
TICTOC J. Alvarez-Hamelin, Ed.
Internet-Draft Universidad de Buenos Aires - CONICET
Updates: none (if approved) D. Samaniego
Intended status: Standards Track A. Ortega
Expires: April 26, 2019 Universidad de Buenos Aires
 R. Geib
 Deutsche Telekom
 October 23, 2018

Synchronizing Internet Clock frequency protocol (sic)
draft-alavarez-hamelin-tictoc-sic-02

Abstract

 Synchronizing Internet Clock Frequency specifies a new secure method
 to synchronize difference clocks on the Internet, assuring smoothness
 (i.e., frequency stability) and robustness to man-in-the-middle
 attacks. In 90% of all cases, Synchronized Internet Clock Frequency
 is highly accurate, with a Maximum Time Interval Error less than 25
 microseconds by a minute. Synchronized Internet Clock Frequency is
 based on a regular packet exchange and works with commodity terminal
 hardware.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2019.

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft (sic frequency) October 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. sic frequency protocol overview 3
3. The formal definition of sic frequency protocol 8
3.1. Algorithm description 8
3.2. Protocol definitions 13
3.3. Protocol packet specification 15
3.4. Minimum sic deployment 16

4. Implementation of sic frequency protocol 17
4.1. Evaluation . 17

5. Conclusions . 19
6. Security Considerations 19
7. IANA Considerations . 20
8. Acknowledgements . 20
9. References . 20
9.1. Normative References 20
9.2. Informative References 21

Appendix A. Example of RTT to NTP servers 21
 Authors' Addresses . 24

1. Introduction

 There are different types of clock synchronization on the Internet.
 NTP [RFC5905] remains one of the most popular because a potential
 user does not need any extra hardware, and it is practically a
 standard in most of the operating systems distributions. Its working
 principle relies on time servers having some kind of precise clock
 source, like atomic clocks or GPS based. For most of the needs, NTP
 provides an accurate synchronization. Moreover, NTP recently
 incorporates some strategies oriented to avoid man-in-the-middle
 (MitM) attacks. NTPs potential accuracy is in the order of tens of
 milliseconds.

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc5905

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 2]

Internet-Draft (sic frequency) October 2018

 Synchronizing Internet Clock frequency (sic frequency) is a protocol
 providing synchronized difference clocks in two endpoints connected
 to the Internet. While synchronized absolute clocks aim on a
 measurement of exact time differences between them, synchronized
 difference clocks allow measurements during identical time intervals
 at two locations. This is useful if loads, packet loss or a
 variation in delay is to be measured.

 The sic frequency design is close to TSClocks (see below) but it
 takes advantage of statistics to perform better. sic frequency
 synchronization relies on Internet based delay measurements. Route
 changes are frequent, so we include its detection. Finally, our
 implementation also contemplates the protection to MitM attacks,
 including the signature of measurements in each packet. sic frequency
 does neither put constrains on the quality of a server's clock, nor
 does it require a limitation of the distance of synchronized end
 systems.

 Another proposal is the TSClocks [ToN2008], which take advantage of
 the internal computers' clock. This work has been shown a very
 interesting solution because it is not expensive and can be used in
 any computer connected to the Internet. This solution was proposed
 in the beginning at LAN (Local Area Network) level, and then it has
 been extended to other situations. In [ToN2008] authors report a
 difference clock error of about half of hundred of microseconds for a
 WAN connection with 40ms of RTT (Round Trip Time).

 When accuracy and stability are needed, further options arise, e.g.,
 the PTP clock [RFC8173] (this mechanism was also defined as the IEEE
 Std. 1588-2008). The PTP clock however incorporates specialized
 hardware to provide a highly accurate clock, which is required in
 each point to be synchronised. Also the GPS (Global Position System)
 requires specialized hardware in every point of measurement. While
 GPS may be less expensive than PTP, the GPS unit requires a sky clear
 view for working. The latter may be costly or impossible in some
 locations.

 Finally, we mention the [ITU-G.8260] shows a methodology to measure
 delays in networks. It is based on filtering that selects some
 packets to perform the delay computation. The packet selection is
 based on the minimum and average RTT, and we show that both of them
 have some statistical problems to determine (see Section 2).

2. sic frequency protocol overview

 Synchronizing Internet Clock frequency (sic frequency) is a protocol
 providing synchronized difference clocks in two endpoints connected
 to the Internet. Synchronized difference clocks allow measurements

https://datatracker.ietf.org/doc/html/rfc8173

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 3]

Internet-Draft (sic frequency) October 2018

 during identical time intervals at two locations. This is useful if
 loads, packet loss or a variation in delay is to be measured. The
 model of typical Internet time-measurement is shown in Figure 1.

 XXXXXXXX XXXXXXXX
 XXXXXX XXX X
 XX XXX
 +----+----------+XX XXXX
 | XX XX
 | X Internet XX
 | XX XXX
 +--+------+ XXXXXX XX+---------+------+
 | | X XX |
 | Client | XX XXX |
 | | XX XXX XXXXX XX +---+----+
 | | XXX XXXXXXX XXXXXX | |
 +---------+ | Server |
 | |
 | |
 +--------+

 Figure 1: The clock synchronization of sic.--

 In this model, sic frequency performs measurements with packets in
 the way shown in Figure 2.

 t2 t3
 Server +---------------@-------*----------------------------->
 / _ C_s [s]
 / _
 / _
 / _
 / _
 / _
 / _
 / _
 / _
 / _
 / _ C_c [s]
 Client +---*--@------>
 t1 t4

 Figure 2: Time line of packets.--

 Here, C_s is the server clock, C_c is the client clock and t1...t4
 are timestamps.

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 4]

Internet-Draft (sic frequency) October 2018

 Figure 2 shows a horizontal time line for client and server. The
 diagonal lines depict a packet traversing some physical space (wires,
 routers, and switches). The packet travel times are not assumed to
 be identical, because routes and background load may differ in each
 direction.

 The difference between the client clock C_c and the server clock C_s
 can be modeled as:

 C_c = C_s + phi ,

 phi(t) = C_c(t) - C_s(t) , (1)

 where phi is the absolute clock difference. If RTT is constant (i.e.
 little or no background load) and routes are symmetric in both
 directions, the difference between clocks can be computed as:

 phi[c->s] = t1 - (t2 - RTT/2) , (2)

 phi[c<-s] = t4 - (t3 + RTT/2) , (3)

 and phi[c->s] = phi[c<-s]. The general equation for the RTT is:

 RTT = (t2 - t1) + (t4 - t3) . (4)

 Computing Equations 2 and 3 for the this simplified case allows
 calculation of phi as a function of RTT. Note that if routes are not
 symmetrical it is impossible to determine the absolute clocks'
 difference.

 The sic frequency protocol is based on statistics, background
 traffic- and network behavior observations. The RTT between two
 endpoints follows a heavy-tailed distribution. An alpha-stable
 distribution shows as one possible model [traffic-stable]. This
 distribution can be characterized by four parameters: the
 localization "delta," the stretching "gamma," the tail "alpha," and
 the symmetry "beta," [alfa-estables]. The location parameter is
 highly related to the mode of the distribution: delta > 0. The
 stretching is related to the dispersion: gamma > 0. The symmetry, -1
 <= beta <= 1, indicates if the distribution is skewed to the right
 (the tail decays to the left) for positive values or the opposite
 direction for negatives ones. Finally, the tail alpha, defined in
 (0,2], indicates if the distribution is Gaussian one when alpha=2, a
 power law without variance for alpha <2, and also without statistic
 mean for alpha<1. The alpha-stable distribution is the
 generalization of the Central Limit Theorem for any distribution
 (i.e., it includes the cases without variance or mean).

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 5]

Internet-Draft (sic frequency) October 2018

 Then, the phi(t) estimation involves the subtraction of two alpha-
 stable random variables, which yields on another alfa-stable
 distribution but symmetrical [alfa-estables]. Due to the
 characteristic of this result, i.e., a fixed mode and symmetry, a
 good estimator of the mode is the median.

 Therefore, sic performs periodic measurements to infer the difference
 of two clocks in the Internet taking advantage of the empiric
 observations. The periodicity of RTT measurements is set to 1
 second.

 The parameters of the simple skew model [ToN2008] are estimated by
 the following equation:

 phi(t) = K + F * t , (5)

 where phi(t) = C_c - C_s, K is a constant representing the absolute
 difference of time of client clock C_c and server clock C_s, and F is
 the rate parameter. As sic frequency is a difference clock, we only
 estimate the frequency parameter "F."

 Note that the "K" parameter cannot be estimated using just endpoints
 measurements. Estimating the "K" parameter accurately is out of
 scope, and we use K=min(RTT)/2, as it used in several synchronization
 procotols under the assumption of symmetric paths. Considering the
 following asymmetry definition,

 t[c->s]
 A = 1 - --------- , (6)
 t[c<-s]

 where t[c->s] is the minimum delay measured from the client to the
 server. The maximum asymmetry A of equation 6 is A=1, which is
 unlucky, and this establishes the hard bound for the error of K as
 min(RTT): if t[c->s] approaches RTT, t[c->s] approaches zero. The
 difference between the two is phi (t), and this difference hence is
 close to min(RTT), if A=1. In our experiments the error in
 estimation phi(t) was always less than min(RTT)/2.

 Another problem with most of the synchronization protocols is the
 estimation of the minimum RTT, which depends upon the time-window
 within which the RTT is captured. A minimum RTT can only be measured
 in the absence of any cross traffic. In a first step, the minimum
 RTT measured during a window of 10 minutes (mRTT10m) is captured.
 Based on these values, the minimum RTT over a week (mRTTw) is
 determined. RTTee is defined as mRTT10m - mRTTw. Figure 3 shows the
 the RTT estimation error captured during an experiment where the
 minimum latency between probes was 9431 microseconds during one week,

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 6]

Internet-Draft (sic frequency) October 2018

 i.e., mRTTw=9431 microseconds. Notice that mRTT10m varies a lot, and
 the observed values can be more than 450 microseconds above the
 minimum RTT over a week. This error is a consequence of the
 statistical behavior of the RTT which can be modeled by the alfa-
 stable distribution.

 Finally, it is mostly believed there always exist NTP servers at less
 than five hops with few milliseconds of RTT, because of the NTP
 deployment. In Appendix A we show a typical case in Latin America
 region where the RTT differ notably form host in the same city
 (Buenos Aires). This example reveals that in some countries could be
 not possible to have this desired situation and other synchronization
 tools are needed.

 Error of the min(RTT)
 [micro-seconds]
 500 +------|-------|------|------|------|-------|------|------+
 | + + + O + + + + |
 | * |
 400 |-+ ** O +-|
 | * * O O ** O O |
 | O * * ** * ** ** ** |
 300 |-+ * O*O * O O* * O*O * * O O *-|
 | O* O O * * * O * * * *|
 | O * O ** * * O * * * O** O|
 200 |-* * * * * O * O * O*O * O +-|
 |** O O * ** * * * * O |
 |O * *** O * * * |
 100 |-+ O O O * O +-|
 | ** |
 | ** |
 0 |-+ + + O + + + + + +-|
 +------|-------|------|------|------|-------|------|------+
 0 50 100 150 200 250 300 350 400
 time [minutes]

 Figure 3: Min RTT error, estimated every 10 minutes along 7 hours.--

 The sic frequency protocol estimates phi(t) of Equation 5 using
 measurement statistics and taking advantage of the inherent RTT
 properties, i.e., the heavy tail distribution and its alfa-stable
 distribution model. The basic sic frequency operation is to
 periodically send packets, estimate phi(t), and correct the local
 clock with:

 t_c = t + phi(t) , (7)

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 7]

Internet-Draft (sic frequency) October 2018

 where t_c is the corrected time and t the local clock time (notice
 that phi(t) is calculated according to Equation 1).

 The sic protocol also detects route changes by seeking a non-
 negligible difference between the minimum RTT of the actual and past
 round trip measurement. The next section also discusses different
 mechanisms to detect route changes by RTT evaluation.

3. The formal definition of sic frequency protocol

Section 3.1 presents the sic frequency algorithm. In addition,
 parameters and their definitions are introduced. Finally, formal
 packet formats are provided.

 The sic frequency protocol MUST sign the packets with the
 deterministic Elliptic Curve Digital Signature Algorithm (ECDSA)
 specified by [RFC6979] to protect sic frequency from MitM attacks.
 To avoid delays when a packet is signed, sic frequency signs them in
 a deferred fashion. That is, in each packet carries the signature of
 the previous packet (see algorithms in Figure 6 and Figure 5).

3.1. Algorithm description

 sic frequency implementations MUST support the formal description
 specified by this section. Once activated, the sic frequency
 protocol MUST operate permanently while a client and a receiver
 exchange measurement packets. sic frequency works with three states:
 NOSYNC, PRESYNC, and SYNC. These states are triggered by the
 variables errsync, presync, and synck.

 Lines 1 to 4 of the pseudocode in Figure 4 initialize the required
 data structures needed and set the sic frequency state to NOSYNC. In
 NOSYNC state, a complete measurement window estimates phi's by
 Equation 2 (see line 8). Notice that also Equation 3 can be used, or
 an average of both Equations. During the experiments, using a single
 equation only resulted in estimations with a smaller error. The
 possible explanation is that measurements are affected by the same
 type of traffic.

 The median of the measurement window is also computed in line 9,
 while lines 10-12 are used to verify if there is a path change in the
 measurements. When an appreciable difference is detected (bounded by
 errRTT) in line 13, the "else" clause is executed and the systems re-
 initiates the cycle (see lines 17-22). Notice that line 13 verifies
 if the absolute value of the minimum RTTs is lower than a percentage
 of minimum over the complete RTT window.

https://datatracker.ietf.org/doc/html/rfc6979

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 8]

Internet-Draft (sic frequency) October 2018

 The sic frequency algorithm specification is presented by three
 tables of pseudocode. The parameters are explained after the third
 table.

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 9]

Internet-Draft (sic frequency) October 2018

 ===
 | sic frequency algorithm |
 ===
 1 Wmedian <-0, Wm <-0, WRTT <-0, actual_m <-0, actual_c <-0
 2 presync <- INT_MAX - P, epochsync <- INT_MAX - P, n_to <-0
 3 synck <- false, errsync <- epoch, set(0, 0, NOSYNC), e_prev<-epoch
 4 send_sic_packet(SERVER_IP, TIMEOUT)
 5 for each timer(RUNNING_TIME) == 0
 6 | (epoch, t1, t2, t3, t4, to) <- send_sic_p(SERVER_IP,TIMEOUT)
 7 | if (to == false) then
 8 | | Wm <- t1 - t2 + (t2 - t1 + t4 - t3)/2
 9 | | Wmedian <- median(Wm)
 10 | | WRTT <- t4 - t1 size(W)
 11 | | RTTf <- min(WRTT[size(WRTT)/2,size(WRTT)])
 12 | | RTTl <- min(WRTT[0,size(WRTT)/2])
 13 | | if ((|RTTf - RTTl| <= errRTT * min(WRTT)) then
 14 | | | if (epoch >= presynck + P)) then
 15 | | | | presynck <- true
 16 | | | end if
 17 | | else
 18 | | | synck <- false, Wmedian <- 0
 19 | | | Wm <- 0, errsync <- epoch, n_to <- 0
 20 | | | epoch_sync <- INT_MAX - P, pre_sync <- INT_MAX - P
 21 | | | set(0, 0, NOSYNC)
 22 | | end if
 23 | | if ((synck == true) && (epoch >= epochsync + P)) then
 24 | | | (m, c) <- linear_fit(Wmedian)
 25 | | | actual_c <- c
 26 | | | actual_m <- (1-alpha) * m + alpha * actual_m
 27 | | | epochsync <- epoch, n_to <- 0
 28 | | | set(actual_m, actual_c, SYNC)
 29 | | else
 30 | | | if (epoch == errsync + MEDIAN_MAX_SIZE) then
 31 | | | | presync <- epoch
 32 | | | end if
 33 | | | if (epoch >= presync + P) then
 34 | | | | (actual_m, actual_c) <- linear_fit(Wmedian)
 35 | | | | synck <- true , epoch_sync <- epoch
 36 | | | | set(actual_m, actual_c, PRESYNC)
 37 | | | end if
 38 | | end if
 39 | else
 40 | | to <- false
 41 | end if
 42 end for
 ===

 Figure 4: Formal description of sic.--

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 10]

Internet-Draft (sic frequency) October 2018

 Several conditions should be verified to pass from NOSYNC to PRESYNC.
 First, the "else" condition of line 29 should occur, and also the
 elapsed time between errsync and actual epoch should be
 MEDIAN_MAX_SIZE (30-32). Therefore, when it also P time is passed
 form presync, the condition on line 33 is true, and the system
 arrives at PRESYNC, providing an initial estimation of phi.

 Then, if there is no route change, the condition in line 14 will be
 true when the time was increased in another P period. Then, the
 system is in SYNC state, and it provides the estimation of phi(t) in
 line 28. Notice that every P time the estimation of phi(t) is
 computed unless a route change occurs (lines 13 and 17-22).

 The function in line 6: (epoch, t1, t2, t3, t4, to) <-
 send_sic_packet(SERVER_IP, TIMEOUT), has a special treatment. It
 sends the packets specified in Section 3.3, which have signatures.
 To avoid the processing delay caused by the signature computation, we
 implemented a policy to send the signature of the previous packet,
 and if an error is detected, we can stop the synchronization just one
 loop ahead.

 Figure 5 illustrates how the client side MUST implement the function
 send_sic_p (SERVER_IP, TIMEOUT). This function computes the
 timestamp t1 in line 1, build and send the UDP packet in lines 2-3.
 Then, if there is no timeout, it calculates the t4 timestamp (line
 5), and if no packets were lost, verifies the signature of the
 previous one in lines 8-18. If the signature is not valid with the
 received certificate, then the system MUST change to NOSYNC state
 immediately (see line 11). NOSYNC state MUST also be set, if the
 limit of time without receiving packets MAX_to is reached. Finally,
 it stores the received packet into prev_rcv_pck (a global variable)
 to use in the next packet (line 19). Notice that n_to, the lost
 packets, is a global variable, as well as the epoch of the previous
 packet: e_prev.

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 11]

Internet-Draft (sic frequency) October 2018

 ===
 | function: send_sic_p(server, TIMEOUT) |
 ===
 1 t1 <- get_timestamp()
 2 sic_P <- sic_pck(t1, 0, 0, prev_sig)
 3 (to, rcv_sic_pck) <- send(sic_P,UDP_PORT, SERVER_IP, TIMEOUT)
 4 if (to == false) then
 5 | t4 <- get_timestamp()
 6 | epoch <- trunc_to_seconds(t1)
 7 | prev_sig <- get_signature(sic_P)
 8 | if (epoch - e_prev <= RUNNING_TIME) then
 9 | | if (n_to < MAX_to) then
 10 | | | if (verify(prev_rcv_pck,rcv_sic.CERT) == false) then
 11 | | | | set(0, 0, NOSYNC)
 12 | | | else
 13 | | | | n_to <- 0, e_prev <- epoch
 14 | | | end if
 15 | | else
 16 | | | set(0, 0, NOSYNC)
 17 | | end if
 18 | end if
 19 | prev_rcv_pck <- rcv_sic_pck
 20 | t2 <- rcv_sic_pck.t2
 21 | t3 <- rcv_sic_pck.t3
 22 else
 23 | n_to <- n_to + 1
 24 end if
 25 return (epoch, t1, t2, t3, t4, to)
 ===

 Figure 5: The send_sic_p function.--

 The server sic algorithm is presented in Figure 6. It uses
 prev_sic_P{}, which is a structure to store the received previous
 signatures, indexed by the IP client addresses (CLIENT_add contains
 its IP and UDP port); and the same for prev_sig{} with the previously
 sent signatures. Line 6 verifies either signature is null because it
 is the first packet, or it is a valid signature. In both cases, the
 algorithm process the packet computing t3, building up the sic
 frequency packet, sending it and computing its signature (stored to
 send in the next reply) in lines 7-11. Next, the actual packet is
 stored in the prev_sic_P{} structure, line 13.

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 12]

Internet-Draft (sic frequency) October 2018

 ===
 | sic Server algorithm |
 ===
 1 prev_sic_P{} <- null, prev_sig{} <-- null
 2 while (RUNNING == true) then
 3 | if (receive() == true) then
 4 | | t2 <- get_timestamp()
 5 | | prev_sig <- get_signature(prev_sic_P{receive().CLIENT_add})
 6 | | if (prev_sig == null) ||
 | | (verify(prev_sig, CLIENT_add.CERT) == true) then
 7 [| | t3 <- get_timestamp()
 8 | | | sic_P<-sic_pack(t1, t2, t3, prev_sig)
 9 | | | send(sic_P, CLIENT_add.UDP, CLIENT_add.IP, TIMEOUT)
 10 | | | prev_sig <- get_signature(sic_P)
 11 | | | prev_sig{receive().CLIENT_add} <- prev_sig
 12 | | end if
 13 | | prev_sic_P{receive().CLIENT_add} <- receive().sic_pack
 14 | end if
 15 end while
 ===

 Figure 6: Algorithm sic for the Server.--

3.2. Protocol definitions

 We provide a formal definition of each used constant and variables;
 the RECOMMENDED values are displayed in parentheses at the end of the
 description. These constant and variables MUST be represented in a
 sic frequency implementation. All the types MUST be respected. They
 are expressed in "C" programming language running on a 64-bit
 processor.

 a. Constants used for the sic frequency algorithm (Figure 4)

 1. RUNNING_TIME: is the period between sic packets are sent (1
 second).

 2. MEDIAN_MAX_SIZE: is the window size used to compute the
 median of the measurements (600).

 3. P: is the period between phi's estimation (60).

 4. alpha: is a float in the [0,1], the coefficient of the
 autoregressive estimation of the slope of phi(t) (0.05).

 5. TIMEOUT: is the maximum time in seconds that a sic packet
 reply is expected (0.8 seconds).

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 13]

Internet-Draft (sic frequency) October 2018

 6. SERVER_IP: is the IP address of the server (@IP in version 4
 or 6).

 7. errRTT: is a float that bounds the maximum difference to
 detect a route change (0.2).

 8. MAX_to: is an integer representing the maximum number of
 packet lost (P/10).

 9. CERT: is a public certificate of the other end, it is used
 to verify signs of the packets.

 10. UDP_PORT: is an integer with the port UDP where the service
 is running on the server. (4444)

 11. SERVER_IP: is the IP address of the server.

 12. CLIENT_IP: is the IP address of the client.

 b. States used for the sic frequency algorithm (Figure 4)

 1. NOSYNC: a boolean indicates that it is not possible to
 correct the local time.

 2. PRESYNC: an integer indicates that sic is almost (P
 RUNNING_TIME) seconds from the synchronization.

 3. SYNC: a boolean indicates that sic is synchronized.

 c. Variables used for the sic frequency algorithms (Figure 4,
 Figure 5 and Figure 6)

 1. errsync: is an integer with the UNIX timestamp epoch of the
 initial NOSYNC cycle. It is used to complete the window or
 measurements (Wm) to compute their medians.

 2. presync: is an integer with the UNIX timestamp epoch of the
 initial PRESYNC cycle. It is used to wait until (P
 RUNNING_TIME) seconds to the linear fit of phi(t).

 3. synck: is an integer with the UNIX timestamp epoch of the
 initial SYNC cycle. Every P RUNNING_TIME) seconds the
 phi(t) function is estimated.

 4. epochsync: is an integer with the last UNIX timestamp epoch
 of synchronization. It is used to compute a new estimation
 of phi(t), every (P RUNNING_TIME) seconds.

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 14]

Internet-Draft (sic frequency) October 2018

 5. epoch: is an integer with UNIX timestamp in seconds. It
 carries the initial epoch of each sic measurement packet.

 6. t1, t2, t3, t4: are long long integers to store the t UNIX
 timestamps in microseconds.

 7. actual_m : is a double with the slope for the phi(t)
 estimation.

 8. actual_c: is a double with the intercept for the phi(t)
 estimation.

 9. Wm: is an array of doubles of MEDIAN_MAX_SIZE. It stores
 the instantaneous estimates of phi(t).

 10. Wmedian: is an array of doubles of P size. It saves the
 computed medians of Wm every RUNNING_TIME.

 11. WRTT: is an array of doubles of (2 P) size. It stores the
 calculated RTT of last measurements.

 12. RTTl: is a double with the minimum of last P RTTs. It is
 used to detect changes on the route from the client to the
 server.

 13. RTTf: is a double with the minimum of previous P RTTs. It
 is used to detect changes on the route from the client to
 the server.

 14. n_to: is an integer representing the number of lost packets
 in the actual synchronization window P.

 15. e_prev: is an integer with the UNIX timestamp epoch of the
 last valid packet.

 16. prev_rcv_pck: is a sic packet structure, the previous
 received one.

3.3. Protocol packet specification

 The sic frequency uses UNIX microsecond format timestamps. Regarding
 Figure 2, the client takes a timestamp t1 just before it sends the
 packet. When the server receives the packet, it immediately computes
 t2, and just before it is sent back to the client, it computes t3.
 When the client receives the packet, it calculates t4.

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 15]

Internet-Draft (sic frequency) October 2018

 The server does not need the timestamp t1 because the proposed
 protocol synchronizes a client with the server clock. This
 information could however be useful for the server for future use.

 The packets are shown in Figure 7. They MUST be sent as UDP data,
 and it MUST have five fields. The first three correspond to t1
 (client), t2 (server), and t3 (server); the last one is the signature
 of the previous message of the sender (client o server) with its
 private key. The timestamps t1, t2, and t3 MUST be the UNIX
 timestamp in microseconds represented with a long long integer of
 64-bit C language.

 The client and server certificates SHOULD be valid and signed ones
 (only for experimentation user MAY use autogenerated ones).

 f1 f2 f3 f4
 +--+
 | t1_c | 0 | 0 | Sig_c n-1 |
 +--+
 Client --> Server

 f1 f2 f3 f4
 +--+
 | t1_c | t2_s | t3_s | Sig_s n-1 |
 +--+
 Server --> Client

 Figure 7: Packet format for the sic protocol.--

3.4. Minimum sic deployment

 To deploy the sic frequency algorithm, as a minimum a Server and one
 Client are needed. The Server can support multiple clients. The
 maximum number of clients is for further study. The Server clock is
 considered the master one, and all clients synchronize with it. The
 Server side runs sic frequency as a server with a UDP_PORT number, as
 specified by the algorithm shown in Figure 6.

 Client sic runs the algorithm shown in Figure 4 and also SHOULD
 provide the corrected time as

 t = actual_c + actual_m * timestamp (8)

 Figure 8

 Different ways of doing this task are possible:

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 16]

Internet-Draft (sic frequency) October 2018

 Providing a client capable of reading the variables actual_m and
 actual_c in shared memory and producing the result of Equation 8.

 Providing a service in a UDP port answering the correcter
 timestamp queries with Equation 8.

 Other solution.

4. Implementation of sic frequency protocol

 In this section we present the prove of the sic concept through some
 test that we already performed, and the current implementation of sic
 in C language. Our implementation is publicly available
 [sic-implementation]. Currently, the authentication process
 requiring transport of packet signatures is under development.

 @@@@ We started with a version to test sic without the MitM
 protection; soon we will finish with the secured version.

 This protocol implements protection against MitM attacks. The
 identity of endpoints is guarantee by signed certificates using the
 deterministic Elliptic Curve Digital Signature Algorithm (ECDSA)
 specified in the [RFC6979]. Server and Client should use signed and
 valid ECDSA certificates to ensure their identity, and each side has
 is responsible to verify the public certificate of the other side
 before to run the algorithm in Figure 4.

4.1. Evaluation

 To verify the sic proposal, we tested it using three hosts with GPS
 units. The first two were located at Buenos Aires, and the third at
 Los Angeles. We slightly modified the algorithm in Figure 4 to
 trigger each measurement using the PPS (pulse per second) signal
 provided by the GPS unit. Then, recording the client and server
 clocks with the PPS signal, we can determine the real phi function of
 Equation 1, within the GPS error (it is several orders of magnitude
 smaller than the error of the sic frequency protocol).

 We use MTIE defined as follows (Maximum Time Interval Error, see
 [ToIM1996]):

 MTIE = max [phi(t')] - min [phi (t)] , (9)

 for every t' and t in the interval [t,t+s]; and we chose s=60
 seconds. We first used two host (RaspBerriesPI-2) connected back to
 back to analyze the minimum achievable precision, yielding a MTIE of
 15.8 microseconds for the 90 percentile. Then, we selected two real
 cases of study, one national and other international. In Figure 9 we

https://datatracker.ietf.org/doc/html/rfc6979

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 17]

Internet-Draft (sic frequency) October 2018

 show the result of the MTIE, evaluated in 60 seconds intervals, for
 the experiment Buenos Aires-Buenos Aires (RTT of 10ms) and Buenos
 Aires-Los Angeles (RTT of 198ms). The percentile 90 corresponds to
 18.35 microseconds for the Buenos Aires case, and 25.4 microseconds
 for the Los Angeles case. The percentile 97.5 corresponds to 30
 microseconds for the Buenos Aires case, and 42 microseconds for the
 Los Angeles case. We display the quartiles in Figure 10 . These
 measurements were performed during a week in each case.

 CDF
 +--|-------|-------|-----|-------|----------|------|------+
 1 |-+ + + + #########*#*#*#*#*#*#*#*#******|
 | ##### ******* |
 | #### **** |
 0.8 |-+ ## *** +-|
 | ### ** |
 | ## *** |
 0.6 |-+ ## ** +-|
 | ## ** |
 | ## ** |
 0.4 |-+ ## ** +-|
 | ## ** |
 | ## ** |
 0.2 |-+ ## *** +-|
 | #### *** Buenos Aires ####### |
 | #### *** Los Angeles ******* |
 0 |##******* + + + + + + + +-|
 +--|-------|-------|-----|-------|-----|----|------|------+
 7 10 15 20 30 40 50 70 100
 [micro-seconds]

 Figure 9: Cumulative distribution function of the MTIE (60s).--

 |Buenos Aires (10ms) | Los Angeles (198ms) |
 ====+====================+=====================+
 Q3 | 14.69 | 19.29 |
 ----+--------------------+---------------------+
 Q2 | 11.60 | 14.93 |
 ----+--------------------+---------------------+
 Q1 | 9.41 | 12.26 |

 Figure 10: Table with MTIE quartiles for two RTT cases (the numbers
 indicate microseconds).--

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 18]

Internet-Draft (sic frequency) October 2018

5. Conclusions

 This document presents the sic algorithm to synchronize host clock
 frequency using the Internet and resistant to MitM attacks. It also
 shows the complete specification, implementation, and experiments
 results that support it working principle. In particular, sic
 frequency provides a clock rate stability of less than 1ppm for most
 of the time.

6. Security Considerations

 Following [RFC7384] enumeration of Time Protocols in packet-switched
 networks, the proposed encryption of timing packets, based on a
 mechanism of secure key distribution, provides the following
 characteristics:

 3.2.1 Packet Manipulation: Prevented by packet signature.

 3.2.2 Spoofing: Prevented by packet signature and secure key
 distribution.

 3.2.3 Replay Attack: Prevented by chain signing of packets.

 3.2.4 Rogue Master Attack: Prevented by secure key distribution.

 3.2.5 Packet Interception and Removal: If several packets are
 removal, the protocol do not arrive to SYNC state.

 3.2.6 Packet Delay Manipulation: Not prevented. Future versions
 may prevent this using over-specification of timing (using
 redundant masters)

 3.2.7 L2/L3 DoS attacks: Not prevented. This can be prevented in
 future versions using over-specification of timing and redundant
 masters time servers.

 3.2.8 Cryptographic performance attacks: Not an issue in ECDSA.

 3.2.9 DoS attacks agains the time protocol: Prevented by secure
 key distribution.

 3.2.10 Grandmaster Time source attack (GPS attacks): Not
 prevented. Future versions may prevent this using over-
 specification of timing (using several time servers) .

 3.2.11 Exploiting vulnerabilities in the time protocol: Not
 prevented, future vulnerabilities are unknown.

https://datatracker.ietf.org/doc/html/rfc7384

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 19]

Internet-Draft (sic frequency) October 2018

 3.2.12 Network Reconnaissance: Not prevented in this version. No
 countermeasures were done in node anonymization.

 The Packet Delay manipulation is one of the hardest problems to solve
 because there exist some smart ways to attack any synchronization
 protocol. Even thou, the sic frequency protocol can protect itself
 because can identify several attacks of this type, i.e., it is
 challenging to mimic traffic behavior.

7. IANA Considerations

 This memo makes no requests of IANA.

8. Acknowledgements

 The authors thank to Ethan Katz-Bassett, Zahaib Akhtar, the USC and
 CAIDA for lodging the testbed of sic frequency.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [RFC8173] Shankarkumar, V., Montini, L., Frost, T., and G. Dowd,
 "Precision Time Protocol Version 2 (PTPv2) Management
 Information Base", RFC 8173, DOI 10.17487/RFC8173, June
 2017, <https://www.rfc-editor.org/info/rfc8173>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5905
https://www.rfc-editor.org/info/rfc5905
https://datatracker.ietf.org/doc/html/rfc6979
https://www.rfc-editor.org/info/rfc6979
https://datatracker.ietf.org/doc/html/rfc7384
https://www.rfc-editor.org/info/rfc7384
https://datatracker.ietf.org/doc/html/rfc8173
https://www.rfc-editor.org/info/rfc8173

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 20]

Internet-Draft (sic frequency) October 2018

9.2. Informative References

 [alfa-estables]
 Uchaikin, V. and V. Zolotarev, "Chance and stability:
 stable distributions and their applications.", Walter de
 Gruyter. (Book), 1999.

 [ITU-G.8260]
 "Definitions and terminology for synchronization in packet
 networks (Recommendation ITU-T G.8260)", August 2015.

 [sic-implementation]
 Samariego, E., Ortega, A., and J. Alvarez-Hamelin,
 "Synchronizing Internet Clocks",

https://github.com/CoNexDat/SIC, February 2018.

 [ToIM1996]
 Bregni, S., "Measurement of maximum time interval error
 for telecommunications clock stability characterization",
 Bregni S. Measurement of maximum time interval error for
 telecommunicIEEE transactions on instrumentation and
 measurement. 45(5):900-906, October 1996.

 [ToN2008] Veitch, D., Ridoux, J., and S. Korada, "Robust
 synchronization of absolute and difference clocks over
 networks.", IEEE.ACM Transactions on Networking (TON)
 17.2 (2009): 417-430, 2009.

 [traffic-stable]
 Carisimo, E., Grynberg, S., and J. Alvarez-Hamelin,
 "Influence of traffic in stochastic behavior of latency.",
 7th PhD School on Traffic Monitoring and Analysis (TMA),
 Ireland, Dublin,, June 2017.

Appendix A. Example of RTT to NTP servers

 This appendix shows an experiment to measure the RTT and the distance
 in hops from four different points to a time server in Buenos Aires
 city (the capital of Argentina). We did the measures two times from
 the four points, and we used one hundred packets to determine some
 statistical parameters. Next traceroute measurements show that the
 number of hops and RTT are very different from each point also
 changes a lot. For instance, taking a distinctive look at the STD,
 average, and maximum is possible to detect huge variations. We
 provide here a case in Argentina, trying to reach an NTP server from
 4 different points at the Buenos Aires city.

https://github.com/CoNexDat/SIC

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 21]

Internet-Draft (sic frequency) October 2018

host1$ mtr -r -c 100 time.afip.gov.ar
Start: Tue Mar 27 19:03:51 2018
HOST: raspbian-server Loss% Snt Last Avg Best Wrst StDev
 1.|-- gw-vlan-srv.innova-red.ne 0.0% 100 2.2 2.8 2.1 37.7 4.9
 2.|-- rnoc5.BUENOS-AIRES.innova 0.0% 100 2.3 3.8 2.1 55.8 7.9
 3.|-- 10.5.10.2 0.0% 100 2.5 2.6 2.2 3.1 0.0
 4.|-- 200.0.17.104 0.0% 100 3.1 3.1 2.4 13.7 1.1
 5.|-- 172.18.2.53 0.0% 100 4.8 5.7 3.8 12.4 1.7
 6.|-- time.afip.gob.ar 0.0% 100 5.2 5.2 3.8 12.0 1.3

host1$ mtr -r -c 100 time.afip.gov.ar
Start: Tue Mar 27 18:57:06 2018
HOST: raspbian-server Loss% Snt Last Avg Best Wrst StDev
 1.|-- gw-vlan-srv.innova-red.ne 0.0% 50 2.4 2.8 2.0 34.2 4.5
 2.|-- rnoc5.BUENOS-AIRES.innova 0.0% 50 2.1 3.8 2.1 52.8 7.7
 3.|-- 10.5.10.2 0.0% 50 2.7 2.9 2.2 15.6 1.8
 4.|-- 200.0.17.104 0.0% 50 2.8 3.0 2.3 3.9 0.0
 5.|-- 172.18.2.53 0.0% 50 4.5 5.8 3.8 17.8 2.2
 6.|-- time.afip.gob.ar 0.0% 50 4.7 9.9 4.2 238.5 33.0

host2$ mtr -r -c 100 time.afip.gov.ar
Start: Tue Mar 27 19:03:47 2018
HOST: ws-david Loss% Snt Last Avg Best Wrst StDev
 1.|-- 10.10.96.1 0.0% 100 0.3 0.2 0.2 0.3 0.0
 2.|-- 200.16.116.171 0.0% 100 1.0 5.9 0.6 158.4 22.9
 3.|-- static.33.229.104.190.cps 1.0% 100 1.6 2.5 1.5 80.6 8.0
 4.|-- static.129.192.104.190.cp 0.0% 100 2.1 1.9 1.8 3.0 0.1
 5.|-- 200.0.17.104 1.0% 100 2.0 2.2 1.8 9.4 0.7
 6.|-- 172.18.2.53 0.0% 100 3.2 4.2 3.1 12.0 1.5
 7.|-- auth.afip.gob.ar 0.0% 100 4.2 4.5 3.3 9.8 1.2

host2$ mtr -r -c 100 time.afip.gov.ar
Start: Tue Mar 27 18:57:00 2018
HOST: ws-david Loss% Snt Last Avg Best Wrst StDev
 1.|-- 10.10.96.1 0.0% 50 0.3 0.3 0.2 0.7 0.0
 2.|-- 200.16.116.171 0.0% 50 0.9 6.7 0.7 196.5 29.1
 3.|-- static.33.229.104.190.cps 2.0% 50 1.6 1.7 1.5 2.2 0.0
 4.|-- static.129.192.104.190.cp 0.0% 50 2.1 2.0 1.7 2.4 0.0
 5.|-- 200.0.17.104 0.0% 50 2.0 2.1 1.8 2.6 0.0
 6.|-- 172.18.2.53 0.0% 50 4.8 4.3 3.2 9.1 1.3
 7.|-- time.afip.gob.ar 0.0% 50 4.3 9.4 3.3 234.9 32.7

host3$ mtr -r -c 100 time.afip.gov.ar
Start: 2018-03-27T19:03:51-0300

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 22]

Internet-Draft (sic frequency) October 2018

HOST: aleph.local Loss% Snt Last Avg Best Wrst StDev
 1.|-- 10.17.71.254 0.0% 100 4.7 30.3 3.5 280.4 52.4
 2.|-- 10.255.254.250 0.0% 100 2.5 31.1 1.8 285.4 59.2
 3.|-- 209.13.133.10 0.0% 100 30.5 43.9 2.3 237.2 64.9
 4.|-- host169.advance.com.ar 3.0% 100 36.0 64.8 3.1 404.4 86.9
 5.|-- 200.32.33.33 2.0% 100 106.9 70.6 2.8 315.0 80.4
 6.|-- 200.32.34.66 5.0% 100 93.1 56.8 2.7 336.1 74.5
 7.|-- 200.32.33.38 7.0% 100 42.8 58.0 2.9 357.8 76.7
 8.|-- 209.13.139.211 4.0% 100 46.2 56.7 2.8 298.8 69.9
 9.|-- 209.13.139.209 1.0% 100 84.5 57.1 2.6 277.7 72.3
10.|-- 209.13.166.211 1.0% 100 43.4 63.5 3.2 390.6 78.7
11.|-- 200.32.34.137 2.0% 100 68.7 64.1 3.7 259.5 75.5
12.|-- 200.32.33.37 0.0% 100 4.1 56.9 3.3 249.6 64.3
13.|-- 200.32.34.121 3.0% 100 10.9 65.0 4.1 415.7 85.1
14.|-- 200.32.33.241 2.0% 100 252.6 61.8 3.8 355.9 74.5
15.|-- 200.16.206.198 3.0% 100 188.0 54.6 3.1 461.7 74.9
16.|-- 172.18.2.53 2.0% 100 133.4 53.1 4.3 402.1 69.2
17.|-- time.afip.gob.ar 4.0% 100 72.5 54.1 4.9 343.2 66.9

host3$ mtr -r -c 100 time.afip.gov.ar
Start: 2018-03-27T18:57:05-0300
HOST: aleph.local Loss% Snt Last Avg Best Wrst StDev
 1.|-- 10.17.71.254 0.0% 50 125.6 88.1 3.7 392.4 79.3
 2.|-- 10.255.254.250 0.0% 50 62.1 54.8 2.1 333.2 68.0
 3.|-- 209.13.133.10 0.0% 50 4.0 33.9 2.4 280.8 51.3
 4.|-- host169.advance.com.ar 2.0% 50 4.1 21.3 2.9 236.7 40.4
 5.|-- 200.32.33.33 2.0% 50 4.5 32.2 3.2 341.3 69.4
 6.|-- 200.32.34.66 4.0% 50 7.7 26.0 3.5 278.8 55.8
 7.|-- 200.32.33.38 2.0% 50 4.8 29.4 3.0 221.3 43.4
 8.|-- 209.13.139.211 0.0% 50 84.8 40.3 3.1 250.4 53.0
 9.|-- 209.13.139.209 0.0% 50 25.1 35.0 2.8 249.2 55.4
10.|-- 209.13.166.211 0.0% 50 3.7 33.5 2.6 188.9 54.3
11.|-- 200.32.34.137 0.0% 50 5.6 28.2 3.7 224.3 51.1
12.|-- 200.32.33.37 0.0% 50 3.7 24.2 3.5 189.5 44.9
13.|-- 200.32.34.121 0.0% 50 4.7 30.8 4.0 213.2 51.6
14.|-- 200.32.33.241 0.0% 50 14.4 33.1 3.9 364.6 67.2
15.|-- 200.16.206.198 0.0% 50 5.0 58.2 3.1 300.7 88.5
16.|-- 172.18.2.53 0.0% 50 9.4 117.8 4.4 315.1 103.4
17.|-- time.afip.gob.ar 0.0% 50 199.6 120.2 5.2 484.0 96.2

host4$ mtr -r -c 100 time.afip.gov.ar
Start: 2018-03-27T19:03:51-0300
HOST: cnet Loss% Snt Last Avg Best Wrst StDev
 1.|-- 157.92.58.1 0.0% 100 6.6 2.8 0.3 12.8 2.5
 2.|-- ??? 100.0 100 0.0 0.0 0.0 0.0 0.0
 3.|-- ??? 100.0 100 0.0 0.0 0.0 0.0 0.0

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 23]

Internet-Draft (sic frequency) October 2018

 4.|-- host98.131-100-186.static 0.0% 100 5.7 5.6 1.5 9.4 2.2
 5.|-- host130.131-100-186.stati 0.0% 100 6.5 6.3 2.5 10.3 2.2
 6.|-- 200.0.17.104 0.0% 100 2.4 2.7 2.3 15.6 1.4
 7.|-- ??? 100.0 100 0.0 0.0 0.0 0.0 0.0
 8.|-- time.afip.gob.ar 0.0% 100 4.9 7.6 3.9 243.0 23.9

host4$ mtr -r -c 100 time.afip.gov.ar
Start: Tue Mar 27 18:41:40 2018
HOST: cnet Loss% Snt Last Avg Best Wrst StDev
 1.|-- 157.92.58.1 0.0% 50 4.0 1.6 0.3 9.1 1.6
 2.|-- ??? 100.0 50 0.0 0.0 0.0 0.0 0.0
 3.|-- ??? 100.0 50 0.0 0.0 0.0 0.0 0.0
 4.|-- host98.131-100-186.static 0.0% 50 4.7 5.5 1.5 10.9 2.4
 5.|-- host130.131-100-186.stati 0.0% 50 8.4 6.5 2.6 10.5 2.2
 6.|-- 200.0.17.104 0.0% 50 2.5 2.8 2.3 11.0 1.2
 7.|-- ??? 100.0 50 0.0 0.0 0.0 0.0 0.0
 8.|-- time.afip.gob.ar 0.0% 50 4.9 9.2 3.8 226.7 31.4

--

Authors' Addresses

 Jose Ignacio Alvarez-Hamelin (editor)
 Universidad de Buenos Aires - CONICET
 Av. Paseo Colon 850
 Buenos Aires C1063ACV
 Argentina

 Phone: +54 11 5285-0716
 Email: ihameli@cnet.fi.uba.ar
 URI: http://cnet.fi.uba.ar/ignacio.alvarez-hamelin/

 David Samaniego
 Universidad de Buenos Aires
 Av. Paseo Colon 850
 Buenos Aires C1063ACV
 Argentina

 Phone: +54 11 5285-0716
 Email: dsamanie@fi.uba.ar

http://cnet.fi.uba.ar/ignacio.alvarez-hamelin/

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 24]

Internet-Draft (sic frequency) October 2018

 Alfredo A. Ortega
 Universidad de Buenos Aires
 Av. Paseo Colon 850
 Buenos Aires C1063ACV
 Argentina

 Phone: +54 11 5285-0716
 Email: ortegaalfredo@gmail.com

 Ruediger Geib
 Deutsche Telekom
 Heinrich-Hertz-Str. 3-7
 Darmstadt 64297
 Germany

 Phone: +49 6151 5812747
 Email: Ruediger.Geib@telekom.de

Alvarez-Hamelin, et al. Expires April 26, 2019 [Page 25]

