
Network Working Group A. Biggs
Internet-Draft S. Cooley
Intended status: Standards Track Cisco Systems
Expires: May 6, 2016 November 03, 2015

Key Management Service Architecture
draft-abiggs-saag-key-management-service-03

Abstract

 In the interest of addressing pervasive threats to the
 confidentiality and integrity of online communications identified by
 the Internet community [I-D.barnes-pervasive-problem] this
 specification introduces an open architecture for the establishment,
 management, and secure distribution of cryptographic keys for use in
 the end-to-end (E2E) encryption of online communications and shared
 content. This architecture allows for the independent deployment of
 dedicated key management services in a manner that supports the
 adoption of third-party communications and data sharing services by
 individuals and organizations that require full and exclusive
 discretion over the confidentiality of their data.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 6, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Biggs & Cooley Expires May 6, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft key-management-service November 2015

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 4
1.2. Security Terms . 5
1.3. Notational Conventions 6

2. Architectural Overview 6
3. Use Cases . 8
3.1. Securing an HTTP File Sharing Service 9
3.2. Securing an XMPP Multi-User Chat 11
3.3. KMS to KMS Key Federation 13

4. KMS Protocol . 15
4.1. Secure Channel . 16
4.2. User Identity . 16
4.3. KMS Identity . 17
4.4. Object Types . 18
4.5. Message Structure . 18
4.5.1. Basic Request Payload 19
4.5.2. Basic Response Payload 21
4.5.3. Error Response Payload 21

4.6. Requests . 22
4.6.1. Create Ephemeral Key 22
4.6.2. Delete Ephemeral Key 25
4.6.3. Post GMBC Block (genesis) 26
4.6.4. Post GMBC Block (append) 28
4.6.5. Get GMBC . 30
4.6.6. Post GK (create) 31
4.6.7. Post GK (update) 33
4.6.8. Get GK . 35
4.6.9. Ping . 37

5. Security Considerations 38
6. Appendix A. Acknowledgments 38
7. Appendix B. Document History 38
8. References . 39
8.1. Normative References 39
8.2. Informative References 40

 Authors' Addresses . 41

Biggs & Cooley Expires May 6, 2016 [Page 2]

Internet-Draft key-management-service November 2015

1. Introduction

 Providers of cloud-based services commonly secure user data at the
 transport level using established protocols such as TLS [RFC5246] or
 IPSec [RFC4301]. These protocols can be effective in protecting
 transmitted user data from third party tampering and eavesdropping;
 however, by themselves these protocols do not secure user data from
 abuses, negligence, or coerced behavior on the part of the cloud
 provider. This is a concern for individuals and organizations that
 wish to take advantage of cloud-based communications and
 collaboration but cannot accept the risk of trusting cloud providers
 with unfettered access to the contents of their communications.

 E2E encryption describes a category of solutions that can be employed
 to address this problem by establishing secure channels among
 clients. To the extent that a user can trust their collaboration
 client software, E2E encryption mitigates exposure of user data to
 untrusted parties by ensuring that intermediaries never possess
 unencrypted user data or have access to the keying material necessary
 to decrypt it.

 Existing E2E strategies such as ECS [RFC5652], PGP [RFC4880], and
 Off-the-Record Messaging [OTR] can be effective at securing two-party
 communications. However, E2E encryption for the growing domain of
 multiparty communications and online content sharing remains a
 generally unsolved problem to which these existing approaches do not
 readily adapt. In particular, a core challenge exists in providing
 for the secure distribution and rotation of E2E encryption keys among
 an arbitrary and potentially dynamic set of communicating clients.
 In cases where the communications to be secured are persistent or
 archived, the additional challenge exists for providing trusted long-
 term storage and retrieval of these keys.

 Equally problematic is the paucity of E2E encryption options that
 satisfy common organizational obligations such as regulatory
 compliance and legal discovery. Entities that must operate within
 such frameworks require mechanisms by which they (and they alone) may
 recover the keys used to secure their communications. Existing E2E
 encryption solutions are not, by themselves, well suited for this
 purpose.

 In the interest of addressing these challenges, this document
 presents an architecture for the deployment of E2E encryption key
 management services (KMS) based on the curator role described in
 [I-D.abiggs-saag-primitives-for-conf-group-comms].

 In the interest of addressing these challenges, this document
 presents an architecture for the deployment of E2E encryption key

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc4880

Biggs & Cooley Expires May 6, 2016 [Page 3]

Internet-Draft key-management-service November 2015

 management services (KMS). In this architecture a KMS service
 provides to its users a means by which their communications clients
 may securely create, share, rotate, and store E2E encryption keying
 material. It does so in a fashion that permits the decoupling of
 such services from the communications media, thereby permitting the
 former to reside under the direct control of the communicating
 parties or the organizations within which they do business.

1.1. Terminology

 This document uses the terminology from
 [I-D.ietf-jose-json-web-signature],
 [I-D.ietf-jose-json-web-encryption], [I-D.ietf-jose-json-web-key],
 and [I-D.ietf-jose-json-web-algorithms] when discussing JOSE
 technologies.

 This document uses the terminology from
 [I-D.abiggs-saag-primitives-for-conf-group-comms] when discussing
 authentication, group membership, and secure key exchange.

 This document makes use of the following terminology, and
 additionally adopts nomenclature defined in
 [I-D.barnes-pervasive-problem] for the purpose of describing aspects
 of pervasive attacks.

 communications resource

 A communications resource is any uniquely identifiable continuous
 data channel or discrete shared content that represents an
 exchange of personal communications between two or more users.

 communications resource client

 A communications resource client consumes communications resources
 on behalf of a user and, when deployed in conformance with the KMS
 architecture, consumes the services of KMS server(s) to facilitate
 the E2E encryption of those communications resources.

 communications resource server

 A communications resource server is a provider of services through
 which communications resources are made available.

 cloud provider

 An individual or organization responsible for, and in control of,
 one or more communications resource servers.

Biggs & Cooley Expires May 6, 2016 [Page 4]

Internet-Draft key-management-service November 2015

 E2E encryption

 Shorthand for end-to-end encryption, as defined in [RFC4949],
 particularly as it applies to the establishment of confidentiality
 and integrity of communications resources.

 KMS server

 A key management server (KMS) is responsible for creating,
 storing, and providing access to E2E encryption keying material by
 communications resource clients.

 KMS protocol

 The protocol through which communications resource clients
 interoperate with KMS servers.

 KMS provider

 An individual or organization responsible for, and in control of,
 a KMS server deployment.

 KMS transport

 Any service or protocol that provides the basic transport over
 which KMS protocol messages are exchanged.

 resource client

 See communications resource client.

 resource server

 See communications resource server.

 trusted party

 A trusted party is an individual or organization that is trusted
 by one or more communicating users to maintain the confidentiality
 and integrity of their communications resources.

1.2. Security Terms

 Most security-related terms in this document are to be understood in
 the sense defined in [RFC4949]; such terms include, but are not
 limited to, "attack", "authentication", "authorization",
 "certification authority", "certification path", "certificate",

https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949

Biggs & Cooley Expires May 6, 2016 [Page 5]

Internet-Draft key-management-service November 2015

 "credential", "identity", "self-signed certificate", "trust", "trust
 anchor", "trust chain", "validate", and "verify".

1.3. Notational Conventions

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

2. Architectural Overview

 The architectural reference model for this specification is
 illustrated in Figure 1. Central to this model is the communications
 resource server which is presumed to be operated by a cloud provider
 for the purpose of offering some form of communications service. The
 nature of this service is not prescribed by this specification and
 may take the form of any of a variety of communications or
 collaboration services including file sharing, messaging, and VoIP.
 Consuming the services of the communications resource server are
 communications resource clients which may be supplied by the cloud
 provider or developed by third parties.

 +-----------------+
 | Communications |
 +-------------------| Resource Server |-------------------+
 | | (Cloud Provider)| |
 | +-----------------+ |
 | |
 | |
 | +-----------------+ |
 | +-----------| KMS Transport |-----------+ | |
 | | +-----------------+ | |
 | | | | |
 | | Untrusted | | |
 - - -|- - - -|- - - - - - - - - - | - - - - - - - - - -|- - - -|- - -
 | | Trusted | | |
 | | | | |
 +-----------------+ +-----------------+ +-----------------+
 | Communications | | KMS Server | | Communications |
 | Resource Client | | (KMS Provider) | | Resource Client |
 +-----------------+ +-----------------+ +-----------------+
 | |
 +-----------------+ +-----------------+
 | Alice | | Bob |
 +-----------------+ +-----------------+

 Figure 1: KMS Architecture Reference Model

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Biggs & Cooley Expires May 6, 2016 [Page 6]

Internet-Draft key-management-service November 2015

 In addition to the familiar elements described above, this model also
 includes a key management server, or KMS, operated by a KMS provider.
 The KMS server exposes an API through which clients may securely post
 and share cryptographic keying material used for the E2E encryption
 of content that is transited through the cloud provider's services.
 The API exposed by the KMS implements the curator functions described
 in the Centralized Groups section of
 [I-D.abiggs-saag-primitives-for-conf-group-comms]. It is important
 to note that the KMS is a dedicated curator rather than a content
 producing curator. This API is secured in such a way as to ensure
 these keys are visible to none but the KMS server itself and the
 clients authorized to consume the content they protect. This
 highlights an important distinction between the KMS provider and the
 cloud provider: while the KMS provider is necessarily a trusted
 party, the cloud provider need not be.

 It is an explicit objective of this specification to promote an
 ecosystem of providers of KMS implementations and KMS services that
 are distinct and independent of the cloud providers over whose
 services users communicate. To that end, this specification seeks to
 standardize a KMS service protocol though which clients and KMS
 servers interoperate. This protocol provides for the establishment
 of a confidential and authenticated channel between each client and
 KMS server, and defines an API of request and response messages to be
 exchanged over this secure channel for the purpose of creating,
 retrieving, and exchanging keys.

 While the KMS service protocol constitutes a central focus of this
 specification, the means by which this protocol is transported is
 expressly out of scope. This role may be readily addressed through
 either standards-based or proprietary protocols, and so we refer to
 this simply as the KMS transport for the remainder of this document.
 Over this transport, the communication paths between clients and KMS
 server are encrypted using keys established through an authenticated
 ephemeral key agreement. As such, the KMS transport provider need
 not be regarded as a trusted party, and in fact may be the cloud
 provider itself.

 An important non-goal of this specification is the standardization of
 any aspect of the cloud provider's services or the means by which
 clients utilize shared keys for the E2E encryption of data transiting
 those services. By avoiding the application of constraints on the
 communications services and protocols we enable the use of this
 specification in the context of existing service deployments, both
 standards-based and proprietary. It is similarly a non-goal of this
 specification to enable federation of secure communications between
 vendors of different cloud services, as that is the realm of
 standardized application protocols. The scope of this specification

Biggs & Cooley Expires May 6, 2016 [Page 7]

Internet-Draft key-management-service November 2015

 is intended to be narrowly focused on the task of separating E2E
 encryption key management from the communications services they
 secure, thereby facilitating the broadest possible adoption of secure
 communications though existing services.

3. Use Cases

 The use cases described in this section are non-normative examples
 meant to illustrate how the KMS architecture may be deployed to
 provide E2E encryption of different types of communications
 resources. These use cases differ in detail, but generally follow a
 common logical sequence as given below.

 Note that all requests to the KMS server are via the KMS transport
 which, for clarity, has been omitted from the sequence diagrams
 included in this section.

 Resource Resource Resource KMS
 Client B Client A Server Server
 | | | (1) |
 | |-----------------|---------------->|
 | | | (2) |
 | |-----------------|---------------->|
 | | | |
 | (3) | | |
 | | (4) | |
 | |---------------->| |
 | | | (5) |
 | |-----------------|---------------->|
 | | | (6) |
 | |-----------------|---------------->|
 | | (7) | |
 |-----------------|---------------->| |
 | | | (8) |
 |-----------------|-----------------|---------------->|
 | | | |
 (9) | | | |
 | | | |

 Figure 2: Nominal Use Case

 1. Client A requests a new GMBC from the KMS server, including an
 initial operation to add itself as a member. The KMS creates and
 returns a new genesis block with the KMS as curator and client A
 as a member.

Biggs & Cooley Expires May 6, 2016 [Page 8]

Internet-Draft key-management-service November 2015

 2. Client A requests that the KMS generate a new GK. The KMS
 generates the GK and returns it to the client with client A as
 the only recipient of the embedded JWE used to wrap the included
 key material.

 3. Client A encrypts a resource using the key material protected by
 the GK.

 4. Client A posts the encrypted resource to the resource server,
 including the URI of the GK as metadata.

 5. Client A creates and signs a new GMBC block containing an
 operation to add client B and with the hash of the genesis block
 from step 1 as the "antecedent". Client A posts this block to
 the KMS for appending to the GMBC.

 6. Client A posts a request to the KMS to update the GK and bind it
 to the GMBC by setting the "block" attribute of the GK to be the
 hash of the GMBC block posted in 5 (this has the effect of
 linking authorization for retrieval of the GK to the membership
 of the GMBC at that particular block).

 7. Client B obtains the encrypted resource from the resource server,
 including the GK URI as metadata.

 8. Client B performs a GK Get to obtain the GK from the KMS server.
 The KMS checks the "block" attribute on the requested GK and
 examines the GMBC block to which it refers. The membership of
 the GMBC at that block includes client B, so the server returns
 the GK to the client with client B as the only recipient of the
 JWE used to wrap the included key material.

 9. Client B decrypts the resource using the key material protected
 by the GK.

3.1. Securing an HTTP File Sharing Service

 Let A be a user that wishes to share a file with users B and C
 through some HTTP based file sharing service. In the context of the
 KMS architecture we may regard the file sharing provider's HTTP API
 as the resource server and the users' HTTP clients as the resource
 clients.

 For this scenario we also assume that the file sharing service is
 trusted by user A with the role of providing a file sharing mechanism
 but is not necessarily trusted to adequately protect the
 confidentiality of the file contents. User A's concerns may then be
 addressed through the introduction of an HTTP based KMS transport

Biggs & Cooley Expires May 6, 2016 [Page 9]

Internet-Draft key-management-service November 2015

 (not shown) and a KMS server deployed by an entity that A regards as
 a trusted party.

 HTTP HTTP HTTP HTTP File KMS
 Client C Client B Client A Share Server Server
 | | | | |
 | | | | (1) |
 | | |--------------|------------>|
 | | | | (2) |
 | | |--------------|------------>|
 | | | | |
 | | (3) | | |
 | | | (4) | |
 | | |------------->| |
 | | | | (5) |
 | | |--------------|------------>|
 | | | | (6) |
 | | |--------------|------------>|
 | (7) | (7) | | |
 |<-------------|<-------------|--------------| |
 | | | (8) | |
 | |--------------|------------->| |
 | | | | (9) |
 | |--------------|--------------|------------>|
 | | | | |
 | (10) | | | |
 | | | | |
 (11) | | | | |
 | | | | |

 Figure 3: File Sharing Use Case

 This sequence begins with the assumption that each client has, at
 some point, already established a secure channel to the KMS via
 authenticated key agreement.

 1. Client A requests a new GMBC from the KMS server, including an
 initial operation to add itself as a member. The KMS creates
 and returns a new genesis block with the KMS as curator and
 client A as a member.

 2. Client A requests that the KMS generate a new GK. The KMS
 generates the GK and returns it to the client with client A as
 the only recipient of the embedded JWE used to wrap the included
 key material.

 3. Client A encrypts a file using the key material protected by the
 GK.

Biggs & Cooley Expires May 6, 2016 [Page 10]

Internet-Draft key-management-service November 2015

 4. Client A posts the encrypted file to the file sharing service,
 including the URI of the GK as metadata.

 5. Client A creates and signs a new GMBC block containing an
 operation to add clients B and C, and with the hash of the
 genesis block from step 1 as the "antecedent". Client A posts
 this block to the KMS for appending to the GMBC.

 6. Client A posts a request to the KMS to bind the GK to the GMBC
 by setting the "block" attribute of the GK to be the hash of the
 GMBC block posted in 5.

 7. Clients B and C learn of the newly shared file from the file
 sharing service (the mechanism by which this occurs is out of
 scope for this specification).

 8. Client B retrieves the encrypted file from the file sharing
 service, including the GK URI as metadata.

 9. Client B performs a GK Get to obtain the GK from the KMS server.
 The KMS checks the "block" attribute on the requested GK and
 examines the GMBC block to which it refers. The membership of
 the GMBC at that block includes client B, so the server returns
 the GK to the client with client B as the only recipient of the
 JWE used to wrap the included key material.

 10. Client B decrypts the file using the key material protected by
 the GK.

 11. Client C performs steps 8 through 10 in the same fashion as
 client B.

 It is worth noting that a race condition does exist where step 9
 could occur before steps 5 and 6 complete. This will result in a
 client being temporarily denied access to the GK used to encrypt the
 shared file.

3.2. Securing an XMPP Multi-User Chat

 Let A, B and C be users that wish to engage in secure chat through an
 existing XMPP multi-user chat room. In the context of the KMS
 architecture we may regard the XMPP MUC service as the resource
 server, the users' XMPP clients as the resource clients, and the XMPP
 service itself (not shown) as the KMS transport.

Biggs & Cooley Expires May 6, 2016 [Page 11]

Internet-Draft key-management-service November 2015

 XMPP XMPP XMPP XMPP MUC KMS
 Client C Client B Client A Server Server
 | | | | |
 | | | | (1) |
 | | |--------------|------------>|
 | | | | (2) |
 | | |--------------|------------>|
 | | | (3) | |
 | | |------------->| |
 | (4) | (4) | | |
 |<-------------|<-------------|--------------| |
 | | | | (5) |
 | |--------------|--------------|------------>|
 | | | | |
 | (6) | | | |
 | | | | |
 (7) | | | | |
 | | | | |

 Figure 4: Multi-User Chat Use Case

 This sequence begins with the assumption that a MUC room already
 exists on the MUC server and that each client has already established
 a secure channel to the KMS via authenticated key agreement. All
 messages are transmitted over XMPP, with the presumption that
 appropriate XMPP extensions are developed to provide bindings for KMS
 operations.

 1. Client A requests a new GMBC from the KMS server, providing
 initial operations to add clients A, B, and C. The KMS creates
 and returns a new genesis block with the KMS as curator and
 clients A, B, and C as members.

 2. Client A requests that the KMS generate a new GK, and to have it
 immediately bound to the genesis block created in step 1. The
 KMS generates the GK and returns it to the client with client A
 as the only recipient of the embedded JWE used to wrap the
 included key material.

 3. Client A encrypts the content of an XMPP message using the key
 material from the GK created in step 2, and sends the encrypted
 message to the MUC room. The GK URI is included within the XMPP
 message as metadata.

 4. The MUC service delivers client A's encrypted message to clients
 B and C.

Biggs & Cooley Expires May 6, 2016 [Page 12]

Internet-Draft key-management-service November 2015

 5. Client B performs a GK get operation to retrieve the GK from the
 KMS server using the GK URI included in the encrypted message's
 metadata.

 6. Client B decrypts the messages using the key material protected
 by the GK.

 7. Client C performs steps 5 and 6 in the same fashion as Client B.

3.3. KMS to KMS Key Federation

 This use case illustrates two KMS instances federating keys
 associated with a resource. As KMS servers are deployed to serve
 groups of users it is inevitable that users will want to share
 resources across groups or organizations. This cross-organization
 sharing of keys leads to several problems. First, each user is only
 known to and only knows of one logical KMS. Second, each
 organization might have very different archiving requirements due to
 differing legal compliance regulations due to jurisdiction or
 industry differences. Lastly, one or both of the users might be
 employees of enterprises that need to be able to respond to legal
 discovery requests. To address these issues, KMS servers may
 federate in such a way as to allow for limited copying of keys from
 one KMS to another. This permits each KMS' owning organization the
 ability to control the ongoing policy regarding access to keys for
 which their respective users are authorized.

 Let Alice@DomainA and Bob@DomainB be users of a common file sharing
 service and who happen to use different KMS servers to secure their
 communications. Assume then that Alice wishes to share a file with
 Bob and therefore relies on KMS server federation to facilitate the
 key exchange.

Biggs & Cooley Expires May 6, 2016 [Page 13]

Internet-Draft key-management-service November 2015

 HTTP Client HTTP Client HTTP File KMS Server KMS Server
 Bob@DomainB Alice@DomainA Share Server DomainA DomainB
 | | | (1) | |
 | |--------------|------------->| |
 | | | (2) | |
 | |--------------|------------->| |
 | | (3) | | |
 | |------------->| | |
 | (4) | | | |
 |<------------|--------------| | |
 | | (5) | | |
 |-------------|------------->| | |
 | | | | (6) |
 |-------------|--------------|--------------|------------>|
 | | | | (7) |
 | | | |<------------|
 | | | | (8) |
 | | | |------------>|
 | (9) | | | |
 |<------------|--------------|--------------|-------------|
 | | | | |
 (10) | | | | |
 | | | | |

 Figure 5: File Sharing with KMS Federation Use Case

 This sequence begins with the assumption that each client has, at
 some point, already established a secure channel to their respective
 KMS via authenticated key agreement.

 1. Alice@DomainA requests a new GMBC from the KMS server, providing
 initial operations to add Alice@DomainA and Bob@DomainB as
 members. The KMS creates and returns a new genesis block with
 the KMS as curator.

 2. Alice@DomainA requests that the KMS generate a new GK, and to
 have it immediately bound to the genesis block created in step
 1. The KMS generates the GK and returns it to the client with
 Alice@DomainA as the only recipient of the embedded JWE used to
 wrap the included key material.

 3. Client A encrypts a file using the key material from the GK
 created in step 2, and sends the encrypted message to the file
 sharing service. The GK URI is included as metadata.

 4. Bob@DomainB learns of the newly shared file from the file
 sharing service (the mechanism by which this occurs is out of
 scope for this specification).

Biggs & Cooley Expires May 6, 2016 [Page 14]

Internet-Draft key-management-service November 2015

 5. Bob@DomainB retrieves the shared file from the file sharing
 service along with the GK URI contained in metadata.

 6. Using the GK key URI obtained in step 7, Bob@DomainB requests
 the GK from his own KMS at DomainB.

 7. The DomainB KMS recognizes the GK URI as actually hosted by the
 DomainA KMS. The DomainB KMS establishes a secure and mutually
 authenticated channel with the DomainA KMS via the KMS transport
 (if not previously established) and requests the GK from the
 DomainA KMS on behalf of Bob@DomainB.

 8. The DomainA KMS first checks to see if Bob@DomainB is entitled
 to retrieve the GK. If so, it then consults the WebFinger
 resource of Bob@DomainB to determine whether DomainB is entitled
 to request GKs on behalf of Bob@DomainB. If so, DomainA KMS
 will respond by returning the GK to DomainB in such a way as the
 JWE used to wrap the key material is encrypted with the public
 key of the DomainB KMS server.

 9. DomainB KMS returns the GK to Bob@DomainB in such a way as the
 JWE used to wrap the key material is encrypted with
 Bob@DomainB's public key, and the GK itself is signed with the
 DomainB KMS private key.

 10. Bob@DomainB decrypts the shared file using the key obtained in
 step (11).

 Note that in step 8 the DomainB KMS is being trusted by DomainA KMS
 to not share the GK key material with anyone other than those users
 on whose behalf it has acted and successfully retrieved the GK. This
 is a necessary consequence of KMS federation, where the act of
 authorizing access to a GK by a user residing in a federated domain
 engenders an implicit trust of the KMS server that controls the
 federated domain. For that reason, a KMS provider should restrict
 federation of its KMS servers to domains that the KMS provider
 regards as trusted.

4. KMS Protocol

 The KMS protocol is composed of a message oriented request and
 response API and a secure channel over which those messages are
 exchanged. The API provides clients with the ability to post and
 retrieve GMBC and GK objects. The secure channel provides a mutually
 authenticated and E2E encrypted channel over which the clients and
 KMS server may exchange API messages securely. The API and secure
 channel are described in detail through the remainder of this
 section.

Biggs & Cooley Expires May 6, 2016 [Page 15]

Internet-Draft key-management-service November 2015

4.1. Secure Channel

 The secure channel is an encrypted and mutually authenticated
 communication path between each client and the KMS server. It
 transits the KMS transport which, in the context of this document,
 represents any service or protocol that may be utilized for the
 relaying of KMS API request and response messages. This
 specification presumes the KMS transport to be untrusted.

 (3) Secure Channel
 +===+
 V V
 +-----------------+ (2) +---------------+ (1) +---------------+
 | Resource Client |<------>| KMS Transport |<------>| KMS Server |
 +-----------------+ +---------------+ +---------------+
 | |
 Trusted | Untrusted | Trusted

 Figure 6: Establishment of a Secure Channel

 At a high level, the communication path between a resource client and
 KMS is established as follows.

 1. The KMS actively connects to the KMS transport. The protocol
 used for this connection is out of scope for this document,
 however it MUST support the asynchronous flow of encrypted KMS
 request and response messages between the KMS and KMS transport.

 2. A resource client connects to the KMS transport. The protocol
 used for this connection is out of scope for this document,
 however it MUST support the flow of encrypted KMS request and
 response messages between the resource client and the KMS
 transport.

 3. Through an elliptic curve Diffie-Helman key exchange, augmented
 by server and client authentication, the resource client and KMS
 establish a shared secret and derived ephemeral key. This is
 discussed in greater detail in Section 4.6.1.

 On successful mutual authentication and ephemeral key agreement, the
 resource client and KMS communicate through the exchange of sequenced
 request and response messages encrypted using the ephemeral key.

4.2. User Identity

 Central to the KMS server's role as a key store is its ability to
 both restrict access to stored keying material and to rekey keying
 material to only authorized users. This requires robust user

Biggs & Cooley Expires May 6, 2016 [Page 16]

Internet-Draft key-management-service November 2015

 authentication and a means for the unambiguous and unique
 identification of each user.

 Conforming KMS architecture deployments MUST rely on an identity
 provider that supports the generation of OAuth 2.0 [RFC6749] access
 tokens. The KMS server MUST rely on same identity provider for the
 purpose of validating access tokens received from the client. Access
 tokens used by clients to demonstrate identity and authorization for
 access to KMS resources MUST NOT be used for any other service. Any
 exposure of a KMS recognized access token to third parties (such as
 providers of other services or a resource server) jeopardizes the
 security of all GMBC and GK objectgs for which the user whose
 identity is represented by the token is authorized.

 The identity provider on which the KMS server relies MAY be the same
 identity provider as relied upon by the resource server(s) whose
 communications resources are encrypted with GK objects managed by the
 KMS server. Note, however, the reliable authentication and
 authorization of clients to the KMS server is critical to the
 security of the KMS keys it holds. The identity provider on which
 the KMS relies must therefore necessarily be regarded as a trusted
 party within the context of the KMS architecture.

 Access tokens MUST be conveyed to the KMS server as part of the
 payload of encrypted KMS API requests as described in Section 4.5.1
 and MUST NOT be conveyed in any other manner.

4.3. KMS Identity

 Given the untrusted nature of the KMS transport by both the KMS and
 clients, it is critical for clients to be able to verify the identity
 of their KMS and ensure that no MITM attacks are carried out on
 client to KMS or KMS to client communications. Therefore, the KMS
 MUST make use of at least one PKIX certificate [RFC5280] and clients
 MUST validate the PKIX certificate presented by the KMS through the
 comparison of the certificate's common name (CN) or subject
 alternative name (SAN) [RFC6125] fields to the Internet domain
 portion of the user's Addr-spec [RFC2822] formatted unique identifier
 using the procedures defined in section 6 of [RFC6125]. An
 acceptable alternative to direct CN or SAN validation is defined in
 [I-D.ietf-xmpp-posh].

 PKIX certificates presented by the KMS can be issued by either a
 public or private certification authority with the stipulation that
 clients MUST be able to validate the KMS's entire certificate path
 through the pre-established trust of the root certificate used to
 anchor the certificate path. The mechanism for establishing trust of
 the root certificate is out of scope for this specification, but it

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc6125#section-6

Biggs & Cooley Expires May 6, 2016 [Page 17]

Internet-Draft key-management-service November 2015

 is usually carried out through pre-installed trusted root
 certificates on various operating systems for public certification
 authorities or through enterprise endpoint management solutions or
 manual installation tasks for private certification authorities.

4.4. Object Types

 The KMS protocol is based on operations on GMBC and GK objects.
 Specifically, these include the following JSON object types defined
 using using JSON content rules [I-D.newton-json-content-rules] in
 [I-D.abiggs-saag-primitives-for-conf-group-comms]:

 gmbc-genesis-block

 gmbc-appended-block

 group-key

 It is through the creation and retrieval of instances of these object
 types that clients interact with the KMS.

4.5. Message Structure

 Every KMS request and response message is composed of a JSON
 [RFC7159] formatted payload encapsulated within either a JWE
 [I-D.ietf-jose-json-web-encryption] or JWS
 [I-D.ietf-jose-json-web-signature] object. These messages may be
 divided into three types.

 Common Messages

 Common messages include all those which do not meet the definition
 of either key agreement message or error message. Common messages
 are encrypted as JWE objects using the shared ephemeral key
 established during initial key agreement between the client and
 KMS (see Section 4.6.1). The value of the JWE header "kid"
 attribute of a common message MUST match that of the KMS ephemeral
 key object URI attribute established during initial key agreement.

 Ephemeral Key Agreement Messages

 Ephemeral key agreement messages are those exchanged between the
 client and KMS for the purpose of establishing a new shared
 ephemeral key (see Section 4.6.1). Key agreement request payloads
 are encrypted as JWE objects using the authenticated and validated
 static public key of the KMS. Key agreement response payloads are
 signed as JWS objects using the static private key of the KMS.
 The value of the JWE or JWS header "kid" attribute of an ephemeral

https://datatracker.ietf.org/doc/html/rfc7159

Biggs & Cooley Expires May 6, 2016 [Page 18]

Internet-Draft key-management-service November 2015

 key agreement message MUST be a well known key identifier for the
 KMS static public key.

 Error Messages

 Error messages are those originated by the KMS to indicate a
 failed request. Error messages are composed in the same fashion
 as common messages; however, in the event that the KMS does not
 recognize the ephemeral key used in the request, or that key is
 determined to have expired, the KMS MUST respond with an
 unencrypted message composed as a JWS, with a payload as described
 in Section 4.5.3, and signed using the KMS server's static public
 key.

 The basic JSON representations for the request and response payloads
 are defined in the following sections.

4.5.1. Basic Request Payload

 The basic JSON representation for KMS request message payloads is
 defined as follows using JSON content rules
 [I-D.newton-json-content-rules] with references to rules defined in
 previous sections.

 requestId (
 "requestId" : integer
)

 credential {
 "userId": ?string
 "bearer": string / "jwk": jwk
 }

 client {
 "clientId": string,
 "credential": credential
)

 method: string /create|retrieve|update|delete/

 request (
 "client" : client,
 "method" : method,
 "uri" : uri,
 requestId
)

Biggs & Cooley Expires May 6, 2016 [Page 19]

Internet-Draft key-management-service November 2015

 The attributes of a KMS request message payload are defined as
 follows.

 requestId

 A string selected by the client and provided in each request to
 uniquely identify the request. The string is treated opaquely by
 the server and returned verbatim in the associated response.

 userId

 The unique identifier of the user making the request. This field
 is optional, and MUST be disregarded if the requesting user's
 identity can be securely derived from either the bearer token or
 jwk.

 bearer

 An [RFC6749] access token issued by the client's identity provider
 and validated by the KMS in cooperation with the identity
 provider. See Section 4.2.

 jwk

 A JWK object, in JSON format as defined in
 [I-D.ietf-jose-json-web-key], containing the public key of the
 client (presumably a server). This JWK MUST contain an x5c header
 with a certificate chain that may be used to positively validate
 the public key.

 clientId

 An opaque unique identifier provided by the client (not used for
 authentication, only to assist multiple clients of a single user
 in differentiating between their respective unbound keys).

 method

 Indicates the request type: create, retrieve, update, or delete.

 uri

 A URI identifying a KMS object or object type (e.g. GMBC or GK)
 to which the request applies.

 The JSON content rules above are used in conjunction with additional
 request type specific rules, defined later in this document, to
 produce the full request payload definition for each KMS operation.

https://datatracker.ietf.org/doc/html/rfc6749

Biggs & Cooley Expires May 6, 2016 [Page 20]

Internet-Draft key-management-service November 2015

4.5.2. Basic Response Payload

 The basic JSON representation for KMS request message payloads is
 defined as follows using JSON content rules with references to rules
 defined in previous sections.

 response (
 "status" : integer,
 ?"reason" : string,
 requestId
)

 The attributes of a KMS request message payload are defined as
 follows.

 status

 Indicates the success or failure of the request. The value
 returned in a response status attribute SHOULD be that of an
 [RFC7231] defined status code with semantics that correspond to
 the success or failure condition of the KMS request.

 reason

 An optional natural language string to describe the response
 status in terms that are useful for tracing and troubleshooting
 the API.

 requestId

 An echo of the requestId provided in the request.

 The JSON content rules above are used in conjunction with additional
 response type specific rules, defined later in this document, to
 produce the full response payload definition for each KMS operation.

4.5.3. Error Response Payload

 The JSON representation for KMS error response message payloads is
 defined as follows using JSON content rules with references to rules
 defined in previous sections.

 Error response payload definition:

 root {
 response
 }

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 6, 2016 [Page 21]

Internet-Draft key-management-service November 2015

 Error response message example:

 JWS(K_kms_priv, {
 "status": 403,
 "reason": "The ephemeral key used in the request has expired.",
 "requestId": "10992782-e096-4fd3-9458-24dca7a92fa5"
 })

4.6. Requests

 The following sections provide detailed descriptions for each of the
 request and response operations that may occur between a resource
 client and the KMS.

4.6.1. Create Ephemeral Key

 The first operation between a client and KMS MUST be the
 establishment of a shared secret and derived ephemeral key. This is
 necessary as all other requests and responses are encrypted with the
 ephemeral key.

 The client request for creating an ephemeral key conforms to the
 basic request message payload, where the method is "create" and the
 uri is "/ecdhe". In addition to the basic payload, the client
 provides a jwk attribute for which the value is a JWK object
 [I-D.ietf-jose-json-web-key] containing the public part of an EC key
 pair generated by the client. Unlike a basic request message,
 however, the request payload is encrypted as the content of a JWE
 [I-D.ietf-jose-json-web-key] secured with the static public key of
 the KMS server (K_kms_pub) as obtained from the server's validated
 PKIX certificate [RFC5280].

 Note, the client MUST generate a new EC key pair for every create
 ephemeral key request sent to the KMS server.

 Request payload definition:

 root {
 request,
 jwk
 }

 Request message example:

https://datatracker.ietf.org/doc/html/rfc5280

Biggs & Cooley Expires May 6, 2016 [Page 22]

Internet-Draft key-management-service November 2015

 JWE(K_kms_pub, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 },
 "method": "create",
 "uri": "/ecdhe",
 "requestId": "10992782-e096-4fd3-9458-24dca7a92fa5",
 "jwk" : {
 "kty": "EC",
 "crv": "P-256",
 "x": "VoFkf6Wk5kDQ1ob6csBmiMPHU8jALwdtaap35Fsj20M",
 "y": "XymwN6u2PmsKbIPy5iij6qZ-mIyej5dvZWB_75lnRgQ"
 }
 })

 On receiving the ephemeral key creation request, the KMS server MUST
 verify the credential provided in the request. If a bearer token is
 provided, the KMS MUST validate the token in cooperation with the
 identity provider. If a jwk is provided, the KMS MUST validate the
 included PKIX certificate chain against the KMS server's trust root.
 In either case, the identity of the requesting client MUST be
 authenticated and verified to correspond to either an authorized user
 of the KMS or an authorized trusted service. If verification fails,
 the KMS MUST NOT use the server response to continue with key
 agreement.

 Upon successful authentication and authorization of the request, the
 KMS responds by generating its own EC key pair using the same curve
 as indicated in the "crv" attribute of the request message JWK. The
 KMS server returns the public part of this key pair to the resource
 client in the form of an EK object within the response payload. The
 KMS also generates and includes within the response payload a new key
 uri to be regarded by both client and KMS as the key identifier of
 the agreed upon ephemeral key. The response payload is returned to
 the resource client as the content of a JWS
 [I-D.ietf-jose-json-web-signature] signed using the static private
 key of the KMS server (K_kms_priv).

 Response payload definition:

 root {
 response,
 key
 }

Biggs & Cooley Expires May 6, 2016 [Page 23]

Internet-Draft key-management-service November 2015

 Response message example:

 JWS(K_kms_priv, {
 "status": 201,
 "requestId": "10992782-e096-4fd3-9458-24dca7a92fa5",
 "ephemeral-key": {
 "uri": "/ecdhe/ea9f3858-1240-4328-ae22-a15f6072306f",
 "jwk" : {
 "kty": "EC",
 "crv": "P-256",
 "x": "8mdasnEZac2LWxMwKExikKU5LLacLQlcOt7A6n1ZGUC",
 "y": "lxs7ln5LtZUE_GE7yzc6BZOwBxtOftdsr8HVh-14ksS"
 },
 "userId": "842e2d82-7e71-4040-8eb9-d977fe888807",
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "createDate": "2014-10-09T15:54:48Z",
 "expirationDate": "2014-10-09T16:54:48Z"
 }
 })

 If successful, the KMS response to a create ephemeral key request
 MUST have a status of 201. In the case of a request failure, the KMS
 response status SHOULD be that of an [RFC7231] defined status code
 with semantics that correspond to the failure condition. In
 addition, the ephemeral key SHOULD have the createDate assigned as
 the current time and an expirationDate assigned as the latest point
 in time before which the key may be used for encrypting messages
 (both in [RFC3339] date-time format).

 On receiving the ephemeral key creation response, the resource client
 MUST verify the received JWS against the KMS server's validated
 static public key. If verification fails, the client MUST NOT use
 the server response to continue with key agreement.

 To generate the shared secret, both resource client and KMS server
 use ECDH shared secret derivation with the private part of the local
 EC key pair and the public part of the remote EC key pair. The
 shared secret is then provided as input to HKDF (with both extract
 and expand, and empty salt) [RFC5869] to generate the ephemeral key
 (K_ephemeral).

 The ephemeral key generated by this operation is used to encrypt all
 subsequent KMS requests and responses passed between the resource
 client and KMS. When encrypting such a message, the sender MUST
 assign a value to the kid attribute of the header of the resulting
 JWE object, and this value MUST match the URL of the key as provided
 to the client in the KMS response message described above. This

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc5869

Biggs & Cooley Expires May 6, 2016 [Page 24]

Internet-Draft key-management-service November 2015

 provides the recipient with a means for identifying the key necessary
 to decrypt the message.

 The KMS SHOULD accept messages encrypted with the ephemeral key up to
 and until the key expiration date as provided in the response message
 described above. On expiration of the ephemeral key, the KMS MUST
 reject all further requests submitted using this key, and a client
 wishing to submit further requests to the KMS MUST re-establish the
 secure channel by requesting the creation of a new ephemeral key.

4.6.2. Delete Ephemeral Key

 In the event that a resource client's ephemeral key has become
 compromised, a client SHOULD submit a request to the KMS to delete
 the ephemeral key.

 The request message conforms to the basic request message structure,
 where the method is "delete", and the uri is that of the ephemeral
 key to be deleted.

 Request payload definition:

 root {
 request
 }

 Request message example:

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "delete",
 "uri": "/ecdhe/ea9f3858-1240-4328-ae22-a15f6072306f",
 "requestId": "10992782-e096-4fd3-9458-24dca7a92fa5"
 })

 The response message conforms to the basic response message
 structure, and MUST NOT include a representation of the deleted
 ephemeral key.

 Response payload definition:

Biggs & Cooley Expires May 6, 2016 [Page 25]

Internet-Draft key-management-service November 2015

 root {
 response
 }

 Response message example:

 JWE(K_ephemeral, {
 "status": 204,
 "requestId": "10992782-e096-4fd3-9458-24dca7a92fa5"
 })

 If successful, the KMS response to a delete ephemeral key request
 MUST have a status of 204. In the case of a request failure, the KMS
 response status SHOULD be that of an [RFC7231] defined status code
 with semantics that correspond to the failure condition.

 On successful deletion of an ephemeral key, the KMS MUST NOT, from
 that time forward, accept any requests encrypted with that ephemeral
 key.

4.6.3. Post GMBC Block (genesis)

 When a client intends to initiate E2E encryption of a communications
 resource, it begins by requesting the creation of a GMBC genesis
 block. In this request, the client provides basic GMBC block
 information which the KMS uses in generating the genesis block. The
 KMS will assign a unique GMBC URI to the genesis block and indicate
 itself as the GMBC curator.

 The request message conforms to the basic request message structure,
 where the method is "post", and the path of the URI is "/blocks".

 Request payload definition:

 root {
 request,
 "blockPayload": gmbc-block
 }

 Request message example:

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 6, 2016 [Page 26]

Internet-Draft key-management-service November 2015

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "post",
 "uri": "kms://kms.example.com/blocks",
 "requestId": "10992782-e096-4fd3-9458-24dca7a92fa5",
 "blockPayload": {
 "creator": "bob@example.com",
 "created": "2015-11-02T19:02:15Z",
 "operations": [
 {
 "entity": "bob@example.com",
 "optype": "add"
 },
 {
 "entity": "alice@example.com",
 "optype": "add"
 }
]
 }
 })

 The response message conforms to the basic response message
 structure, and includes a representation of the created GMBC genesis
 block in the form of a compact-serialized JWS signed with the KMS
 server's private static key.

 Response payload definition:

 signed-gmbc-genesis-block: JWS(K_kms_priv, gmbc-genesis-block)

 root {
 response,
 "block": signed-gmbc-genesis-block
 }

 Response message example:

 JWE(K_ephemeral, {
 "status": 201,
 "requestId": "10992782-e096-4fd3-9458-24dca7a92fa5",
 "block": "eyAiYWxnIjogIlBTMjU2IiB9.ewogICAgICAidXJpIjo..."
 }

Biggs & Cooley Expires May 6, 2016 [Page 27]

Internet-Draft key-management-service November 2015

 Deserialized payload of the block attribute:

 JWS(K_kms_priv, {
 "uri": "kms://kms.example.com/blocks/7f35c3eb",
 "nonce": "32088b07-1a19-466b-a779-ef8dc8c61be9",
 "curator": "kms://kms.example.com",
 "creator": "kms://kms.example.com",
 "created": "2015-11-02T19:02:15Z",
 "operations": [
 {
 "entity": "bob@example.com",
 "optype": "add"
 },
 {
 "entity": "alice@example.com",
 "optype": "add"
 }
]
 })

 If successful, the KMS response to a this request MUST have a status
 of 201. In the case of a request failure, the KMS response status
 SHOULD be that of an [RFC7231] defined status code with semantics
 that correspond to the failure condition.

4.6.4. Post GMBC Block (append)

 Once a GMBC genesis block has been created, any member may append new
 blocks in order to modify the group membership. This is done by
 submitting a post GMBC block request to the KMS. In this request,
 the client provides a signed gmbc-appended-block and the URI of the
 genesis block of the GMBC to which it is to be appended.

 The client may submit one or more blocks to be appended, the order of
 which they appear in the request representing the order in which they
 should be appended. The KMS will validate that the antecedent hash
 of the first block matches the hash of the last block of the current
 chain, and that the antecedent of each subsequent block matches the
 hash of the previous block. The KMS will also validate that each
 block is signed by an entity that qualifies as a member of the chain.
 If any of these checks fails, the KMS will fail the request in its
 entirety.

 The request message conforms to the basic request message structure,
 where the method is "post", and the uri is that of the genesis block
 of the GMBC to which the provided block should be appended.

 Request payload definition:

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 6, 2016 [Page 28]

Internet-Draft key-management-service November 2015

 signed-gmbc-appended-block: JWS(K_user_priv, gmbc-appended-block)

 root {
 request,
 "blocks" [*: signed-gmbc-appended-block]
 }

 Request message example:

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "post",
 "uri": "kms://kms.example.com/blocks/7f35c3eb",
 "requestId": "6205452b-c555-484f-8445-bb94c8044882",
 "blocks": [
 "eyAiYWxnIjogIlBTMjU2IiB9.ewogICAgICAiYW50ZWNlZGVud..."
]
 })

 Deserialized payload of the block attribute:

 JWS(K_alice_priv, {
 "antecedent": "3a2371f8fb6bb0f96e65dc535010b4004afc...",
 "creator": "alice@example.com",
 "created": "2015-11-02T19:13:15Z",
 "operations": [
 {
 "entity": "charlie@example.com",
 "optype": "add"
 },
 {
 "entity": "bob@example.com",
 "optype": "remove"
 }
]
 })

 The response message conforms to the basic response message
 structure.

 Response payload definition:

Biggs & Cooley Expires May 6, 2016 [Page 29]

Internet-Draft key-management-service November 2015

 root {
 response
 }

 Response message example:

 JWE(K_ephemeral, {
 "status": 200,
 "requestId": "6205452b-c555-484f-8445-bb94c8044882"
 })

 If successful, the KMS response to this request MUST have a status of
 200. In the case of a request failure, the KMS response status
 SHOULD be that of an [RFC7231] defined status code with semantics
 that correspond to the failure condition.

4.6.5. Get GMBC

 A client may retrieve GMBC blocks from the KMS using the get GMBC
 operation. The KMS MAY validate that the requesting client
 represents an entity that is a current member of the GMBC.
 Alternatively, a KMS MAY validate that the requesting client
 represents an entity that has been a member of the GMBC at some point
 in time.

 The request message conforms to the basic request message structure,
 where the method is "get" and the uri is that of the GMBC's genesis
 block. The client may also optionally request that only recently
 appended blocks be returned, by providing in an "antecedent"
 attribute the hash of a GMBC block the client already has. The KMS
 will return any and all blocks which were appended after the block
 indicated by this hash value.

 Request payload definition:

 root {
 request
 ?"antecedent": string
 }

 Request message example:

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 6, 2016 [Page 30]

Internet-Draft key-management-service November 2015

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "get",
 "uri": "kms://kms.example.com/blocks/7f35c3eb",
 "requestId": "db1e4d2a-d483-4fe7-a802-ec5c0d32295f"
 })

 The response message conforms to the basic response message
 structure, and includes an array containing the JWS compact-
 serialization of GMBC blocks in chronological order.

 Response payload definition:

 signed-gmbc-block:
 signed-gmbc-genesis-block / signed-gmbc-appended-block

 root {
 response,
 "blocks" [*: signed-gmbc-block]
 }

 Response message example:

 JWE(K_ephemeral, {
 "status": 201,
 "requestId": "db1e4d2a-d483-4fe7-a802-ec5c0d32295f",
 "blocks": [
 "eyAiYWxnIjogIlBTMjU2IiB9.ewogICAgICAidXJpIjogImttczovL...",
 "eyAiYWxnIjogIlBTMjU2IiB9.ewogICAgICAiYW50ZWNlZGVudCI6I..."
]
 })

 If successful, the KMS response to this request MUST have a status of
 200. In the case of a request failure, the KMS response status
 SHOULD be that of an [RFC7231] defined status code with semantics
 that correspond to the failure condition.

4.6.6. Post GK (create)

 When a client intends to initiate E2E encryption of a communications
 resource, it obtains the necessary keying material by requesting a
 new GK from the KMS. The KMS generates the GK as specified in
 [I-D.abiggs-saag-primitives-for-conf-group-comms].

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 6, 2016 [Page 31]

Internet-Draft key-management-service November 2015

 In the request, the client has the option to include a block
 attribute representing the hash of a GMBC block to which the GK
 should be immediately associated, or "bound". This is appropriate in
 cases where the block to which the GK is to be bound already exists
 and is known by the client. When this is not the case, a client may
 omit the block attribute from the request and receive back a GK that
 has its block attribute similarly omitted. Such a block-less GK is
 referred to as "unbound" because it is not yet associated with any
 GMBC block.

 The request message conforms to the basic request message structure,
 where the method is "post", the path part of the URI is "/gks".

 Request payload definition:

 root {
 request,
 "block": string
 }

 Request message example:

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "post",
 "uri": "kms://kms.example.com/gks",
 "requestId": "8c198748-36fb-4318-89c9-bfc8bb0a967c"
 })

 The response message conforms to the basic response message
 structure, and includes a representation of the created GK.

 Response payload definition:

 signed-group-key: JWS(K_kms_priv, group-key)

 root {
 response,
 "gk": signed-group-key
 }

 Response message example:

Biggs & Cooley Expires May 6, 2016 [Page 32]

Internet-Draft key-management-service November 2015

 JWE(K_ephemeral, {
 "status": 201,
 "requestId": "8c198748-36fb-4318-89c9-bfc8bb0a967c",
 "gk": "eyAiYWxnIjogIlBTMjU2IiB9.ewogICAgICAidXJpIjo..."
 }

 Deserialized payload of the gk attribute:

 JWS(K_kms_priv, {
 "uri": "kms://kms.example.com/gks/8ed72cd2",
 "creator": "kms://kms.example.com",
 "created": "2015-11-02T19:19:15Z",
 "key": "eyJraWQiOiJmZjNjNWM5Ni0zOTJlLTQ2ZWYtYTg..."
 })

 If successful, the KMS response to this request MUST have a status of
 201. In the case of a request failure, the KMS response status
 SHOULD be that of an [RFC7231] defined status code with semantics
 that correspond to the failure condition.

4.6.7. Post GK (update)

 A GK is often generated ahead of time, before the requesting client
 knows which communications resource the GK will be used to secure.
 As such, they are created without being initially associated with any
 particular GMBC. These are referred to as "unbound" GKs, as
 discussed in the previous section. An unbound GK is not useful for
 E2E communications until it is bound to a GMBC block and thereby made
 accessible to members of that group.

 A client can bind an unbound GK to a GMBC block by sending a post
 request to the KMS with the GKs URI and the hash of the block to
 which it should be bound. In response to this request the KMS will
 update the GK payload to include the block hash provided in the
 request, re-sign the GK with its private key, and return the updated
 GK to the client.

 The request message conforms to the basic request message structure,
 where the method is "post", and the uri is that of the GK to be
 updated.

 Request payload definition:

 root {
 request,
 "block": string
 }

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 6, 2016 [Page 33]

Internet-Draft key-management-service November 2015

 Request message example:

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "post",
 "uri": "kms://kms.example.com/gks/8ed72cd2",
 "requestId": "e0f9b55c-d0a5-4f70-aafd-309541fe51ab",
 "block": "14b6290c88a9b40ee519832b878ccc1896bef8900d0f9d2..."
 })

 The response message conforms to the basic response message
 structure, and includes a representation of the updated GK.

 Response payload definition:

 signed-group-key: JWS(K_kms_priv, group-key)

 root {
 response,
 "gk": signed-group-key
 }

 Response message example:

 JWE(K_ephemeral, {
 "status": 200,
 "requestId": "e0f9b55c-d0a5-4f70-aafd-309541fe51ab",
 "gk": "eyAiYWxnIjogIlBTMjU2IiB9.ewogICAgICAidXJpIjo..."
 }

 Deserialized payload of the gk attribute:

 JWS(K_kms_priv, {
 "uri": "kms://kms.example.com/gks/8ed72cd2",
 "creator": "kms://kms.example.com",
 "created": "2015-11-02T19:19:15Z",
 "key": "eyJraWQiOiJmZjNjNWM5Ni0zOTJlLTQ2ZWYtYTg...",
 "block": "14b6290c88a9b40ee519832b878ccc1896bef8900d0f9d2..."
 })

 If successful, the KMS response to a create resource request MUST
 have a status of 200. In the case of a request failure, the KMS

Biggs & Cooley Expires May 6, 2016 [Page 34]

Internet-Draft key-management-service November 2015

 response status SHOULD be that of an [RFC7231] defined status code
 with semantics that correspond to the failure condition.

4.6.8. Get GK

 Recipients of a communications resource secured by a GK require some
 means by which they can retrieve the GK and subsequently decrypt the
 resource. Such a recipient will typically receive the URI of the GK
 as metadata of the encrypted resource itself and submit a get request
 on that URI to the KMS.

 The KMS, as a curator of the GMBC to which the GK is bound, is
 responsible for ensuring that the keying material contained within
 the GK is not accessible to entities outside of the group. It does
 so by testing that the entity whose URI is provided in the request is
 a member of the GMBC and, if so, returns the GK with the keying
 material wrapped in a JWE encrypted with the public key of that
 entity.

 The test for membership may be performed based on any one of a
 variety of policies, some examples of which are given below. Which
 policy is applied is left to the discretion of the KMS
 implementation.

 Policy 1: An entity is considered a member for purposes of GK
 retrieval if and only if the entity was a member of the GMBC at
 the time the block to which the GK is bound was appended to the
 GMBC.

 Policy 2: An entity is considered a member for purposes of GK
 retrieval if and only if the entity is a member of the GMBC as of
 the most recently appended block.

 Policy 3: An entity is considered a member for purposes of GK
 retrieval if and only if the entity is a member of the GMBC as of
 the most recently appended block, and was a member at the time the
 block to which the GK is bound was appended to the GMBC.

 Policy 1 represents a persistent right for current and former group
 members to retrieve GKs that were available to them at some point in
 the past. This policy does not extend the right to retrieve a GK to
 members added subsequently.

 Policy 2 determines privilege to retrieve GKs based entirely on the
 current membership of the GMBC. Former members cannot retrieve and
 GKs, and current members can retrieve all GKs for the entire history
 of the GMBC.

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 6, 2016 [Page 35]

Internet-Draft key-management-service November 2015

 Policy 3 allows only a current member to retrieve GKs and then only
 as far back as the block that introduced that member to the group.

 The request message conforms to the basic request message structure,
 where the method is "get", and the uri is that of the GK to be
 retrieved.

 Request payload definition:

 root {
 request,
 entity: uri
 }

 Request message example:

 JWE(K_ephemeral, {
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "get",
 "uri": "kms://kms.example.com/gks/8ed72cd2",
 "requestId": "d83afbf1-523a-453a-8114-48c7df03ac7c",
 "entity": "bob@example.com"
 })

 The response message conforms to the basic response message
 structure, and includes a representation of the retrieved GK.

 Response payload definition:

 signed-group-key: JWS(K_kms_priv, group-key)

 root {
 response,
 "gk": signed-group-key
 }

 Response message example:

 JWE(K_ephemeral, {
 "status": 200,
 "requestId": "e0f9b55c-d0a5-4f70-aafd-309541fe51ab",
 "gk": "eyAiYWxnIjogIlBTMjU2IiB9.ewogICAgICAidXJpIjo..."
 }

Biggs & Cooley Expires May 6, 2016 [Page 36]

Internet-Draft key-management-service November 2015

 Deserialized payload of the gk attribute:

 JWS(K_kms_priv, {
 "uri": "kms://kms.example.com/gks/8ed72cd2",
 "creator": "kms://kms.example.com",
 "created": "2015-11-02T19:19:15Z",
 "key": "eyJraWQiOiJmZjNjNWM5Ni0zOTJlLTQ2ZWYtYTg...",
 "block": "14b6290c88a9b40ee519832b878ccc1896bef8900d0f9d2..."
 })

 If successful, the KMS response to a retrieve resource request MUST
 have a status of 200. In the case of a request failure, the KMS
 response status SHOULD be that of an [RFC7231] defined status code
 with semantics that correspond to the failure condition.

4.6.9. Ping

 Ping is a simple request intended to provide an efficient means for
 verifying the integrity of the secure channel between client and KMS.
 Ping MUST be implemented as a safe and idempotent operation that
 causes the server to do nothing more than return a basic response
 payload in reaction to the client request. The method of a ping
 request is "update" and the uri is "/ping".

 Request payload definition:

 root {
 request
 }

 Request message example:

 JWE(K_ephemeral, {
 "requestId": "10992782-e096-4fd3-9458-24dca7a92fa5",
 "client": {
 "clientId": "android_a6aa012a-0795-4fb4-bddb-f04abda9e34f",
 "credential": {
 "bearer": "ZWU5NGE2YWYtMGE2NC0..."
 }
 }
 "method": "update",
 "uri": "/ping"
 })

 The response message conforms to the basic response message structure
 with no additional data.

 Response payload definition:

https://datatracker.ietf.org/doc/html/rfc7231

Biggs & Cooley Expires May 6, 2016 [Page 37]

Internet-Draft key-management-service November 2015

 root {
 response
 }

 Response message example:

 JWE(K_ephemeral, {
 {
 "status": 200,
 "requestId": "10992782-e096-4fd3-9458-24dca7a92fa5"
 })

 If successful, the client may deduce that the KMS was able to
 successfully decrypt the received KMS request message, parse the
 contents, confirm the identity and authorization of the requesting
 client, and return a suitable response.

5. Security Considerations

 Security considerations are discussed throughout this document.
 Additional considerations may be added here as needed.

6. Appendix A. Acknowledgments

 This specification is the work of several contributors. In
 particular, the following individuals contributed ideas, feedback,
 and wording that influenced this specification:

 Cullen Jennings, Matt Miller, Suhas Nandakumar, Jonathan Rosenberg

7. Appendix B. Document History

 -00

 o Initial draft.

 -01

 o Editorial revisions and addition of ping operation.

 -02

 o Addition of new key retrieval options.

 -03

 o Substantial rewrite based on
 [I-D.abiggs-saag-primitives-for-conf-group-comms].

Biggs & Cooley Expires May 6, 2016 [Page 38]

Internet-Draft key-management-service November 2015

8. References

8.1. Normative References

 [I-D.abiggs-saag-primitives-for-conf-group-comms]
 Biggs, A. and S. Cooley, "Primitives for Confidential
 Group Communications", draft-abiggs-saag-primitives-for-

conf-group-comms-00 (work in progress), September 2015.

 [I-D.ietf-jose-json-web-algorithms]
 Jones, M., "JSON Web Algorithms (JWA)", draft-ietf-jose-

json-web-algorithms-33 (work in progress), September 2014.

 [I-D.ietf-jose-json-web-encryption]
 Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",

draft-ietf-jose-json-web-encryption-33 (work in progress),
 September 2014.

 [I-D.ietf-jose-json-web-key]
 Jones, M., "JSON Web Key (JWK)", draft-ietf-jose-json-web-

key-33 (work in progress), September 2014.

 [I-D.ietf-jose-json-web-signature]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature-33
 (work in progress), September 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2822] Resnick, P., "Internet Message Format", RFC 2822, April
 2001.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", RFC
4949, August 2007.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869, May 2010.

https://datatracker.ietf.org/doc/html/draft-abiggs-saag-primitives-for-conf-group-comms-00
https://datatracker.ietf.org/doc/html/draft-abiggs-saag-primitives-for-conf-group-comms-00
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-33
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-33
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-encryption-33
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-33
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-33
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature-33
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5869

Biggs & Cooley Expires May 6, 2016 [Page 39]

Internet-Draft key-management-service November 2015

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

8.2. Informative References

 [I-D.barnes-pervasive-problem]
 Barnes, R., Schneier, B., Jennings, C., and T. Hardie,
 "Pervasive Attack: A Threat Model and Problem Statement",

draft-barnes-pervasive-problem-01 (work in progress), July
 2014.

 [I-D.ietf-xmpp-posh]
 Miller, M. and P. Saint-Andre, "PKIX over Secure HTTP
 (POSH)", draft-ietf-xmpp-posh-02 (work in progress),
 October 2014.

 [I-D.newton-json-content-rules]
 Newton, A., "A Language for Rules Describing JSON
 Content", draft-newton-json-content-rules-02 (work in
 progress), August 2014.

 [OTR] Borisov, N., Goldberg, I., and E. Brewer, "Off-the-Record
 Communication, or, Why Not To Use PGP", 2012,
 <https://otr.cypherpunks.ca/otr-wpes.pdf>.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4880] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
 Thayer, "OpenPGP Message Format", RFC 4880, November 2007.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/draft-barnes-pervasive-problem-01
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-posh-02
https://datatracker.ietf.org/doc/html/draft-newton-json-content-rules-02
https://otr.cypherpunks.ca/otr-wpes.pdf
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4880
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5652

Biggs & Cooley Expires May 6, 2016 [Page 40]

Internet-Draft key-management-service November 2015

Authors' Addresses

 Andrew Biggs
 Cisco Systems

 Email: adb@cisco.com

 Shaun Cooley
 Cisco Systems

 Email: shcooley@cisco.com

Biggs & Cooley Expires May 6, 2016 [Page 41]

