 | | (2) | | |
 | |------------->| | |
 | (3) | | | |
 |<-------------|--------------| | |
 | | | (4) | |
 | |--------------|------------->| |
 | | (5) | | |
 |--------------|------------->| | |
 | | | | (6) |
 |--------------|--------------|--------------|------------>|
 | | | | (7) |
 | | | |<------------|
 | | | | (8) |
 | | | |<------------|
 | | | | |
 | | | | | (9)
 | | | | |
 (10) | | | | |
 | | | | |

 Figure 5: File Sharing with KMS Federation Use Case

 This sequence begins with the assumption that each client has, at
 some point, already established a secure channel to their respective
 KMS via authenticated key agreement.

 1. Alice@DomainA requests from the DomainA KMS some number of
 unbound KMS keys. Each KMS key is uniquely identified by a URL.

 2. Alice@DomainA selects a key from the set of KMS keys obtained in
 step (1), uses that key to encrypt the file to be shared, and
 posts the encrypted content to the file sharing service. The
 file sharing service responds with a URL that uniquely
 identifies the shared file.

 3. Bob@DomainB is notified of the newly shared file URL and
 corresponding KMS key URL through a notification from the file
 sharing service (or potentially some other means, such an an
 email from Alice).

 4. Alice@DomainA requests the creation of a KMS resource object
 (KRO) on the DomainA KMS to represent the shared file. In this
 message Alice also requests that the KMS key from step (2) be

Biggs & Cooley Expires May 21, 2015 [Page 13]

Internet-Draft key-management-service November 2014

 bound to the newly created KRO and that the user Bob@DomainB be
 authorized to retrieve KMS keys bound to the KRO.

 5. Bob@DomainB retrieves the shared file from the file sharing
 service.

 6. Using the KMS key URL obtained in step (3), Bob@DomainB requests
 the KMS key from the DomainB KMS.

 7. The DomainB KMS recognizes the KMS key URL as actually hosted by
 the DomainA KMS. The DomainB KMS establishes a secure and
 mutually authenticated channel with the DomainA KMS via the KMS
 transport.

 8. The DomainB KMS requests from the DomainA KMS the KRO object to
 which the KMS key is bound, along with all DomainB user
 authorizations and other KMS keys that have been bound to that
 KRO. The DomainA KMS recognizes that the DomainB KMS is
 authorized to retrieve all KMS keys for which users in the
 DomainB domain have been authorized. It then recognizes that at
 least one DomainB user (Bob) has been authorized on the KRO
 created in step (4). The DomainA KMS therefore decides the
 DomainB KMS is authorized to make this request and returns the
 requested information.

 9. Using the information received from the DomainA KMS, the DomainB
 KMS verifies that Bob@DomainB is authorized on the KRO, and
 satisfies the request from step (6) by returning the KMS key to
 Bob@DomainB.

 10. Client Bob@DomainB decrypts the shared file using the key
 obtained in step (9).

 Note that in step (9) the DomainB KMS is enforcing authorization
 policy for the KRO hosted on the DomainA KMS as it pertains to
 DomainB users. This is a necessary consequence of KMS federation,
 where the act of authorizing access to a KRO by a user residing in a
 federated domain engenders an implicit trust of the KMS server that
 controls the federated domain. For that reason, a KMS provider
 should restrict federation of its KMS servers to domains that the KMS
 provider regards as trusted.

4. KMS Protocol

 The KMS protocol is composed of a message oriented request and
 response API and a secure channel over which those messages are
 exchanged. The API provides clients with the ability to generate E2E
 encryption keys, associate those keys with communications resources,

Biggs & Cooley Expires May 21, 2015 [Page 14]

Internet-Draft key-management-service November 2014

 and explicitly manage access authorizations on those keys. The
 secure channel provides a mutually authenticated and E2E encrypted
 channel over which the clients and KMS server may exchange API
 messages securely. The API and secure channel are described in
 detail through the remainder of this section.

4.1. Secure Channel

 The secure channel is an encrypted and mutually authenticated
 communication path between each client and the KMS server. It
 transits the KMS transport which, in the context of this document,
 represents any service or protocol that may be utilized for the
 relaying of KMS API request and response messages. This
 specification presumes the KMS transport to be untrusted.

 (3) Secure Channel
 +===+
 V V
 +-----------------+ (2) +---------------+ (1) +---------------+
 | Resource Client |<------>| KMS Transport |<------>| KMS Server |
 +-----------------+ +---------------+ +---------------+
 | |
 Trusted | Untrusted | Trusted

 Figure 6: Establishment of a Secure Channel

 At a high level, the communication path between a resource client and
 KMS is established as follows.

 1. The KMS actively connects to the KMS transport. The protocol
 used for this connection is out of scope for this document,
 however it MUST support the asynchronous flow of encrypted KMS
 request and response messages between the KMS and KMS transport.

 2. A resource client connects to the KMS transport. The protocol
 used for this connection is out of scope for this document,
 however it MUST support the flow of encrypted KMS request and
 response messages between the resource client and the KMS
 transport.

 3. Through an elliptic curve Diffie-Helman key exchange, augmented
 by server and client authentication, the resource client and KMS
 establish a shared secret and derived ephemeral key. This is
 discussed in greater detail in Section 4.7.1.

 On successful mutual authentication and ephemeral key agreement, the
 resource client and KMS communicate through the exchange of sequenced
 request and response messages encrypted using the ephemeral key.

Biggs & Cooley Expires May 21, 2015 [Page 15]

Internet-Draft key-management-service November 2014

4.2. User Identity

 Central to the KMS server's role as a key store is its ability to
 restrict access to stored keying material to only authorized users.
 This requires robust user authentication and a means for the
 unambiguous and unique identification of each user.

 Conforming KMS architecture deployments MUST rely on an identity
 provider that supports the generation of OAuth 2.0 [RFC6749] access
 tokens. The KMS server MUST rely on same identity provider for the
 purpose of validating access tokens received from the client. Access
 tokens used by clients to demonstrate identity and authorization for
 access to KMS resources MUST NOT be used for any other service. Any
 exposure of a KMS recognized access token to third parties (such as
 providers of other services) jeopardizes the security of all KMS keys
 for which the user whose identity is represented by the token is
 authorized.

 The identity provider on which the KMS server relies MAY be the same
 identity provider as relied upon by the resource server(s) whose
 communications resources are encrypted with keys managed by the KMS
 server. Note, however, the reliable authentication and authorization
 of clients to the KMS server is critical to the security of the KMS
 keys it holds. The identity provider on which the KMS relies must
 therefore necessarily be regarded as a trusted party within the
 context of the KMS architecture.

 Access tokens MUST be conveyed to the KMS server as part of the
 payload of encrypted KMS API requests as described in Section 4.6.1
 and MUST NOT be conveyed in any other manner.

4.3. KMS Identity

 Given the untrusted nature of the KMS transport by both the KMS and
 clients, it is critical for clients to be able to verify the identity
 of their KMS and ensure that no MITM attacks are carried out on
 client to KMS or KMS to client communications. Therefore, the KMS
 MUST make use of at least one PKIX certificate [RFC5280] and clients
 MUST validate the PKIX certificate presented by the KMS through the
 comparison of the certificate's common name (CN) or subject
 alternative name (SAN) [RFC6125] fields to the Internet domain
 portion of the user's Addr-spec [RFC2822] formatted unique identifier
 using the procedures defined in section 6 of [RFC6125]. An
 acceptable alternative to direct CN or SAN validation is defined in
 [I-D.ietf-xmpp-posh].

 PKIX certificates presented by the KMS can be issued by either a
 public or private certification authority with the stipulation that

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc6125#section-6

Biggs & Cooley Expires May 21, 2015 [Page 16]

Internet-Draft key-management-service November 2014

 clients MUST be able to validate the KMS's entire certificate path
 through the pre-established trust of the root certificate used to
 anchor the certificate path. The mechanism for establishing trust of
 the root certificate is out of scope for this specification, but it
 is usually carried out through pre-installed trusted root
 certificates on various operating systems for public certification
 authorities or through enterprise endpoint management solutions or
 manual installation tasks for private certification authorities.

4.4. Object Types

 The KMS protocol defines three object types: resources, keys, and
 authorizations. It is through the creation and manipulation of
 instances of these object types that clients interact with the KMS.

 Resource

 A resource is an object that represents, within the KMS object
 model, a communications resource as defined in Section 1.1. Keys
 and user authorizations are associated (bound) to the resource
 object as a means of representing their logical association with
 that communications resource.

 Key

 A key is an object representing symmetric keying material
 generated and made available to authorized clients by the KMS. A
 key may exist in one of two states: "bound", and "unbound". An
 unbound key is not associated with any resource, whereas a bound
 key is associated with exactly one resource.

 Authorization

 An authorization is the association of a user with a particular
 resource. When such an association exists between a user and a
 resource this implies that the user is entitled to retrieve any
 key that is bound to that resource, and to add or remove
 authorizations for other users on the same resource.

 The KMS protocol is composed from representations of these
 fundamental object types. These representations are defined in the
 following sections.

4.4.1. KMS Key Objects

 The JSON representations for KMS key objects is defined as follows
 using JSON content rules [I-D.newton-json-content-rules].

Biggs & Cooley Expires May 21, 2015 [Page 17]

Internet-Draft key-management-service November 2014

 jwk : ; see [JWK]

 kmsUri (
 "uri" : uri relative
)

 keyRep {
 kmsUri,
 "jwk" : jwk,
 "userId" : string,
 "clientId" : string,
 "createDate" : date-time,
 "expirationDate" : date-time,
 ?"resourceUri" : kmsUri,
 ?"bindDate" : date-time
 }

 key (
 "key" : keyRep
)

 keys (
 "keys" : [*keyRep]
)

 keyUris (
 "keyUris" : [*kmsUri]
)

 The attributes of a KMS key object are defined as follows.

 uri

 A standard definition for KMS object identifiers.

 jwk

 Symmetric keying material represented as a JWK object (see
 [I-D.ietf-jose-json-web-key]).

 userId

 The authenticated unique identifier of the user that created the
 key.

 clientId

Biggs & Cooley Expires May 21, 2015 [Page 18]

Internet-Draft key-management-service November 2014

 An opaque unique identifier provided by the client that created
 the key.

 createDate

 The point in time when the key was created, in RFC-3339 date-time
 format.

 expirationDate

 The point in time after which the key may no longer be bound (if
 unbound) or may no longer be used for encrypting data (if bound or
 an ephemeral key).

 resourceUri

 The uri of the KMS resource object to which the key is bound.

 bindDate

 The point in time when the key was bound, in RFC-3339 date-time
 format.

4.4.2. KMS Authorization Objects

 The JSON representations for KMS authorization objects is defined as
 follows using JSON content rules with references to rules defined in
 previous sections.

 authorizationRep {
 kmsUri,
 "userId" : string,
 "resourceUri" : kmsUri,
 }

 authorization (
 "authorization" : authorizationRep
)

 authorizations (
 "authorizations" : [*authorizationRep]
)

 authorizationUris (
 "authorizationUris" : [*kmsUri]
)

 The attributes of a KMS authorization object are defined as follows.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Biggs & Cooley Expires May 21, 2015 [Page 19]

Internet-Draft key-management-service November 2014

 uri

 A standard definition for KMS object identifiers.

 userId

 The unique identifier of the user that is authorized.

 resourceUri

 The object identifier of the resource to which the authorization
 applies.

 Note, with respect to this specification user identifiers are opaque,
 however they MUST map to unique identifiers provided as part of user
 authentication.

4.4.3. KMS Resource Objects (KRO)

 The JSON representation for KMS resource objects is defined as
 follows using JSON content rules with references to rules defined in
 previous sections.

 resourceRep {
 kmsUri,
 keys / keyUris,
 authorizations / authorizationUris
 }

 resource (
 "resource" : resourceRep
)

 resources (
 "resources" : [*resourceRep]
)

 resourceUris (
 "resourceUris" : [*kmsUri]
)

 The attributes of a KMS resource object are defined as follows.

 uri

 A standard definition for KMS object identifiers.

 keys

Biggs & Cooley Expires May 21, 2015 [Page 20]

Internet-Draft key-management-service November 2014

 An array of key object representations, one for each key bound to
 the resource.

 keyUris

 An array of key object identifiers, one for each key bound to the
 resource. Only one of either keys or keyUris may be present in a
 resource object representation.

 authorizations

 An array of authorization object representations, one for each
 authorization on the resource.

 authorizationUris

 An array of authorization object identifiers, one for each
 authorization on the resource. Only one of either authorizations
 or authorizationUris may be present in a resource object
 representation.

4.5. Request Types

 The KMS protocol defines four types of requests: create, retrieve,
 update, delete, each of which may be applied to one of the three KMS
 object types. Note that not all object types support all requests
 types. A KMS need only support those combinations of request type
 and object type explicitly defined in this document.

 Create

 A create operation acts upon an object type, creating one or more
 new instances of that object type.

 Retrieve

 A retrieve operation acts upon an object or object type, returning
 in the response a representation of one or more object instances.

 Update

 An update operation acts upon an object, altering mutable
 properties of that object.

 Delete

 A delete operation acts upon an object, removing that object from
 the KMS.

Biggs & Cooley Expires May 21, 2015 [Page 21]

Internet-Draft key-management-service November 2014

4.6. Message Structure

 Every KMS request and response message is composed of a JSON
 [RFC7159] formatted payload encapsulated within either a JWE
 [I-D.ietf-jose-json-web-encryption] or JWS
 [I-D.ietf-jose-json-web-signature] object. These messages may be
 divided into three types.

 Common Messages

 Common messages include all those which do not meet the definition
 of either key agreement message or error message. Common messages
 are encrypted as JWE objects using the shared ephemeral key
 established during initial key agreement between the client and
 KMS (see Section 4.7.1). The value of the JWE header "kid"
 attribute of a common message MUST match that of the KMS ephemeral
 key object URI attribute established during initial key agreement.

 Ephemeral Key Agreement Messages

 Ephemeral key agreement messages are those exchanged between the
 client and KMS for the purpose of establishing a new shared
 ephemeral key (see Section 4.7.1). Key agreement request payloads
 are encrypted as JWE objects using the authenticated and validated
 static public key of the KMS. Key agreement response payloads are
 signed as JWS objects using the static private key of the KMS.

 Error Messages

 Error messages are those originated by the KMS to indicate a
 failed request. Error messages are composed in the same fashion
 as common messages; however, in the event that the KMS does not
 recognize the ephemeral key used in the request, or that key is
 determined to have expired, the KMS MUST respond with an
 unencrypted message composed as a JWS, with a payload as described
 in Section 4.6.3, and signed using the KMS server's static public
 key.

 The basic JSON representations for the request and response payloads
 are defined in the following sections.

4.6.1. Basic Request Payload

 The basic JSON representation for KMS request message payloads is
 defined as follows using JSON content rules with references to rules
 defined in previous sections.

https://datatracker.ietf.org/doc/html/rfc7159

Biggs & Cooley Expires May 21, 2015 [Page 22]

Internet-Draft key-management-service November 2014

 sequence (
 "sequence" : integer
)

 credential {
 "userId": string
 "bearer": string / "jwk": jwk
 }

 client {
 "clientId": string,
 "credential": credential
)

 method: string /create|retrieve|update|delete/

 request (
 "client" : client,
 "method" : method,
 kmsUri,
 sequence
)

 The attributes of a KMS request message payload are defined as
 follows.

 sequence

 An integer selected by the client and provided in a monotonically
 increasing order with each request, beginning with the initial
 create ephemeral key request.

 userId

 The unique identifier of the user making the request.

 bearer

 An [RFC6749] access token issued by the client's identity provider
 and validated by the KMS in cooperation with the identity
 provider. See Section 4.2.

 jwk

 A JWK object, in JSON format as defined in
 [I-D.ietf-jose-json-web-key], containing the public key of the
 client (presumably a server). This JWK MUST contain an x5c header

https://datatracker.ietf.org/doc/html/rfc6749

Biggs & Cooley Expires May 21, 2015 [Page 23]

Internet-Draft key-management-service November 2014

 with a certificate chain that may be used to positively validate
 the public key.

 clientId

 An opaque unique identifier provided by the client (not used for
 authentication, only to assist multiple clients of a single user
 in differentiating between their respective unbound keys).

 method

 Indicates the request type: create, retrieve, update, or delete.

 uri

 The KMS object or object type to which the request applies.

 The JSON content rules above are used in conjunction with additional
 request type specific rules, defined later in this document, to
 produce the full request payload definition for each KMS operation.

4.6.2. Basic Response Payload

 The basic JSON representation for KMS request message payloads is
 defined as follows using JSON content rules with references to rules
 defined in previous sections.

 response (
 "status" : integer,
 ?"reason" : string
 sequence
)

 The attributes of a KMS request message payload are defined as
 follows.

 status

 Indicates the success or failure of the request. The value
 returned in a response status attribute SHOULD be that of an
 [RFC7231] defined status code with semantics that correspond to
 the success or failure condition of the KMS request.

 reason

 An optional natural language string to describe the response
 status in terms that are useful for tracing and troubleshooting
 the API.

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 21, 2015 [Page 24]

Internet-Draft key-management-service November 2014

 sequence

 An echo of the sequence number provided in the request.

 The JSON content rules above are used in conjunction with additional
 response type specific rules, defined later in this document, to
 produce the full response payload definition for each KMS operation.

4.6.3. Error Response Payload

 The JSON representation for KMS error response message payloads is
 defined as follows using JSON content rules with references to rules
 defined in previous sections.

 Error response payload definition:

 root {
 response
 }

 Error response message example:

 JWS(K_kms_priv, {
 "status": 403,
 "reason": "The ephemeral key used in the request has expired.",
 "sequence": 7
 })

4.7. Requests

 The following sections provide detailed descriptions for each of the
 request and response operations that may occur between a resource
 client and the KMS.

4.7.1. Create Ephemeral Key

 The first operation between a client and KMS MUST be the
 establishment of a shared secret and derived ephemeral key. This is
 necessary as all other requests and responses are encrypted with the
 ephemeral key.

 The client request for creating an ephemeral key conforms to the
 basic request message payload, where the method is "create" and the
 uri is "/ecdhe". In addition to the basic payload, the client
 provides a jwk attribute for which the value is a JWK object
 [I-D.ietf-jose-json-web-key] containing the public part of an EC key
 pair generated by the client. Unlike a basic request message,
 however, the request payload is encrypted as the content of a JWE

Biggs & Cooley Expires May 21, 2015 [Page 25]

Internet-Draft key-management-service November 2014

 [I-D.ietf-jose-json-web-key] secured with the static public key of
 the KMS server (K_kms_pub) as obtained from the server's validated
 PKIX certificate [RFC5280].

 Note, the client MUST generate a new EC key pair for every create
 ephemeral key request sent to the KMS server.

 Request payload definition:

 root {
 request,
 jwk
 }

 Request message example:

 JWE(K_kms_pub, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 },
 "method": "create",
 "uri": "/ecdhe",
 "sequence": 0,
 "jwk" : {
 "kty": "EC",
 "crv": "P-256",
 "x": "VoFkf6Wk5kDQ1ob6csBmiMPHU8jALwdtaap35Fsj20M",
 "y": "XymwN6u2PmsKbIPy5iij6qZ-mIyej5dvZWB_75lnRgQ"
 }
 })

 On receiving the ephemeral key creation request, the KMS server MUST
 verify the credential provided in the request. If a bearer token is
 provided, the KMS MUST validate the token in cooperation with the
 identity provider. If a jwk is provided, the KMS MUST validate the
 included PKIX certificate chain against the KMS server's trust root.
 In either case, the identity of the requesting client MUST be
 authenticated and verified to correspond to either an authorized user
 of the KMS or an authorized trusted service. If verification fails,
 the KMS MUST NOT use the server response to continue with key
 agreement.

 Upon successful authentication and authorization of the request, the
 KMS responds by generating its own EC key pair using the same curve

https://datatracker.ietf.org/doc/html/rfc5280

Biggs & Cooley Expires May 21, 2015 [Page 26]

Internet-Draft key-management-service November 2014

 as indicated in the "crv" attribute of the request message JWK. The
 KMS server returns the public part of this key pair to the resource
 client in the form of a KMS key object within the response payload.
 The KMS also generates and includes within the response payload a
 universally unique identifier to be regarded by both client and KMS
 as the key identifier of the agreed upon ephemeral key. The response
 payload is returned to the resource client as the content of a JWS
 [I-D.ietf-jose-json-web-signature] signed using the static private
 key of the KMS server (K_kms_priv).

 Response payload definition:

 root {
 response,
 key
 }

 Response message example:

 JWS(K_kms_priv, {
 "status": 201,
 "sequence": 0,
 "key": {
 "uri": "/ecdhe/ea9f3858-1240-4328-ae22-a15f6072306f",
 "jwk" : {
 "kty": "EC",
 "crv": "P-256",
 "x": "8mdasnEZac2LWxMwKExikKU5LLacLQlcOt7A6n1ZGUC",
 "y": "lxs7ln5LtZUE_GE7yzc6BZOwBxtOftdsr8HVh-14ksS"
 },
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "createDate": "2014-10-09T15:54:48Z",
 "expirationDate": "2014-10-09T16:54:48Z"
 }
 })

 If successful, the KMS response to a create ephemeral key request
 MUST have a status of 201. In the case of a request failure, the KMS
 response status SHOULD be that of an [RFC7231] defined status code
 with semantics that correspond to the failure condition. In
 addition, the ephemeral key SHOULD have the createDate assigned as
 the current time and an expirationDate assigned as the latest point
 in time before which the key may be used for encrypting messages
 (both in [RFC3339] date-time format).

 On receiving the ephemeral key creation response, the resource client
 MUST verify the received JWS against the KMS server's validated

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc3339

Biggs & Cooley Expires May 21, 2015 [Page 27]

Internet-Draft key-management-service November 2014

 static public key. If verification fails, the client MUST NOT use
 the server response to continue with key agreement.

 To generate the shared secret, both resource client and KMS server
 use ECDH shared secret derivation with the private part of the local
 EC key pair and the public part of the remote EC key pair. The
 shared secret is then provided as input to HKDF (with both extract
 and expand, and empty salt) [RFC5869] to generate the ephemeral key
 (K_ephemeral).

 The ephemeral key generated by this operation is used to encrypt all
 subsequent KMS requests submitted by the requesting resource client.
 The encryption of subsequent requests takes the form of a JWE object
 for which the kid attribute value MUST be the key object URI provided
 by the KMS in the response message described above.

 The KMS SHOULD accept messages encrypted with the ephemeral key up to
 and until the key expiration date as provided in the response message
 described above. On expiration of the ephemeral key, the KMS MUST
 reject all further requests submitted using this key, and a client
 wishing to submit further requests to the KMS MUST re-establish the
 secure channel by requesting the creation of a new ephemeral key.

4.7.2. Delete Ephemeral Key

 In the event that a resource client's ephemeral key has become
 compromised, a client SHOULD submit a request to the KMS to delete
 the ephemeral key.

 The request message conforms to the basic request message structure,
 where the method is "delete", and the uri is that of the ephemeral
 key to be deleted.

 Request payload definition:

 root {
 request
 }

 Request message example:

https://datatracker.ietf.org/doc/html/rfc5869

Biggs & Cooley Expires May 21, 2015 [Page 28]

Internet-Draft key-management-service November 2014

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "delete",
 "uri": "/ecdhe/ea9f3858-1240-4328-ae22-a15f6072306f",
 "sequence": 7
 })

 The response message conforms to the basic response message
 structure, and MUST NOT include a representation of the deleted
 ephemeral key.

 Response payload definition:

 root {
 response
 }

 Response message example:

 JWE(K_ephemeral, {
 "status": 204,
 "sequence": 7
 })

 If successful, the KMS response to a delete ephemeral key request
 MUST have a status of 204. In the case of a request failure, the KMS
 response status SHOULD be that of an [RFC7231] defined status code
 with semantics that correspond to the failure condition.

 On successful deletion of an ephemeral key, the KMS MUST NOT, from
 that time forward, accept any requests encrypted with that ephemeral
 key.

4.7.3. Create Resource

 When a client intends to initiate E2E encryption of a communications
 resource, it begins by requesting the creation of a KMS resource
 object. This resource object logically represents the communications
 resource within the KMS data model.

 As part of a create resource request, a KMS server MUST create at
 least one authorization object on the newly created resource object

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 21, 2015 [Page 29]

Internet-Draft key-management-service November 2014

 to explicitly authorize the user making the request. A client MAY
 request the immediate creation of one or more additional
 authorizations such that corresponding users may be immediately
 authorized to access and operate on the new resource object. If for
 any reason one or more requested authorizations cannot be applied to
 the new resource object, the entire create resource request MUST be
 failed by the KMS.

 As part of a create resource request, a client MAY request the
 immediate binding of one or more unbound KMS keys to the new resource
 object. If any key indicated in the request is already bound, or is
 otherwise invalid (e.g. expired), the entire create resource request
 MUST be failed by the KMS.

 The request message conforms to the basic request message structure,
 where the method is "create", the uri is "/resources", and additional
 user identifiers and/or key URIs are provided in a manner consistent
 with the following.

 Request payload definition:

 userIds (
 "userIds" : [*string]
)

 root {
 request,
 ?userIds,
 ?keyUris
 }

 Request message example:

Biggs & Cooley Expires May 21, 2015 [Page 30]

Internet-Draft key-management-service November 2014

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "create",
 "uri": "/resources",
 "sequence": 7,
 "userIds": [
 "b46e8124-b6e8-47e0-af0d-e7f1a2072dac",
 "39d56a84-c6f9-459e-9fd1-40ab4ad3e89a"
],
 "keyUris": [
 "/keys/b4cba4da-a984-4af2-b54f-3ca04acfe461",
 "/keys/2671413c-ab80-4f19-a0a4-ae07e1a94e90"
]
 })

 The response message conforms to the basic response message
 structure, and includes a representation of the created KMS resource
 object.

 Response payload definition:

 root {
 response,
 resource
 }

 Response message example:

Biggs & Cooley Expires May 21, 2015 [Page 31]

Internet-Draft key-management-service November 2014

 JWE(K_ephemeral, {
 "status": 201,
 "sequence": 7,
 "resource": {
 "uri": "/resources/7f35c3eb-95d6-4558-a7fc-1942e5f03094",
 "authorizationUris": [
 "/authorizations/50e9056d-0700-4919-b55f-84cd78a2a65e",
 "/authorizations/db4c95ab-3fbf-42a8-989f-f53c1f13cc9a"
],
 "keyUris": [
 "/keys/b4cba4da-a984-4af2-b54f-3ca04acfe461",
 "/keys/2671413c-ab80-4f19-a0a4-ae07e1a94e90"
]
 }
 })

 If successful, the KMS response to a create resource request MUST
 have a status of 201. In the case of a request failure, the KMS
 response status SHOULD be that of an [RFC7231] defined status code
 with semantics that correspond to the failure condition.

4.7.4. Create Unbound Keys

 When a client requires a symmetric key for use in the E2E encryption
 of a communications resource, it begins by requesting the creation of
 one or more unbound keys from the KMS. A client may submit this
 request at any time, even before the communications resource exists.
 The keys returned by this request are unbound, which is to say not
 yet associated with any KMS resource object.

 The request message conforms to the basic request message structure,
 where the method is "create", the uri is "/keys", and an additional
 count attribute is introduced to indicate the number of keys to be
 created.

 Request payload definition:

 root {
 request,
 "count": integer
 }

 Request message example:

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 21, 2015 [Page 32]

Internet-Draft key-management-service November 2014

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "create",
 "uri": "/keys",
 "sequence": 7,
 "count": 2
 })

 The response message conforms to the basic response message structure
 with the addition of an array of key object representations, one for
 each unbound key created.

 Response payload definition:

 root {
 response,
 keys / keyUris
 }

 Response message example:

Biggs & Cooley Expires May 21, 2015 [Page 33]

Internet-Draft key-management-service November 2014

 JWE(K_ephemeral, {
 "status": 201,
 "sequence": 7,
 "keys": [
 {
 "uri": "/keys/52100fa4-c222-46d0-994d-1ca885e4a3a2",
 "jwk": {
 "kid": "52100fa4-c222-46d0-994d-1ca885e4a3a2",
 "kty": "oct",
 "k": "ZMpktzGq1g6_r4fKVdnx9OaYr4HjxPjIs7l7SwAsgsg"
 }
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "createDate": "2014-10-09T15:54:48Z",
 "expirationDate": "2014-10-09T16:04:48Z"
 },
 {
 "uri": "/keys/fed33890-f9fa-43ad-a9f8-ab55a983a543",
 "jwk": {
 "kid": "fed33890-f9fa-43ad-a9f8-ab55a983a543",
 "kty": "oct",
 "k": "q2znCXQpbBPSZBUddZvchRSH5pSSKPEHlgb3CSGIdpL"
 }
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "createDate": "2014-10-09T15:54:48Z",
 "expirationDate": "2014-10-09T16:04:48Z"
 }
]
 })

 Each key object in the response to a create unbound keys request
 includes a single JWK [I-D.ietf-jose-json-web-key] representing a new
 symmetric key of 256 bits generated by a cryptographically secure
 PRNG. Note that, as unbound keys, the resourceUri attribute of each
 key is either undefined or null. All keys SHOULD have the createDate
 assigned as the current time and an expirationDate assigned as the
 latest point in time before which the key may be bound to a resource
 (both in [RFC3339] date-time format).

 The clientId attribute of each created key MUST be the clientId
 provided by the client in the client.clientId attribute of the
 request.

 As shown in the response payload definition, the KMS MUST return
 either an array of key object representations or an array of key
 object uris. It is at the KMS server's discretion which of these is
 returned.

https://datatracker.ietf.org/doc/html/rfc3339

Biggs & Cooley Expires May 21, 2015 [Page 34]

Internet-Draft key-management-service November 2014

 If successful, the KMS response to a create unbound keys request MUST
 have a status of 201. In the case of a request failure, the KMS
 response status SHOULD be that of an [RFC7231] defined status code
 with semantics that correspond to the failure condition.

4.7.5. Update Unbound Key (Bind)

 To initiate the use of an unbound KMS key in securing a
 communications resource, a client will create a corresponding KMS
 resource object and subsequently bind the unbound key to that
 resource. A client MAY begin using an unbound KMS key to encrypt a
 communications resource prior to the binding of that key.

 The request message conforms to the basic request message structure,
 where the method is "update", the uri is that of the key to be bound,
 and an additional resourceUri attribute is introduced to indicate the
 KMS resource object to which the key is to be bound. If the user
 making a bind unbound key request does not have an authorization on
 the resource indicated by the resourceUri, or is not the user for
 whom the unbound key was originally created, the KMS MUST fail the
 request. The KMS SHOULD fail the request if the clientId of the
 request does not match that of the unbound key.

 Request payload definition:

 root {
 request,
 "resourceUri" : kmsUri
 }

 Request message example:

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "update",
 "uri": "/keys/52100fa4-c222-46d0-994d-1ca885e4a3a2",
 "sequence": 7,
 "resourceUri": "/resources/7f35c3eb-95d6-4558-a7fc-1942e5f03094"
 })

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 21, 2015 [Page 35]

Internet-Draft key-management-service November 2014

 The response message conforms to the basic response message
 structure, and includes a representation of the full state of the
 newly bound key.

 Response payload definition:

 root {
 response,
 key
 }

 Response message example:

 JWE(K_ephemeral, {
 {
 "status": 200,
 "sequence": 7,
 "key": {
 "uri": "/keys/52100fa4-c222-46d0-994d-1ca885e4a3a2",
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "jwk": {
 "kid": "52100fa4-c222-46d0-994d-1ca885e4a3a2",
 "kty": "oct",
 "k": "ZMpktzGq1g6_r4fKVdnx9OaYr4HjxPjIs7l7SwAsgsg"
 }
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "createDate": "2014-10-09T15:54:48Z",
 "bindDate": "2014-10-09T15:55:34Z",
 "expirationDate": "2014-10-10T15:55:34Z",
 "resourceUri": "/resources/7f35c3eb-95d6-4558-a7fc-1942e5f03094"
 }
 })

 On successfully binding a formerly unbound KMS key to a resource
 object, the state of the KMS key object MUST reflect the updated
 resourceUri attribute, MUST reflect a bindDate as the current time,
 and MUST reflect an expirationDate as the time after which clients
 MUST NOT use this key for encryption as provided by KMS policy.
 Subsequently, the KMS MUST regard the key as bound to the KMS
 resource object identified by the resourceUri and MUST reject
 subsequent requests to bind the same key to any other resource
 object.

 If successful, the KMS response to a bind unbound key request MUST
 have a status of 200. In the case of a request failure, the KMS
 response status SHOULD be that of an [RFC7231] defined status code
 with semantics that correspond to the failure condition.

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 21, 2015 [Page 36]

Internet-Draft key-management-service November 2014

4.7.6. Retrieve Keys

 Clients engaging in E2E encryption require a means for retrieving
 keys from the KMS. A key request may take one of three forms, it may
 be

 o a request for a specific key,

 o a request all keys bound to a particular resource, or

 o a request for a subset of keys bound to a particular resource.

 In all cases, the request message conforms to the basic request
 message structure with "retrieve" as the value for the method
 attribute.

 To retrieve an individual key, the uri of the request is that of the
 key object to be retrieved. If the key is unbound, the KMS MUST
 reject the request unless it originates from the user that requested
 the key's creation, and SHOULD reject the request unless it
 originates from the same clientId that requested the key's creation.
 If the key is bound, the KMS MUST reject the request unless the
 request originates from a user for which there exists a corresponding
 authorization on the resource to which the requested key is bound.

 To retrieve all keys bound to a particular resource, the uri of the
 request is that of the resource concatenated with "/keys". To
 retrieve a select subset of keys bound to a particular resource, the
 client constructs a request for all keys and augments this with the
 additional attributes "count" and "prefer". The count attribute
 specifies the maximum number of keys that the KMS may return in the
 response message, and the prefer attribute is a token indicating a
 preference criterion. Defined preference criteria are:

 o recently-bound

 o recently-requested

 The recently-bound criterion prefers keys that have been most
 recently bound to the resource. The recently-requested criterion
 prefers keys that have been most recently requested by their specific
 uri (including requests made by other clients). The KMS MUST reject
 the request unless the request originates from a user for which there
 exists a corresponding authorization on the resource from which bound
 keys are being requested.

 Request payload definition:

Biggs & Cooley Expires May 21, 2015 [Page 37]

Internet-Draft key-management-service November 2014

 root {
 request,
 ?(
 "prefer": string /recently-bound|recently-requested/,
 "count": integer
)
 }

 Request message example (individual key):

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "retrieve",
 "uri": "/keys/52100fa4-c222-46d0-994d-1ca885e4a3a2",
 "sequence": 7
 })

 Request message example (all keys bound to a resource):

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "retrieve",
 "uri": "/resources/7f35c3eb-95d6-4558-a7fc-1942e5f03094/keys",
 "sequence": 7
 })

 Request message example (10 keys most recently bound to a resource):

Biggs & Cooley Expires May 21, 2015 [Page 38]

Internet-Draft key-management-service November 2014

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "retrieve",
 "uri": "/resources/7f35c3eb-95d6-4558-a7fc-1942e5f03094/keys",
 "sequence": 7,
 "prefer": "recently-bound",
 "count": 10
 })

 The response message conforms to the basic response message structure
 and includes a representation of the key or keys selected by the
 request. In the case of a request for a specific individual key, the
 response will contain a representation of a single key. In the case
 of a request for all keys bound to a resource, the response will
 contain an array representing all KMS keys currently bound to the
 resource.

 In the case of a request for a select subset of keys bound to a
 resource, the response will contain an array representing the set of
 KMS keys currently bound to the resource and which most closely
 satisfy the preference criterion indicated in the request. In this
 case, the size of the keys array in the response MUST NOT exceed the
 count as given in the request.

 Response payload definition:

 root {
 response,
 key / keys
 }

 Response message example (for specific key):

Biggs & Cooley Expires May 21, 2015 [Page 39]

Internet-Draft key-management-service November 2014

 JWE(K_ephemeral, {
 {
 "status": 200,
 "sequence": 7,
 "key": {
 "uri": "/keys/52100fa4-c222-46d0-994d-1ca885e4a3a2",
 "jwk": {
 "kid": "52100fa4-c222-46d0-994d-1ca885e4a3a2",
 "kty": "oct",
 "k": "ZMpktzGq1g6_r4fKVdnx9OaYr4HjxPjIs7l7SwAsgsg"
 }
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "createDate": "2014-10-09T15:54:48Z",
 "bindDate": "2014-10-09T15:55:34Z",
 "expirationDate": "2014-10-10T15:55:34Z",
 "resourceUri": "/resources/7f35c3eb-95d6-4558-a7fc-1942e5f03094"
 }
 })

 Response message example (all keys bound to a resource):

Biggs & Cooley Expires May 21, 2015 [Page 40]

Internet-Draft key-management-service November 2014

 JWE(K_ephemeral, {
 {
 "status": 200,
 "sequence": 7,
 "keys": [
 {
 "uri": "/keys/52100fa4-c222-46d0-994d-1ca885e4a3a2",
 "jwk": {
 "kid": "52100fa4-c222-46d0-994d-1ca885e4a3a2",
 "kty": "oct",
 "k": "ZMpktzGq1g6_r4fKVdnx9OaYr4HjxPjIs7l7SwAsgsg"
 }
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "createDate": "2014-10-09T15:54:48Z",
 "bindDate": "2014-10-09T15:55:34Z",
 "expirationDate": "2014-10-10T15:55:34Z",
 "resourceUri": "/resources/7f35c3eb-95d6-4558-a7fc-1942e5f03094"
 },
 {
 "uri": "/keys/fed33890-f9fa-43ad-a9f8-ab55a983a543",
 "jwk": {
 "kid": "fed33890-f9fa-43ad-a9f8-ab55a983a543",
 "kty": "oct",
 "k": "q2znCXQpbBPSZBUddZvchRSH5pSSKPEHlgb3CSGIdpL"
 }
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "createDate": "2014-10-09T15:54:48Z",
 "bindDate": "2014-10-09T15:56:43Z",
 "expirationDate": "2014-10-10T15:56:43Z",
 "resourceUri": "/resources/7f35c3eb-95d6-4558-a7fc-1942e5f03094"
 }]
 })

 If successful, the KMS response to a retrieve bound keys request MUST
 have a status of 200. In the case of a request failure, the KMS
 response status SHOULD be that of an [RFC7231] defined status code
 with semantics that correspond to the failure condition.

4.7.7. Create Authorizations

 An authorization establishes a relationship between a resource and a
 user that entitles the user to retrieve bound keys from, and bind new
 keys to, that resource. The KMS resource authorization model is
 viral in the sense that, once a user has been authorized on a
 resource, that user is also entitled to authorize other users on that

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 21, 2015 [Page 41]

Internet-Draft key-management-service November 2014

 resource. These authorizations are created through create
 authorization requests.

 The request message conforms to the basic request message structure,
 where the method is "create", and the uri is "/authorizations".
 Additional attributes are required to indicate the resource on which
 authorizations are to be added, as well as the set of users for whom
 these new authorizations are to be created.

 root {
 request,
 "resourceUri" : kmsUri,
 "userIds" : [*string]
 }

 Request message example:

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "create",
 "uri": "/authorizations",
 "sequence": 7,
 "resourceUri": "/resources/7f35c3eb-95d6-4558-a7fc-1942e5f03094",
 "userIds": [
 "119a0582-2e2b-4c0c-ba6a-753d05171803",
 "557ac05d-5751-43b4-a04b-e7eb1499ee0a"
]
 })

 The response message conforms to the basic response message
 structure, and includes a representation of the set of KMS
 authorization objects created by the request.

 Response payload definition:

 root {
 response,
 authorizations
 }

 Response message example:

Biggs & Cooley Expires May 21, 2015 [Page 42]

Internet-Draft key-management-service November 2014

 JWE(K_ephemeral, {
 {
 "status": 201,
 "sequence": 7,
 "collection": [
 {
 "uri": "/authorizations/79a39ed9-a8e5-4d1f-9ae2-e27857fc5901",
 "userId": "119a0582-2e2b-4c0c-ba6a-753d05171803",
 "resourceUri": "/resources/7f35c3eb-95d6-4558-a7fc-1942e5f03094"
 },
 {
 "uri": "/authorizations/5aaca3eb-ca4c-47c9-b8e2-b20f47568b7b",
 "userId": "557ac05d-5751-43b4-a04b-e7eb1499ee0a",
 "resourceUri": "/resources/7f35c3eb-95d6-4558-a7fc-1942e5f03094"
 }]
 })

 If successful, the KMS response to a create authorizations request
 MUST have a status of 201. In the case of a request failure, the KMS
 response status SHOULD be that of an [RFC7231] defined status code
 with semantics that correspond to the failure condition. If for any
 reason one or more requested authorizations cannot be created or
 applied to the resource object, the entire create authorizations
 request MUST be failed by the KMS.

4.7.8. Delete Authorization

 To remove an authorization from a KMS resource object, any user
 currently authorized on the same resource object may issue a delete
 authorization request. The request message conforms to the basic
 request message structure, where the method is "delete", and the uri
 is that of the authorization object to be deleted.

 Request payload definition:

 root {
 request
 }

 Request message example:

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 21, 2015 [Page 43]

Internet-Draft key-management-service November 2014

 JWE(K_ephemeral, {
 "requestId": "1234",
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "delete",
 "uri": "/authorizations/5aaca3eb-ca4c-47c9-b8e2-b20f47568b7b"
 })

 The response message conforms to the basic response message
 structure, and includes a representation of the authorization object
 that was deleted.

 Response payload definition:

 root {
 response,
 authorization
 }

 Response message example:

 JWE(K_ephemeral, {
 {
 "status": 200,
 "sequence": 7,
 "object": {
 "uri": "/authorizations/5aaca3eb-ca4c-47c9-b8e2-b20f47568b7b",
 "userId": "557ac05d-5751-43b4-a04b-e7eb1499ee0a",
 "resourceUri": "/resources/7f35c3eb-95d6-4558-a7fc-1942e5f03094"
 }
 })

 If successful, the KMS response to a delete authorization request
 MUST have a status of 200. In the case of a request failure, the KMS
 response status SHOULD be that of an [RFC7231] defined status code
 with semantics that correspond to the failure condition.

5. Mandatory-to-Implement

 Implementations MUST support the following JWK key types from
 [I-D.ietf-jose-json-web-algorithms]:

 o "RSA" for the KMS static public/private key

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 21, 2015 [Page 44]

Internet-Draft key-management-service November 2014

 o "EC" for the Ephemeral Diffie Hellman exchange

 o "oct" for all symmetric keys

 Implementations MUST support "PS256" (RSASSA-PSS using SHA-256 and
 MGF1 with SHA-256) from [I-D.ietf-jose-json-web-algorithms] for
 signatures using the KMS static public/private key for Section 4.7.1.

 Implementations MUST support JWK Elliptic Curve type "P-256" (NIST
 P-256 curve) from [I-D.ietf-jose-json-web-algorithms] for

Section 4.7.1.

 Implementations MUST support "RSA-OAEP" (RSAES OAEP using default
 parameters) from [I-D.ietf-jose-json-web-algorithms] for key
 encryption using the KMS static public/private key for Section 4.7.1.

 Implementations MUST support "dir" (Direct Key Agreement Key
 Management Mode) from [I-D.ietf-jose-json-web-algorithms] for all
 operations other than Section 4.7.1.

 Implementations MUST support "A256GCM" (AES GCM using 256 bit key)
 from [I-D.ietf-jose-json-web-algorithms] for content encryption for
 all operations other than Section 4.7.1.

6. Security Considerations

 Security considerations are discussed throughout this document.
 Additional considerations may be added here as needed.

7. Appendix A. Acknowledgments

 This specification is the work of several contributors. In
 particular, the following individuals contributed ideas, feedback,
 and wording that influenced this specification:

 Cullen Jennings, Matt Miller, Suhas Nandakumar, Jonathan Rosenberg

8. Appendix B. Document History

 -00

 o Initial draft.

9. References

Biggs & Cooley Expires May 21, 2015 [Page 45]

Internet-Draft key-management-service November 2014

9.1. Normative References

 [I-D.ietf-jose-json-web-algorithms]
 Jones, M., "JSON Web Algorithms (JWA)", draft-ietf-jose-

json-web-algorithms-33 (work in progress), September 2014.

 [I-D.ietf-jose-json-web-encryption]
 Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",

draft-ietf-jose-json-web-encryption-33 (work in progress),
 September 2014.

 [I-D.ietf-jose-json-web-key]
 Jones, M., "JSON Web Key (JWK)", draft-ietf-jose-json-web-

key-33 (work in progress), September 2014.

 [I-D.ietf-jose-json-web-signature]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature-33
 (work in progress), September 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2822] Resnick, P., "Internet Message Format", RFC 2822, April
 2001.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", RFC
4949, August 2007.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869, May 2010.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-33
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-33
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-encryption-33
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-33
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-33
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature-33
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Biggs & Cooley Expires May 21, 2015 [Page 46]

Internet-Draft key-management-service November 2014

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

9.2. Informative References

 [I-D.barnes-pervasive-problem]
 Barnes, R., Schneier, B., Jennings, C., and T. Hardie,
 "Pervasive Attack: A Threat Model and Problem Statement",

draft-barnes-pervasive-problem-01 (work in progress), July
 2014.

 [I-D.ietf-xmpp-posh]
 Miller, M. and P. Saint-Andre, "PKIX over Secure HTTP
 (POSH)", draft-ietf-xmpp-posh-02 (work in progress),
 October 2014.

 [I-D.newton-json-content-rules]
 Newton, A., "A Language for Rules Describing JSON
 Content", draft-newton-json-content-rules-02 (work in
 progress), August 2014.

 [OTR] Borisov, N., Goldberg, I., and E. Brewer, "Off-the-Record
 Communication, or, Why Not To Use PGP", 2012,
 <https://otr.cypherpunks.ca/otr-wpes.pdf>.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4880] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
 Thayer, "OpenPGP Message Format", RFC 4880, November 2007.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

Authors' Addresses

 Andrew Biggs
 Cisco Systems

 Email: adb@cisco.com

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/draft-barnes-pervasive-problem-01
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-posh-02
https://datatracker.ietf.org/doc/html/draft-newton-json-content-rules-02
https://otr.cypherpunks.ca/otr-wpes.pdf
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4880
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5652

Biggs & Cooley Expires May 21, 2015 [Page 47]

Internet-Draft key-management-service November 2014

 Shaun Cooley
 Cisco Systems

 Email: shcooley@cisco.com

Biggs & Cooley Expires May 21, 2015 [Page 48]

