Network Working Group A. Langley ToC

Internet-Draft Google Inc
Expires: December 20, 2010 June 18, 2010

Transport Layer Security (TLS) Snap Start
draft-agl-tls-snapstart-00

Abstract

This document describes a Transport Layer Security (TLS) extension for
eliminating the latency of handshakes when the client has prior
knowledge about the server. Unlike resumption, this prior knowledge is
not secret and may be obtained from third parties and stored on disk
for significant periods of time.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on December 20, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

Introduction
Design
Details
Requirements Notation
Snap Start Extension
Active attack considerations
Requirements on the application
Interactions with the Session Tickets extension
Interactions with OCSP stapling
Interactions with client certificates
Examples
Prior work
IANA Considerations
Acknowledgements
Normative References

ppendix A. Changes
Author's Address

el el L | Ll L L2 (2 i I (@2 B (2 B B S [V O R | o
REREREERPE RPN

\CMZD“
(63

1. Introduction TOC

Snap Start aims to remove the latency overhead of TLS handshakes in the
case that the application protocol involves the client speaking first.
Currently, TLS handshaking imposes additional latency and is costly for
time-sensitive applications.

In order to achieve this, the initial flow from the client must contain
application data and, therefore, everything needed for the server to
complete a handshake and process it. Starting from this premise we can
derive the essential features of Snap Start.

2. Design TOC

At first we are only considering the case of a full handshake. Assume,
for the sake of argument, a client that is capable of predicting the
contents of a server's first handshake flow (i.e. the ServerHello
message through to the ServerHelloDone). Such a client could send
ClientKeyExchange, ChangeCipherSpec and Finished messages immediately
following its ClientHello. It would then be able to transmit
application data records and we have successfully eliminated the TLS
handshake latency.

However, several elements of the server's first handshake flow are
unpredictable. Fundamentally, any ephemeral Diffie-Hellman based cipher

suite is incompatible with Snap Start so the following assumes that the
server 1is using non-ephemeral key agreement.

The chosen cipher suite, compression method, supported extensions,
ordering of those extensions, certificate etc are all somewhat
unpredictable for a given server but are highly correlated across time.
Given a previous handshake with the same server, assuming that it will
make the same choices when presented with a similar ClientHello is
sufficiently accurate to expect a very high rate of prediction of these
elements of the handshake.

The server's chosen session id is unpredictable. However, this can be
eliminated by using Session Tickets (Salowey, J., Zhou, H., Eronen, P.,
and H. Tschofenig, “Transport Layer Security (TLS) Session Resumption
without Server-Side State,” January 2008.) [RFC5077]. When Session
Tickets are in use the ServerHello doesn't include a session id and the
NewSessionTicket message itself is not part of the first flow.

Lastly, the server_random is unpredictable. The server_random exists to
provide uniqueness and freshness. When the server picks a random value
it can be assured that no previous TLS connection has ever used the
same value. Therefore the connection cannot be a replay of the client's
traffic. Additionally, the server knows when its unpredictable random
value was created, relative to its local clock, and therefore knows
that handshake hasn't been delayed for an arbitrary amount of time.

In order for the server_random to be predictable by the client, it will
have to be chosen by the client and suggested to the server. In order
for the server to be assured of uniqueness, it will have to remember
every server_random value that has been used so that it may reject
duplicates. (Several methods of limiting the amount of state required
for this are introduced below.)

Even without Snap Start, an attacker can delay an application data
record in an established connection. However, both parties to the
connection are likely to timeout after some period of inactivity,
bounding the amount of possible delay introduced. With Snap Start,
since we are assuming that the client's initial flow includes a full
handshake and application data, an attacker could arbitrarily delay the
flow and have the server process the application data at a time of
their choosing. As the server lacks an nonce it has no way of detecting
this.

Without a similar mechanism to bound the delay of a Snap Start
handshake, an attacker could perform a pseudo-replay attack: a
handshake is delayed until the client retries, but the first handshake
can still be used to deliver the same application data a second time.
Because of this (and for other reasons other reasons given below) we
require some degree of clock synchronisation between the client and
server with respect the the timestamp in the ClientHello. The level of
synchronisation required is left to the application layer to determine
although it's recommended that the permitted clock skew be shorter than
the application's retry timeout.

3. Details TOC

The essential features of Snap Start are now established: the client
predicts the server's handshake flow using a client suggested
server_random, SessionTickets and knowledge from a previous connection
to the same server.

We now note that this functions for both full and abbreviated
handshakes. The abbreviated handshake retains its lower computational
requirements but both now complete in the same number of round trips.
In order to limit the amount of state required for the server to reject
repeated server_randoms, we allow the server to bound this state
temporally and spatially. In the temporal dimension, we define that the
gmt_unix_time of the server random is taken from gmt_unix_time of the
client's random value. The server may use this timestamp to reject all
suggested random values outside some window around the current time.
Spatially, we define that the subsequent eight bytes of the server's
random value are the server's 'orbit' value. This value must be
discovered by the client from a previous (non Snap Start) handshake. In
the event that several, geographically separated servers share the same
certificates, they may use different orbit values. This allows one to
reject server_random values for the other without any communication
between them. (The term 'orbit' was chosen only to be short and
otherwise reasonably meaningless in this context.)

4. Requirements Notation TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

5. Snap Start Extension TOC

A new extension type (snap_start(TBD)) is defined and MAY be included
by the client in its ClientHello message. If, and only if, the server
sees this extension in the ClientHello, it MAY choose to include the
extension in its ServerHello.

enum {
snap_start(TBD), (65535)
} ExtensionType;

The extension_data field of a snap_start extension in a ClientHello MAY
be empty.

If the server chooses to echo a snap_start extension then it is
indicating that it MAY support Snap Start on future connections. The
contents of the extension_data in this case MUST be:

struct {

opaque orbit[8];

CipherSuite snap_start_cipher_suite;
} ServerSnapStart;

orbit is the server's current orbit value and snap_start_cipher_suite
contains the CipherSuite value that the client should assume that the
server will use in a Snap Start handshake.

If the client wishes to attempt a Snap Start connection then it
includes a non-empty snap_start extension in its ClientHello. If the
extension is not empty, then its contents MUST be:

struct {
opaque orbit[8];
opaque random_bytes[20];
opaque predicted_server_handshake[8];
// TLSCiphertext structures follow
} ClientSnapStart;

Following this, without a length prefix, the client may include one or
more TLSCiphertext structures to be processed by the server in the case
that the Snap Start is successful. These records are as described in
RFEC 5246 (Dierks, T. and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.2,” August 2008.) [RFC5246] section 6.2

The orbit MUST contain an orbit value obtained from a previous
connection to the same server. random_bytes MUST contain 20 random
bytes from a cryptographic random source equal in strength to the one
used for the client_random.

predicted_server_handshake MUST contain an ENV1a64 (Noll, L., “FNV
hash,” .) [fnvla] hash of the server's predicted response flow. This
hash is taken over the bytes of the Handshake structures, as defined in
RFC 5246 section 7.4. If the client is attempting to resume a
connection then this is calculated over the server's ServerHello
message. Otherwise, this is calculated over all handshake messages from
the ServerHello to the ServerHelloDone (inclusive). The client's
prediction MUST assume that the server chooses its server random as
detailed below. The client's prediction MUST also assume that the
server includes a Snap Start extension with the same ServerSnapStart
contents as previously observed.

If the client's prediction is correct then the server MAY perform a
Snap Start handshake. If the server wishes to perform a Snap Start
handshake then it MUST form its random value from the gmt_unix_time of

the client's random, followed by the server's orbit value, followed by
the contents of random_bytes from the client's Snap Start extension.
The server MUST NOT transmit any predicted handshake messages and MUST
start processing records from the client's Snap Start extension. For
the purposes of the Finished calculation, the client's ClientHello is
hashed as if the snap_start extension were not included (the length
field of the Handshake structure from RFC 5246 section 7.4, and the
prefixed length of the extensions member of the ClientHello are updated
accordingly). When processing records from the extension, they are
hashed as usual. Once the set of records embedded in the ClientHello
has been exhausted, the server resumes reading records from the
network. Records must not be partially contained within the ClientHello
and partially read from the network.

(Since the ClientHello is likely to have a Finished message embedded
within it, it cannot be hashed into the Finished calculation as normal
as its contents would then depend in its own hash. One could consider
hashing with the embedded hash zeroed out, however a Finished message
is encrypted under the negotiated cipher suite and a CBC-based
ciphersuite would spread the effects of the embedded hash beyond its
apparent boundaries. Likewise, the Finished message is compressed using
the negotiated compression algorithm thus the length of the record, and
thus the extension, depend on the contents of the hash. Given these
limitations, removing the extension altogether is the simplest way to
break the cycle.)

If the server chooses not to perform a Snap Start handshake (for any
reason, including that the application rejected the suggested random
value or that the client mispredicted the handshake) then the handshake
MUST continue as normal. The server MUST NOT change the way that it
hashes the ClientHello. The server MAY echo a snap_start extension.

6. Active attack considerations TOC

Given that this draft makes changes to the Finished hash, it's required
to show that no active attack can cause a handshake to complete which
differs from that which would have occurred otherwise.

Since the snap_start extension is not included in the Finished hash of
a Snap Start handshake, we have to consider the results of an attacker
manipulating its contents.

Firstly, since the embedded records are hashed as usual, the same
security properties hold: any manipulation will be detected by the
Finished hash, or by a MAC verification failure.

An attacker could manipulate the orbit. This would typically cause the
server to reject the suggested random value and a normal handshake
would detect the manipulation. In the case that the server still
proceeds with a Snap Start handshake, the orbit is copied into the

server_random in the ServerHello, which is then hashed into the Finished
calculation (although not transmitted).

An attacker could manipulate the suggested server random. The same
argument as for the orbit holds here.

An attacker could manipulate the hash of the predicted messages.
Assuming that the client correctly predicted the hash, the manipulation
would cause the server to not perform a Snap Start handshake and the
manipulation would be detected. Assuming that the client mispredicted,
and that the manipulation results in a different, but also incorrect,
value then the same argument applies. Assuming that the client
mispredicted and the manipulation corrects the hash, the server could
perform a Snap Start handshake, but the differing contents of the
predicted handshake messages will be hashed into the Finished
calculation and the manipulation will be detected.

7. Requirements on the application TOC

Applications are required to ensure that no suggested random value is
accepted twice within the scope of any given certificate. In general,
validation of the suggested random value is outside the scope a TLS
implementation (although it may handle simple cases and provide utility
code for others). Applications may use the orbit value and client
timestamp to aid them in this. Applications may always safely reject a
suggested random value. Applications SHOULD limit the allowed
difference between the timestamp in the suggested random value and the
current time in order to prevent arbitrary delays, as detailed in the
design section of this document.

For a single server deployment, the server may generate a new, random
orbit value each time that it starts and, thereafter, maintain an in-
memory data structure. Each random value seen should be "struck off" by
recording it in this data structure (the "strike register"). The strike
register's size can be bound by fixed limits and by rejecting all
random values where the timestamp is outside a certain window around
the current time.

For a multi-server deployment in a single location, the servers should
share an orbit value and a strike register. The strike register is
likely to be a held in a single location which the TLS servers access
over an internal network.

For a multi-cluster deployment, where the clusters are geographically
separated, each cluster should have its own orbit value and shared
strike register. The effectiveness of Snap Start in this setup is
limited by the probability of a given client repeatedly being served by
the same cluster. With pure round robin scheduling, a Snap Start
handshake is unlikely to be successful.

8. Interactions with the Session Tickets extension TOC

A successful Snap Start abbreviated handshake can occur without the use
of session tickets. A successful Snap Start full handshake, without
session tickets, can only occur if the server doesn't generate a random
session id. A server MAY choose not to generate a session id if the
client presents a Snap Start extension but not a session tickets
extension. However, all TLS implementations of Snap Start SHOULD
implement session tickets. TLS clients which send a Snap Start
extension SHOULD also send a Session Tickets extension.

9. Interactions with OCSP stapling TOC

Clients attempting a Snap Start handshake MUST trust the server's
cached certificate. This includes validating revocation information
(via OCSP (Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
Adams, “X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol - OCSP,” June 1999.) [RFC2560], CRLs (Cooper, D.,
Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” May 2008.) [RFC5280] etc) as the local
policy dictates.

TLS clients which send a Snap Start extension SHOULD NOT send a
status_request extension as defined in RFC 4366 (Blake-Wilson, S.,
Nystrom, M., Hopwood, D., Mikkelsen, J., and T. Wright, “Transport
Layer Security (TLS) Extensions,” April 2006.) [RFC4366] section 3.6. A
client may be able to predict the contents of a CertificateStatus
message but, if it can predict it, then it doesn't need it and, if it
needs fresh OCSP information, then it shouldn't have attempted a Snap
Start handshake using a certificate that it cannot validate.

This does preclude the case where the client has cached a valid OCSP
response that is still timely, but the server has a response valid
further into the future. We can only suggest that opportunistic OCSP
stapling additionally be included in application level protocols for
this situation.

10. Interactions with client certificates TOC

A Snap Start handshake can include client-side authentication. In this
case the client must predict that the server will send a
CertificateRequest message, calculate its predicted_server_handshake
accordingly and embed Certificate and CertificateVerify messages in the
Snap Start extension.

The handshake_messages over which the CertificateVerify is calculated
MUST omit the Snap Start extension as detailed for the Finished
calculation, above.

11. Examples TOC

Firstly, a client contacting a previously unknown server for the first
time may include an empty Snap Start extension in its ClientHello. The
server, if so capable, could reply with:

01 02 03 04 05 06 07 068 (Orbit value)
00 2f (Cipher suite)

A future connection may now attempt a Snap Start by including a Snap
Start extension in the ClientHello with the following contents:

01 02 03 04 05 06 07 08 (Orbit value)

88 cO 1e 1c a9 4e ... (Random bytes)

aa bb cc dd ee ff 00 11 (predicted server handshake)
16 03 03 00 84 10 00 00 80 ... (ClientKeyExchange)

14 03 03 00 01 01 (ChangeCipherSpec)

16 03 03 00 20 ... (Finished)

17 03 03 00 50 ... (Application data)

If the Snap Start is successful, then the message flow looks like this:

ClientHello W -------- >
ChangeCipherSpec

Finished

<-------- Application data

If the client mispredicts the server's handshake, however, then the
flow is unaltered from Figure 1 in RFC 5246 section 7.3.

12. Prior work ToC

The idea of cache-side caching of long lived server parameters has been
discussed in Client Side Caching for TLS (Shacham, H., Boneh, D., and
E. Rescorla, “Client Side Caching for TLS,” Nov 2004.) [fasttrack] and
specified in draft-ietf-tls-cached-info (Santesson, S., “Transport
Layer Security (TLS) Cached Information Extension,” Internet Draft
(work in progress), April 2010.) [cached-info]. Client Side Caching for

TLS (Shacham, H., Boneh, D., and E. Rescorla, “Client Side Caching for

TLS,” Nov 2004.) [fasttrack] also considered including an opportunistic
ClientKeyExchange message in the client's initial flow.

13. TIANA Considerations TOC

This document requires IANA to update its registry of TLS extensions to
assign an entry, referred herein as snap_start.

14. Acknowledgements TOC

This document benefited specifically from discussions with Wan-Teh
Chang, Bodo Moeller and Nagendra Modadugu.

15. Normative References

TOC
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).
[RFC2560] Myers, M., Ankney, R., Malpani, A., Galperin, S., and

C. Adams, “X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - 0OCSP,” RFC 2560,
June 1999 (TXT).

[RFC4366] Blake-wWilson, S., Nystrom, M., Hopwood, D., Mikkelsen,
J., and T. Wright, “Transport Layer Security (TLS)
Extensions,” RFC 4366, April 2006 (TXT).

[RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
“Transport Layer Security (TLS) Session Resumption
without Server-Side State,” RFC 5077, January 2008
(IXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer
Security (TLS) Protocol Version 1.2,"” RFC 5246,
August 2008 (TXT).

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” RFC 5280, May 2008 (TXT).

[fnvia] Noll, L., “FNV hash.”
[cached- Santesson, S., “Transport Layer Security (TLS) Cached
info] Information Extension,” Internet Draft (work in

progress), April 2010.
[fasttrack] Shacham, H., Boneh, D., and E. Rescorla, “Client Side
Caching for TLS,” Nov 2004.

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:mmyers@verisign.com
mailto:rankney@erols.com
mailto:ambarish@valicert.com
mailto:galperin@mycfo.com
mailto:cadams@entrust.com
http://tools.ietf.org/html/rfc2560
http://tools.ietf.org/html/rfc2560
http://www.rfc-editor.org/rfc/rfc2560.txt
http://tools.ietf.org/html/rfc4366
http://tools.ietf.org/html/rfc4366
http://www.rfc-editor.org/rfc/rfc4366.txt
http://tools.ietf.org/html/rfc5077
http://tools.ietf.org/html/rfc5077
http://www.rfc-editor.org/rfc/rfc5077.txt
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt

Appendix A. Changes

TOC

To be removed by RFC Editor before publication

Author's Address

Email:

_T0C _
Adam Langley
Google Inc
agl@google.com

mailto:agl@google.com

	Transport Layer Security (TLS) Snap Startdraft-agl-tls-snapstart-00
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Design
	3. Details
	4. Requirements Notation
	5. Snap Start Extension
	6. Active attack considerations
	7. Requirements on the application
	8. Interactions with the Session Tickets extension
	9. Interactions with OCSP stapling
	10. Interactions with client certificates
	11. Examples
	12. Prior work
	13. IANA Considerations
	14. Acknowledgements
	15. Normative References
	Appendix A. Changes
	Author's Address

