C. Adams(Entrust Technologies)
Internet Draft R. Zuccherato(Entrust Technologies)
expires in six months June 4, 1998

Data Certification Server Protocols

<draft-adams-dcs-00.txt>

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

To view the entire list of current Internet-Drafts, please check
the "lid-abstracts.txt" listing contained in the Internet-Drafts
Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net
(Northern Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au
(Pacific Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu

(US West Coast).

Abstract

This document describes a general data certification service and the
protocols to be used when communicating with it. The Data Certification
Server 1is a Trusted Third Party (TTP) that can be used as one component
in building reliable non-repudiation services (see [ISONR]). Useful
Data Certification Server responsibilities in a PKI are to validate
signatures and to provide up-to-date information regarding the status of
public key certificates. We give examples of how to use the Data
Certification Server to extend the lifetime of a signature beyond key
expiry or revocation and to query the Data Certification Server
regarding the status of a public key certificate.

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and
"OPTIONAL' in this document are to be interpreted as described in
REC 2119 [RFC2119].

1. Introduction

A Data Certification Server (DCS) is a Trusted Third Party that verifies
the correctness of specific data submitted to it. The Data
Certification Server provides the data certification service in order

https://datatracker.ietf.org/doc/html/draft-adams-dcs-00.txt
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

that non-repudiation evidence may be constructed relating to the
validity and correctness of an entity's claim to possess data, the
validity and revocation status of an entity's public key certificate
and/or the validity and correctness of another entity's signature. When
certifying possession of data or another entity's signature, the DCS

Document Expiration: December 4, 1998 Page 1

verifies the mathematical correctness of the actual signature value
contained in the request and also checks the full certification path
from the signing entity to a trusted point (e.g., the DCS's CA, or the
root CA in a hierarchy). The DCS MAY be able to rely on all relevant
CRLs and ARLs, or the DCS MAY need to supplement this with access to
more current status information from the CA. It then includes a trusted
time and creates a data certification token. (See Appendix B.)

When certifying a public key certificate, the DCS verifies that the
certificate included in the request is a valid certificate and
determines its revocation status at a specified time. Again, it checks
the full certification path from the certificate signing entity to a
trusted point. The DCS MAY be able to rely on all relevant CRLs and
ARLs, or the DCS MAY need to supplement this with access to more current
status information from the CA. It includes this information, along
with a trusted time, to create a Data Certification Token. (See
Appendix C.)

The presence of a data certification token supports non-repudiation in
two ways. It provides evidence that a signature or public key
certificate was valid at thetime indicated in the token. The token can
be used even after the corresponding public key certificate expires and
its revocation information is no longer available on CRLs (for example).
The production of a data certification token in response to a signed
request for certification of another signature or public key certificate
also provides evidence that due diligence was performed by the requester
in validating the signature or public key certificate.

It is not recommended that the DCS be used as a substitute for normal
public keycertificate revocation checking (e.g. CRLs, OCSP) in large
environments, due to concerns about the scalability of this protocol.
It should only be used to support non-repudiation or to supplement more
traditional revocation services when more timely information is
required.

In all cases, the trust that PKI entities have in the Data Certification
Server is transferred to the contents of the data certification token
(just as trust in a CA is transferred to the public key certificates
that it issues). As a particular example, a data certification token
pertaining to a signature may be useful for extending the life of that
signature beyond the expiry or subsequent revocation of its
corresponding verification certificate.

2. Requirements of the Data Certification Server
The Data Certification Server 1is REQUIRED to:

1. verify the correctness of the enclosed digital signature using
all appropriate status information and public key certificates
and produce a signed data certification token attesting to the
validity of the signature, if asked by the requester.

2. verify the validity (according to [CCP]) of the enclosed public
key certificate and its revocation status at the specified time
using all appropriate status information and public key
certificates and produce a signed data certification token
attesting to the validity and revocation status of the public

Document Expiration: December 4, 1998 Page 2

key certificate, if asked by the requester.

3. include a monotonically incrementing value of the time of day
or a time stamp token into its data certification token.

4. include within each signed data certification token an
identifier to uniquely determine the trust and validation policy
used for this signature.

5. sign each data certification token using a key generated
exclusively for this purpose and have this property of the key
indicated on the corresponding public key certificate.

6. indicate in the token whether or not the signature or public key
certificate verified, and if not, the reason the verification
failed.

7. provide a signed receipt (i.e., in the form of an appropriately
defined data certification token) to the requester, where
appropriate, as defined by policy.

3. Data Certification Server Transactions

As the first transaction of this mechanism, the requesting entity
requests a certification by sending a request (which is or includes a
data certification request, as defined below), including the data for
which validity and/or possession is to be certified, to the Data
Certification Server. Upon receiving the request, the Data
Certification Server reviews and checks the validity of the request. A
valid request is of the form described in Section 5 of this document,
can be properly decoded, and is from a supported Data Certification
Server subscriber. If the request is valid, the Data Certification
Server performs the certification and sends a response (which is or
includes a data certification token, as defined below) to the requesting
entity. Otherwise, the Data Certification Server returns an error
message (i.e., in the form of an appropriately defined data
certification token).

Upon receiving the token, the requesting entity verifies its validity.
The requester SHOULD verify that it contains the correct time, the

correct name for the DCS, the correct data imprint, a valid signature,
and satisfactory status, service and policy fields. Since the DCS's
certificate may have been revoked, the appropriate status information
SHOULD be checked to verify that the certificate is still valid. The
token can now be used to authenticate the correctness or possession of
the corresponding data.

4. Identification of the DCS

The DCS MUST sign all data certification messages with a key reserved
specifically for that purpose. The corresponding certificate MUST
contain the extended key usage field extension as defined in [CCP]
Section 4.2.1.14 with KeyPurposeID having value id-kp-dcs. This
extension MUST be critical.

id-kp-dcs OBJECT IDENTIFIER ::= {id-kp ??}
-- Certifying the validity of certain information. Key usage bits
-- that may be consistent: digitalSignature, nonRepudiation

Document Expiration: December 4, 1998 Page 3
5. Request and Token Formats

The ServiceType type indicates which type of Data Certification Server
Service 1is required.

ServiceType ::= INTEGER { cpd(1), cs(2), cpkc(3) }

The value cpd (Certify Possession of Data) is used when only the
signature on the data certification request (i.e., possession of the
data in the request) is to be verified. 1In this case the Data
Certification Server would be merely providing evidence that the
requester possessed the data in the request and a valid signature key at
the time indicated. This is really an extension of the Time Stamp
Authority [TSA] in that we are given the additional assurance about the
validity of the signature, as well as the time before which it was
applied. The value cs (Certify Signature) is used when another entity's
signhature is to be validated. The resulting token can then be used to
support non-repudiation services or to allow use of the signature beyond
public key certificate revocation or expiry.

The value cpkc (Certify Public Key Certificate) is used when the
validity and revocation status of the public key certificates included
in the request are to be verified. This service can be used to
supplement the use of CRLs when timely information regarding a
certificate's revocation state is required (e.g. high value funds
transfer or the compromise of a highly sensitive key) or when evidence
supporting non-repudiation is required. A given DCS MAY support any
subset of the above services.

Upon receiving a signed request for either service cs or cpkc the DCS
MUSTalso verify the signature on the request as is done for the cpd
service. Note however, that signed requests for the cs or cpkc service
are not required.

A data certification request is as follows. It is encapsulated as a
SignedData construct [CMS]. The content is of type DCSReqData, which is
indicated by the OID:

DCSRegData OBJECT IDENTIFIER ::= ??2??2??7 }

The data certification request MUST either be unsigned or contain only
the signature of the requester.

The data and information that will be certified are contained in the
content field of the SignedData content type.

DCSRegData ::= SEQUENCE {
dcsReqInfo DCSReqInfo,
data Data

--the data to be certified
--this field MUST be of type Message if the service type is cs
--and of type SEQUENCE OF Certificate if the service type is cpkc

3

The dcsReqInfo field contains information pertaining to the data
certification request.

Document Expiration: December 4, 1998 Page 4
DCSReqInfo ::= SEQUENCE {

version Integer { vi(0) 1},

service ServiceType,

requester GeneralName OPTIONAL,

--MUST be present if the service field is cpd
--MUST match the identity (subjectName or subjectAltName
--extension) for the corresponding signing certificate

reqPolicy PolicyInformation OPTIONAL,

dcs GeneralName OPTIONAL,

nonce Integer,

reqTime ReqTime OPTIONAL,

extensions Extensions OPTIONAL }
ReqTime ::= CHOICE {

genTime GeneralizedTime,

timeStampToken TimeStampToken }

In situations where the Data Certification Server will verify the
identity of the requester (i.e., when the service field is cpd), the
data certification request MUST be signed by the requester using the
signerInfos field.

Similarly, in situations where the Data Certification Server will
certify the time included in the request (i.e., when stipulated by the
policy of the Data Certification Server), the data certification
request MUST include the reqTime field in DCSReqInfo. Thus, when
verifying a public key certificate, the presence of this field indicates
the time for which the validity and revocation status of the certificate
SHOULD be reported. If this field is not present, the current time is
assumed. TimeStampToken is defined in Sect 2.4 of [TSA].

PolicyInformation is defined in Section 4.2.1.5 of [CCP]. The

reqPolicy field SHOULD indicate the policy under which the certification
is requested. This field MUST be checked by the DCS to verify agreement
with its own policy. The absence of this field indicates that any
policy is acceptable.

The Data type is defined to be either the message itself, a hash of
the message (this allows a signature indicating possession of private
data to be certified) or the certificate to be verified.

Data ::= CHOICE ({
message [6] Message,
messageimprint [1] MessageImprint,
certs [2] SEQUENCE SIZE (1..MAX) OF

TargetandChain }

In order to specify the format (i.e. the type) of the message so that
it may be parsed and understood by the DCS or any verifying entity, we
define the Message data type.

Message ::= SEQUENCE {
format MESSAGECLASS. &id, --objid
rawdata MESSAGECLASS.&Type --open type
}
Document Expiration: December 4, 1998 Page 5
MESSAGECLASS ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&Type 3}

WITH SYNTAX { &Type IDENTIFIED BY &id }
Possible message types include id-data and id-signedData [CMS].

id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkes7(7) 1 }

id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkecs7(7) 2 }

In particular, if the message type is id-signedData (or any other

message type that allows more than one signature) and more than one
SignerInfo (or signature) is present under service type cs, the DCS
MUST verify all signatures present. 1In this case the failure of any
one signature to verify will result in the failure of the entire
certification.

If the requester prefers to send a hash of the message instead, the
MessageImprint data type SHOULD be used.

MessageImprint ::= SEQUENCE {
hashAlgorithm AlgorithmIdentifier,
hashedMessage OCTET STRING }

The hash algorithm indicated in the hashAlgorithm field SHOULD be a
"strong" hash algorithm (that is, it SHOULD be one-way and collision
resistant). It is up to the Data Certification Server to decide whether
or not the given hash algorithm is sufficiently "strong" (based on the
current state of knowledge in cryptanalysis and the current state of the
art in computational resources, for example).

The hashedMessage field SHOULD contain the hash of the DER encoding of
the message expressed as a Message data type. The hash is represented
as an OCTET STRING.

TargetandChain ::= SEQUENCE {

target Certificate,

chain SEQUENCE SIZE (1..MAX) OF Certificate

OPTIONAL,

pathProcInput PathProcInput OPTIONAL }
PathProcInput ::= SEQUENCE {

acceptablePolicySet CertPolicySet,

inhibitPolicyMapping BOOLEAN DEFAULT FALSE,

explicitPolicyReqd BOOLEAN DEFAULT FALSE }

The certs field SHOULD contain the certificate to be certified. Each
certificate SHALL be included in a separate instance of TargetandChain.
The target field SHALL contain the cert to be verified and the chain
field, if present, MUST indicate the chain of trust to be used when
certifying the certificate. The pathProcInput field, if present, SHOULD
indicate the acceptable policy set and initial settings for
explicit-policy-indicator and inhibit-policy-mapping indicators to be

Document Expiration: December 4, 1998 Page 6
used in X.509 public key certificate path validation (see [CCP]).
Extensions are described in Section 4.2 of [CCP]. The criticality of
the extensions MUST be honoured by conformant DCSs and clients (e.g.

requests and responses containing critical extensions which are not
understood MUST be rejected).

A data certification token is as follows. It is encapsulated as a
SignedData construct [CMS]. The content is of type DCSInfo, which is
indicated by the 0ID:

DCSInfo OBJECT IDENTIFIER ::= 7?2?2727 %}

The data certification token MUST contain only the signature of the DCS.

DCSInfo ::= SEQUENCE {
dcsReqInfo DCSReqInfo,
--MUST be the same value as the dcsReqInfo field in DCSReqData
messageImprint MessageImprint,

--if the data field in DCSRegData is MessageImprint, this
--MUST contain that same value, otherwise it contains a hash of
--the data field in DCSRegData using the hash algorithm
--specified in the digestAlgorithm parameter of SignerInfo in
--the data certification token

regSignature SignerInfo OPTIONAL,
--MUST be present if service field of dcsReqInfo is cpd
--MUST be the same value as the signerInfo field in the data
--certification request

policy PolicyInformation,

status PKIStatusInfo,

time DCSTime,

chainCerts [6] SEQUENCE OF Certificate OPTIONAL,

--if present, MUST indicate the chain of trust that was used by
--the DCS to verify the signature or certificate in DCSReqData

crls [2] SEQUENCE OF CertificatelList OPTIONAL,
policyReturnInfo [3] SEQUENCE OF PolicyReturnInfo OPTIONAL,
extensions Extensions OPTIONAL }

DCSTime ::= CHOICE {
genTime GeneralizedTime,
timeStampToken TimeStampToken }

PolicyReturnInfo ::= SEQUENCE {
policies SEQUENCE OF PolicyInformation,
mappings SEQUENCE OF PolicyMappingsSyntax }

PKIStatusInfo is defined in Section 3.2.3 of [CMP]. If the PKIStatus
field has value "waiting' (3), then this token is a receipt, as defined
in Section 2. Otherwise, the status field indicates whether or not the
data certification request was fulfilled and, if not, failInfo indicates
the reason it was rejected. A valid data certification token will have
a PKIStatus field with value “granted' (©@). For the purposes of the
DCS, we define PKIFailureInfo for use in PKIStatusInfo.

Document Expiration: December 4, 1998 Page 7

PKIFailureInfo ::= BITSTRING {
badAlg (0),
-- unrecognized or unsupported Algorithm Identifier
badMessageCheck (1),
-- integrity check failed (e.g., signature did not verify)

badRequest (2),
-- transaction not permitted or supported
badTime (3),

-- messageTime was not sufficiently close to the system time,
-- as defined by local policy

badCertId (4),
-- no certificate could be found matching the provided criteria
badDataFormat (5),

-- the data submitted has the wrong format
wrong (6),
-- the indicated in the request is different from the
-- one creating the response token
incorrectData (7),
--the requester's data (i.e. signature) is incorrect
--(i.e. invalid)
missingTimeStamp (8),
-- when the timestamp is missing but should be there (by policy)

certInvalid (9),
-- the certificate fails to validate against Section 6 of [CCP]
certRevoked (10),
-- the certificate is revoked
certExpired (11),
-- the certificate has expired
certOnHold (12),

-- the certificate has been operationally suspended
certNotActive (13)
-- the certificate was not active at the given time

}

The statusString field of PKIStatusInfo can be used to include reason
text such as "CA's public key revoked".

CertId is defined in Section 7.5 of [CRMF].

The crls field (if present) SHOULD contain a sequence of certificate
revocation lists that is sufficient to verify the chain of trust
indicated in the chainCerts field.

The policyReturnInfo field indicates the policies and mappings that
were processed during X.509 public key certificate path validation.
PolicyMappingsSyntax is defined in [CCP].

The reqSignature, chainCerts and crls fields are included as OPTIONAL.
They SHOULD be present, when policy dictates, for use as supplementary
evidence when resolving possible disputes. Dispute resolution would
most likely be handled by one or more humans, in an off-1line

environment, and is beyond the scope of this document.

6. Transports

There is no mandatory transport mechanism in this document. All
Document Expiration: December 4, 1998 Page 8
mechanisms are optional.

6.1. File Based Data Certification Server Protocol

A file containing a data certification message MUST contain only the DER
encoding of one PKI message, i.e. there MUST be no extraneous header or
trailer information in the file.

Such files can be used to transport data certification messages using
for example, FTP.

6.2. Socket Based Data Certification Server Protocol

The socket based protocol for data certification messages is identical
to that used in [CMP] Section 5.2 except that port 309 MUST be used.

6.3. Data Certification Server Protocol Using Email

This section specifies a means for conveying ASN.1l-encoded messages
for the protocol exchanges described in Section 4 via Internet mail.

A simple MIME object is specified as follows.

Content-Type: application/dcs
Content-Transfer-Encoding: base64

<<the ASN.1 DER-encoded Data Certification Server message, base64-
encoded>>

This MIME object can be sent and received using MIME processing engines
and provides a simple Internet mail transport for Data Certification
Server messages.

6.4. Data Certification Server Protocol via HTTP

This subsection specifies a means for conveying ASN.1l-encoded messages
for the protocol exchanges described in Section 4 via the HyperText
Transfer Protocol.

A simple MIME object is specified as follows.

Content-Type: application/dcs

<<the ASN.1 DER-encoded Data Certification Server message>>

This MIME object can be sent and received using common HTTP processing
engines over WwwW links and provides a simple browser-server transport
for Data Certification Server messages.

7. Security Considerations
This entire document discusses security considerations.

When designing a data certification service, the following
considerations have been identified that have an impact upon the
validity or "trust" in the data certification token.

Document Expiration: December 4, 1998 Page 9

1. The enclosed public key certificate is revoked or the signer's
key is compromised and the corresponding public key certificate
is revoked before the Data Certification Server acts upon the
request. The Data Certification Server is REQUIRED to validate
appropriate information within the request before it
constructs the data certification token. It is therefore
mandated that the DCS have access to current information
regarding public key certificate status before it creates the
token. In this situation, the certification process would
produce an error.

2. The enclosed public key certificate is revoked or the signer's
key is compromised and the corresponding certificate is revoked
after the Data Certification Server acts upon the request. This
is not a concern to the DCS once the Data Certification Server
has constructed the token, as long as the compromise date in the
CRL is not before the time of certification. If it is, this
situation would have to be handled by off-line, possibly human-
aided, means specific to the situation at hand.

3. The Data Certification Server's private key is compromised and
the corresponding certificate is revoked. 1In this case, any
token signed by the Data Certification Server cannot be trusted.
For this reason, it is imperative that the Data Certification
Server's key be guarded with proper security and controls in
order to minimize the possibility of compromise. Nevertheless,
in case the private key does become compromised, an audit trail
of all the tokens generated by the DCS SHOULD be kept as a means
to help discriminate between genuine and false tokens.

4. The DCS signing key MUST be of a sufficient length to allow for
a sufficiently long lifetime. Even if this is done, the key
will have a finite lifetime. Thus, any token signed by the DCS
SHOULD be time stamped (if authentic copies of old CRLs
are available) or certified again (if they aren't) at a later
date to renew the trust that exists in the DCS's signature.
Data certification tokens could also be kept with an Evidence
Recording Authority [ISONR] to maintain this trust.

5. When there is a reason to believe that the DCS can no longer
be trusted, its certificate MUST be revoked and placed on the

appropriate CRL. Thus, at any future time the tokens signed
with the corresponding key will not be trusted.

6. In certain circumstances, a DCS may not be able to produce a
valid response to a request (for example, if it is unable to
compute signatures for a period of time). 1In these situations
the DCS MUST wait until it is again able to produce a valid
response and then respond to the request. Under no
circumstances shall a DCS produce an unsigned response to a
request.

7. This protocol assumes that the CA has conducted a test for proof
of possession for each user's signing private key. If this is
not the case, or when additional assurances are required, the
certificate of the requester (resp. DCS) SHALL be included in
the encapsulation of the data certification request (resp. data
certification token) as an authenticated attribute.

8. Patent Information
The following United States Patents related to data certification
Document Expiration: December 4, 1998 Page 10

servers (notaries), listed in chronological order, are known by the
authors to exist at this time. This may not be an exhaustive list.
Other patents may exist or be issued at any time. Implementers of this
protocol SHOULD perform their own patent search and determine whether or
not any encumberences exist on their implementation.

4,309,569 Method of Providing Digital Signatures
(issued) January 5, 1982

(inventor) Ralph C. Merkle

(assignee) The Board of Trustees of the Leland Stanford Junior
University

5,001,752 Public/Key Date-Time Notary Facility
(issued) March 19, 1991
(inventor) Addison M. Fischer

5,022,080 Electronic Notary
(issued) June 4, 1991
(inventors) Robert T. Durst, Kevin D. Hunter

5,136,643 Public/Key Date-Time Notary Facility
(issued) August 4, 1992

(inventor) Addison M. Fischer

(Note: This is a continuation of patent # 5,001,752.)

5,136,646 Digital Document Time-Stamping with Catenate Certificate
(issued) August 4, 1992

(inventors) Stuart A. Haber, Wakefield S. Stornetta Jr.

(assignee) Bell Communications Research, Inc.,

5,136,647 Method for Secure Time-Stamping of Digital Documents
(issued) August 4, 1992

(inventors) Stuart A. Haber, Wakefield S. Stornetta Jr.

(assignee) Bell Communications Research, Inc.,

5,373,561 Method of Extending the Validity of a Cryptographic
Certificate

(issued) December 13, 1994

(inventors) Stuart A. Haber, Wakefield S. Stornetta Jr.

(assignee) Bell Communications Research, Inc.,

5,422,95 Personal Date/Time Notary Device
(issued) June 6, 1995
(inventor) Addison M. Fischer

9. References

[TSA] C. Adams, P. Cain, D. Pinkas, R. Zuccherato, "Time Stamp
Protocols," draft-adams-time-stamp-0X.txt, 1998 (work in progress).

[CMP] C. Adams, S. Farrell, "Internet Public Key Infrastructure,
Certificate Management Protocols," draft-ietf-pkix-ipki3cmp-
OX.txt, 1998 (work in progress).

Document Expiration: December 4, 1998 Page 11

[CRMF] C. Adams, "Internet Public Key Infrastructure, Certificate
Request Message Format," draft-ietf-pkix-crmf-0X.txt, 1998 (work in
progress).

[CCP] R. Housley, W. Ford, W. Polk, D. Solo, "Internet Public Key
Infrastructure, X.509 Certificate and CRL Profile," draft-
ietf-pkix-ipki-part1-0X.txt, 1998 (work in progress).

[CMS] R. Housley "Cryptographic Message Syntax", draft-ietf-smime-cms-
02.txt, 1998 (work in progress).

[ISONR] ISO/IEC 10181-5: Security Frameworks in Open Systems.
Non-Repudiation Framework.

[RFC2119] Key works for use in RFCs to Indicate Requirement Levels,
S. Bradner, RFC 2119, March 1997.

10. Authors' Addresses

Carlisle Adams Robert Zuccherato
Entrust Technologies Entrust Technologies
750 Heron Road 750 Heron Road

Ottawa, Ontario Ottawa, Ontario

https://datatracker.ietf.org/doc/html/draft-adams-time-stamp-0X.txt
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki3cmp
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-crmf-0X.txt
https://datatracker.ietf.org/doc/html/draft-ietf-smime-cms
https://datatracker.ietf.org/doc/html/rfc2119

K1V 1A7 K1V 1A7

CANADA CANADA
cadams@entrust.com robert.zuccherato@entrust.com
Document Expiration: December 4, 1998 Page 12

APPENDIX A - Storage of Data and Token

A data certification token is useless without the data to which it
applies. For this reason tokens and their related data MUST be securely
stored together. The change of a single bit in either the data or the
token renders the entire certification process for that data
meaningless. Storage of tokens and data in a secure (e.g., tamper
proof) environment is strongly RECOMMENDED.

When data and data certification tokens are stored together, the
following ASN.1 data type MAY be used.

DataAndToken ::= SEQUENCE {
message Message,
dcsToken DCSInfo }

Note that this object does not need to be signed, as the data
certification token already verifies the integrity of the data in the

message. Any supplementary information whose integrity needs to be
protected SHOULD be part of the message or token.

APPENDIX B - Extending the Life of a Signature

We present an example of a possible use of this data certification
service. It produces a stand-alone token that can be used to extend the
life of a signature. This example assumes that we have total trust in
the Data Certification Server.

Signature algorithms and keys have a definite lifetime. Therefore,
signatures have a definite lifetime. The Data Certification Server can
be used to extend the lifetime of a signature.

In order to extend the lifetime of a signature in this way, the
following technique MAY be used.

A) The signature needs to be certified.

1) The signed message is presented to the Data Certification Server
in the data field of DCSReqInfo under service type cs and an
appropriate policy.

2) The Data Certification Server verifies that the signature and
verification key are valid at that time by checking expiry dates
and status information, and returns a data certification token.

B) The certified signature MUST be verified.

1) The signature of the Data Certification Server in data
certification token SHALL be verified using the Data
Certification Server's valid verification key.

In this situation the signer's signing key (and therefore, its
signature) is only valid until some specified time T1. The DCS's
signing key (and therefore, its signature) is valid until some specified

Document Expiration: December 4, 1998 Page 13

time T2 that is (usually) after time T1. Without certification, the
signer's signature would only be valid until time T1. With
certification, the signer's signature remains valid until time T2,
regardless of subsequent revocation or expiry at time T1.

If the signature of the DCS is valid, the trust we have in the DCS
allows us to conclude that the original signature on the data was valid
at the time included in the dcsInfo field of the data certification
token.

APPENDIX C - Verifying the Status of a Public Key Certificate

We now present an example of how to produce a stand-alone token that can
be used to confirm the revocation status of a public key certificate.

CRLs and ARLs are updated according to a schedule at regular intervals.
For some purposes, the granularity provided by the CRLs and ARLs is not
fine enough. Up-to-date revocation status may be needed before the next
CRL or ARL update. Since the DCS MUST have access to current
information regarding public key certificate status, it can be used to
verify the revocation status of a certificate in this situation.

In order to produce such a token, the following technique MAY be used.
A) The public key certificate needs to be certified.

1) The certificate is presented to the Data Certification Server in
the data field of DCSReqInfo under service type cpkc and an
appropriate policy.

2) The Data Certification Server verifies that the public key
certificate is valid and that it hasn't been revoked and then
returns a data certification token.

B) The data certification token MUST be verified.

1) The signature of the Data Certification Server in the data
certification token SHALL be verified using the Data
Certification Server's valid verification key.

This data certification token can now be used when verifying signatures
using the key contained in the public key certificate. This service
provided by the DCS can be thought of as a supplement to the usual
method of checking revocation status.

Document Expiration: December 4, 1998 Page 14

