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Abstract

   Synchronizing Internet Clock Frequency specifies a new secure method
   to synchronize difference clocks on the Internet, assuring smoothness
   (i.e., frequency stability) and robustness to man-in-the-middle
   attacks.  In 90% of all cases, Synchronized Internet Clock Frequency
   is highly accurate, with a Maximum Time Interval Error less than 25
   microseconds by a minute.  Synchronized Internet Clock Frequency is
   based on a regular packet exchange and works with commodity terminal
   hardware.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 26, 2019.
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   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
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1.  Introduction

   There are different types of clock synchronization on the Internet.
   NTP [RFC5905] remains one of the most popular because a potential
   user does not need any extra hardware, and it is practically a
   standard in most of the operating systems distributions.  Its working
   principle relies on time servers having some kind of precise clock
   source, like atomic clocks or GPS based.  For most of the needs, NTP
   provides an accurate synchronization.  Moreover, NTP recently
   incorporates some strategies oriented to avoid man-in-the-middle
   (MitM) attacks.  NTPs potential accuracy is in the order of tens of
   milliseconds.
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   Synchronizing Internet Clock frequency (sic frequency) is a protocol
   providing synchronized difference clocks in two endpoints connected
   to the Internet.  While synchronized absolute clocks aim on a
   measurement of exact time differences between them, synchronized
   difference clocks allow measurements during identical time intervals
   at two locations.  This is useful if loads, packet loss or a
   variation in delay is to be measured.

   The sic frequency design is close to TSClocks (see below) but it
   takes advantage of statistics to perform better. sic frequency
   synchronization relies on Internet based delay measurements.  Route
   changes are frequent, so we include its detection.  Finally, our
   implementation also contemplates the protection to MitM attacks,
   including the signature of measurements in each packet. sic frequency
   does neither put constrains on the quality of a server's clock, nor
   does it require a limitation of the distance of synchronized end
   systems.

   Another proposal is the TSClocks [ToN2008], which take advantage of
   the internal computers' clock.  This work has been shown a very
   interesting solution because it is not expensive and can be used in
   any computer connected to the Internet.  This solution was proposed
   in the beginning at LAN (Local Area Network) level, and then it has
   been extended to other situations.  In [ToN2008] authors report a
   difference clock error of about half of hundred of microseconds for a
   WAN connection with 40ms of RTT (Round Trip Time).

   When accuracy and stability are needed, further options arise, e.g.,
   the PTP clock [RFC8173] (this mechanism was also defined as the IEEE
   Std. 1588-2008).  The PTP clock however incorporates specialized
   hardware to provide a highly accurate clock, which is required in
   each point to be synchronised.  Also the GPS (Global Position System)
   requires specialized hardware in every point of measurement.  While
   GPS may be less expensive than PTP, the GPS unit requires a sky clear
   view for working.  The latter may be costly or impossible in some
   locations.

   Finally, we mention the [ITU-G.8260] shows a methodology to measure
   delays in networks.  It is based on filtering that selects some
   packets to perform the delay computation.  The packet selection is
   based on the minimum and average RTT, and we show that both of them
   have some statistical problems to determine (see Section 2).

2.  sic frequency protocol overview

   Synchronizing Internet Clock frequency (sic frequency) is a protocol
   providing synchronized difference clocks in two endpoints connected
   to the Internet.  Synchronized difference clocks allow measurements

https://datatracker.ietf.org/doc/html/rfc8173
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   during identical time intervals at two locations.  This is useful if
   loads, packet loss or a variation in delay is to be measured.  The
   model of typical Internet time-measurement is shown in Figure 1.

                               XXXXXXXX  XXXXXXXX
                          XXXXXX      XXX       X
                         XX                    XXX
       +----+----------+XX                       XXXX
            |          XX                           XX
            |          X         Internet           XX
            |          XX                         XXX
         +--+------+    XXXXXX                    XX+---------+------+
         |         |         X                  XX            |
         |  Client |         XX                  XXX          |
         |         |          XX XXX      XXXXX    XX     +---+----+
         |         |           XXX  XXXXXXX   XXXXXX      |        |
         +---------+                                      | Server |
                                                          |        |
                                                          |        |
                                                          +--------+

               Figure 1: The clock synchronization of sic.--

   In this model, sic frequency performs measurements with packets in
   the way shown in Figure 2.

                              t2      t3
       Server +---------------@-------*----------------------------->
                             /         \_                     C_s [s]
                            /            \_
                           /               \_
                          /                  \_
                         /                     \_
                        /                        \_
                       /                           \_
                      /                              \_
                     /                                 \_
                    /                                    \_
                   /                                       \_ C_c [s]
       Client +---*------------------------------------------@------>
                  t1                                         t4

                     Figure 2: Time line of packets.--

   Here, C_s is the server clock, C_c is the client clock and t1...t4
   are timestamps.
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   Figure 2 shows a horizontal time line for client and server.  The
   diagonal lines depict a packet traversing some physical space (wires,
   routers, and switches).  The packet travel times are not assumed to
   be identical, because routes and background load may differ in each
   direction.

   The difference between the client clock C_c and the server clock C_s
   can be modeled as:

                C_c = C_s + phi                           ,

                phi(t) = C_c(t) - C_s(t) ,              (1)

   where phi is the absolute clock difference.  If RTT is constant (i.e.
   little or no background load) and routes are symmetric in both
   directions, the difference between clocks can be computed as:

                phi[c->s] = t1 - ( t2 - RTT/2 ) ,       (2)

                phi[c<-s] = t4 - ( t3 + RTT/2 ) ,       (3)

   and phi[c->s] = phi[c<-s].  The general equation for the RTT is:

                RTT = ( t2 - t1 ) + ( t4 - t3 ) .       (4)

   Computing Equations 2 and 3 for the this simplified case allows
   calculation of phi as a function of RTT.  Note that if routes are not
   symmetrical it is impossible to determine the absolute clocks'
   difference.

   The sic frequency protocol is based on statistics, background
   traffic- and network behavior observations.  The RTT between two
   endpoints follows a heavy-tailed distribution.  An alpha-stable
   distribution shows as one possible model [traffic-stable].  This
   distribution can be characterized by four parameters: the
   localization "delta," the stretching "gamma," the tail "alpha," and
   the symmetry "beta," [alfa-estables].  The location parameter is
   highly related to the mode of the distribution: delta > 0.  The
   stretching is related to the dispersion: gamma > 0.  The symmetry, -1
   <= beta <= 1, indicates if the distribution is skewed to the right
   (the tail decays to the left) for positive values or the opposite
   direction for negatives ones.  Finally, the tail alpha, defined in
   (0,2], indicates if the distribution is Gaussian one when alpha=2, a
   power law without variance for alpha <2, and also without statistic
   mean for alpha<1.  The alpha-stable distribution is the
   generalization of the Central Limit Theorem for any distribution
   (i.e., it includes the cases without variance or mean).



Alvarez-Hamelin, et al.  Expires April 26, 2019                 [Page 5]



Internet-Draft               (sic frequency)                October 2018

   Then, the phi(t) estimation involves the subtraction of two alpha-
   stable random variables, which yields on another alfa-stable
   distribution but symmetrical [alfa-estables].  Due to the
   characteristic of this result, i.e., a fixed mode and symmetry, a
   good estimator of the mode is the median.

   Therefore, sic performs periodic measurements to infer the difference
   of two clocks in the Internet taking advantage of the empiric
   observations.  The periodicity of RTT measurements is set to 1
   second.

   The parameters of the simple skew model [ToN2008] are estimated by
   the following equation:

                phi(t) = K + F * t ,                    (5)

   where phi(t) = C_c - C_s, K is a constant representing the absolute
   difference of time of client clock C_c and server clock C_s, and F is
   the rate parameter.  As sic frequency is a difference clock, we only
   estimate the frequency parameter "F."

   Note that the "K" parameter cannot be estimated using just endpoints
   measurements.  Estimating the "K" parameter accurately is out of
   scope, and we use K=min(RTT)/2, as it used in several synchronization
   procotols under the assumption of symmetric paths.  Considering the
   following asymmetry definition,

                         t[c->s]
                A = 1 - --------- ,                     (6)
                         t[c<-s]

   where t[c->s] is the minimum delay measured from the client to the
   server.  The maximum asymmetry A of equation 6 is A=1, which is
   unlucky, and this establishes the hard bound for the error of K as
   min(RTT): if t[c->s] approaches RTT, t[c->s] approaches zero.  The
   difference between the two is phi (t), and this difference hence is
   close to min(RTT), if A=1.  In our experiments the error in
   estimation phi(t) was always less than min(RTT)/2.

   Another problem with most of the synchronization protocols is the
   estimation of the minimum RTT, which depends upon the time-window
   within which the RTT is captured.  A minimum RTT can only be measured
   in the absence of any cross traffic.  In a first step, the minimum
   RTT measured during a window of 10 minutes (mRTT10m) is captured.
   Based on these values, the minimum RTT over a week (mRTTw) is
   determined.  RTTee is defined as mRTT10m - mRTTw.  Figure 3 shows the
   the RTT estimation error captured during an experiment where the
   minimum latency between probes was 9431 microseconds during one week,
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   i.e., mRTTw=9431 microseconds.  Notice that mRTT10m varies a lot, and
   the observed values can be more than 450 microseconds above the
   minimum RTT over a week.  This error is a consequence of the
   statistical behavior of the RTT which can be modeled by the alfa-
   stable distribution.

   Finally, it is mostly believed there always exist NTP servers at less
   than five hops with few milliseconds of RTT, because of the NTP
   deployment.  In Appendix A we show a typical case in Latin America
   region where the RTT differ notably form host in the same city
   (Buenos Aires).  This example reveals that in some countries could be
   not possible to have this desired situation and other synchronization
   tools are needed.

    Error of the min(RTT)
    [micro-seconds]
      500 +------|-------|------|------|------|-------|------|------+
          |      +       +      +   O  +      +       +      +      |
          |                         *                               |
      400 |-+                       **                     O      +-|
          |                        * *             O   O   ** O  O  |
          |                     O  * *             **  *   ** ** ** |
      300 |-+                  * O*O * O      O*  * O*O *  * O  O *-|
          |         O*   O    O       * *     * O *     * *        *|
          |  O      * O  **   *       * O    *  * *     O**        O|
      200 |-* *     * * * O   *       O  * O*O   *        O       +-|
          |** O  O *   ** *   *          * *     O                  |
          |O   * ***   O   *  *           *                         |
      100 |-+   O  O       O *            O                       +-|
          |                 **                                      |
          |                 **                                      |
        0 |-+    +       +   O  +      +      +       +      +    +-|
          +------|-------|------|------|------|-------|------|------+
          0     50      100    150    200    250     300    350    400
                                                        time [minutes]

   Figure 3: Min RTT error, estimated every 10 minutes along 7 hours.--

   The sic frequency protocol estimates phi(t) of Equation 5 using
   measurement statistics and taking advantage of the inherent RTT
   properties, i.e., the heavy tail distribution and its alfa-stable
   distribution model.  The basic sic frequency operation is to
   periodically send packets, estimate phi(t), and correct the local
   clock with:

                  t_c = t + phi(t) ,                  (7)
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   where t_c is the corrected time and t the local clock time (notice
   that phi(t) is calculated according to Equation 1).

   The sic protocol also detects route changes by seeking a non-
   negligible difference between the minimum RTT of the actual and past
   round trip measurement.  The next section also discusses different
   mechanisms to detect route changes by RTT evaluation.

3.  The formal definition of sic frequency protocol

Section 3.1 presents the sic frequency algorithm.  In addition,
   parameters and their definitions are introduced.  Finally, formal
   packet formats are provided.

   The sic frequency protocol MUST sign the packets with the
   deterministic Elliptic Curve Digital Signature Algorithm (ECDSA)
   specified by [RFC6979] to protect sic frequency from MitM attacks.
   To avoid delays when a packet is signed, sic frequency signs them in
   a deferred fashion.  That is, in each packet carries the signature of
   the previous packet (see algorithms in Figure 6 and Figure 5 ).

3.1.  Algorithm description

   sic frequency implementations MUST support the formal description
   specified by this section.  Once activated, the sic frequency
   protocol MUST operate permanently while a client and a receiver
   exchange measurement packets. sic frequency works with three states:
   NOSYNC, PRESYNC, and SYNC.  These states are triggered by the
   variables errsync, presync, and synck.

   Lines 1 to 4 of the pseudocode in Figure 4 initialize the required
   data structures needed and set the sic frequency state to NOSYNC.  In
   NOSYNC state, a complete measurement window estimates phi's by
   Equation 2 (see line 8).  Notice that also Equation 3 can be used, or
   an average of both Equations.  During the experiments, using a single
   equation only resulted in estimations with a smaller error.  The
   possible explanation is that measurements are affected by the same
   type of traffic.

   The median of the measurement window is also computed in line 9,
   while lines 10-12 are used to verify if there is a path change in the
   measurements.  When an appreciable difference is detected (bounded by
   errRTT) in line 13, the "else" clause is executed and the systems re-
   initiates the cycle (see lines 17-22).  Notice that line 13 verifies
   if the absolute value of the minimum RTTs is lower than a percentage
   of minimum over the complete RTT window.

https://datatracker.ietf.org/doc/html/rfc6979
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   The sic frequency algorithm specification is presented by three
   tables of pseudocode.  The parameters are explained after the third
   table.
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 =======================================================================
 |                     sic frequency algorithm                         |
 =======================================================================
 1  Wmedian <-0, Wm <-0, WRTT <-0, actual_m <-0, actual_c <-0
 2  presync <- INT_MAX - P, epochsync <- INT_MAX - P, n_to <-0
 3  synck <- false, errsync <- epoch, set(0, 0, NOSYNC), e_prev<-epoch
 4  send_sic_packet(SERVER_IP, TIMEOUT)
 5  for each timer(RUNNING_TIME) == 0
 6   |   (epoch, t1, t2, t3, t4, to) <- send_sic_p(SERVER_IP,TIMEOUT)
 7   |   if (to == false) then
 8   |    |   Wm <- t1 - t2 + (t2 - t1 + t4 - t3)/2
 9   |    |   Wmedian <- median(Wm)
 10  |    |   WRTT <- t4 - t1 size(W)
 11  |    |   RTTf <- min(WRTT[size(WRTT)/2,size(WRTT)])
 12  |    |   RTTl <- min(WRTT[0,size(WRTT)/2])
 13  |    |   if ((|RTTf - RTTl| <= errRTT * min(WRTT)) then
 14  |    |    |   if (epoch >= presynck + P))  then
 15  |    |    |    |   presynck <- true
 16  |    |    |   end if
 17  |    |    else
 18  |    |    |   synck <- false, Wmedian <- 0
 19  |    |    |   Wm <- 0, errsync <- epoch, n_to <- 0
 20  |    |    |   epoch_sync <- INT_MAX - P, pre_sync <- INT_MAX - P
 21  |    |    |   set(0, 0, NOSYNC)
 22  |    |   end if
 23  |    |   if ((synck == true) && (epoch >= epochsync + P)) then
 24  |    |    |   (m, c) <- linear_fit(Wmedian)
 25  |    |    |   actual_c <- c
 26  |    |    |   actual_m <- (1-alpha) * m + alpha * actual_m
 27  |    |    |   epochsync <- epoch,  n_to <- 0
 28  |    |    |   set(actual_m, actual_c, SYNC)
 29  |    |    else
 30  |    |    |   if (epoch == errsync + MEDIAN_MAX_SIZE) then
 31  |    |    |    |   presync <- epoch
 32  |    |    |   end if
 33  |    |    |   if (epoch >= presync + P) then
 34  |    |    |    |   (actual_m, actual_c) <- linear_fit(Wmedian)
 35  |    |    |    |   synck <- true , epoch_sync <- epoch
 36  |    |    |    |   set(actual_m, actual_c, PRESYNC)
 37  |    |    |   end if
 38  |    |    end if
 39  |    else
 40  |    |   to <- false
 41  |   end if
 42 end for
 =======================================================================

                  Figure 4: Formal description of sic.--
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   Several conditions should be verified to pass from NOSYNC to PRESYNC.
   First, the "else" condition of line 29 should occur, and also the
   elapsed time between errsync and actual epoch should be
   MEDIAN_MAX_SIZE (30-32).  Therefore, when it also P time is passed
   form presync, the condition on line 33 is true, and the system
   arrives at PRESYNC, providing an initial estimation of phi.

   Then, if there is no route change, the condition in line 14 will be
   true when the time was increased in another P period.  Then, the
   system is in SYNC state, and it provides the estimation of phi(t) in
   line 28.  Notice that every P time the estimation of phi(t) is
   computed unless a route change occurs (lines 13 and 17-22).

   The function in line 6: (epoch, t1, t2, t3, t4, to) <-
   send_sic_packet(SERVER_IP, TIMEOUT), has a special treatment.  It
   sends the packets specified in Section 3.3, which have signatures.
   To avoid the processing delay caused by the signature computation, we
   implemented a policy to send the signature of the previous packet,
   and if an error is detected, we can stop the synchronization just one
   loop ahead.

   Figure 5 illustrates how the client side MUST implement the function
   send_sic_p (SERVER_IP, TIMEOUT).  This function computes the
   timestamp t1 in line 1, build and send the UDP packet in lines 2-3.
   Then, if there is no timeout, it calculates the t4 timestamp (line
   5), and if no packets were lost, verifies the signature of the
   previous one in lines 8-18.  If the signature is not valid with the
   received certificate, then the system MUST change to NOSYNC state
   immediately (see line 11).  NOSYNC state MUST also be set, if the
   limit of time without receiving packets MAX_to is reached.  Finally,
   it stores the received packet into prev_rcv_pck (a global variable)
   to use in the next packet (line 19).  Notice that n_to, the lost
   packets, is a global variable, as well as the epoch of the previous
   packet: e_prev.
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 =======================================================================
 |                function: send_sic_p(server, TIMEOUT)                |
 =======================================================================
 1  t1 <- get_timestamp()
 2  sic_P <- sic_pck(t1, 0, 0, prev_sig)
 3  (to, rcv_sic_pck) <- send(sic_P,UDP_PORT, SERVER_IP, TIMEOUT)
 4  if (to == false) then
 5   |  t4 <- get_timestamp()
 6   |  epoch <- trunc_to_seconds(t1)
 7   |  prev_sig <- get_signature(sic_P)
 8   |  if (epoch - e_prev <= RUNNING_TIME) then
 9   |   |  if (n_to < MAX_to) then
 10  |   |   |  if (verify(prev_rcv_pck,rcv_sic.CERT) == false) then
 11  |   |   |   |  set(0, 0, NOSYNC)
 12  |   |   |  else
 13  |   |   |   |  n_to <- 0,  e_prev <- epoch
 14  |   |   |  end if
 15  |   |  else
 16  |   |   |   set(0, 0, NOSYNC)
 17  |   |  end if
 18  |  end if
 19  |  prev_rcv_pck <- rcv_sic_pck
 20  |  t2 <- rcv_sic_pck.t2
 21  |  t3 <- rcv_sic_pck.t3
 22 else
 23  |  n_to <- n_to + 1
 24 end if
 25 return (epoch, t1, t2, t3, t4, to)
 =======================================================================

                   Figure 5: The send_sic_p function.--

   The server sic algorithm is presented in Figure 6.  It uses
   prev_sic_P{}, which is a structure to store the received previous
   signatures, indexed by the IP client addresses (CLIENT_add contains
   its IP and UDP port); and the same for prev_sig{} with the previously
   sent signatures.  Line 6 verifies either signature is null because it
   is the first packet, or it is a valid signature.  In both cases, the
   algorithm process the packet computing t3, building up the sic
   frequency packet, sending it and computing its signature (stored to
   send in the next reply) in lines 7-11.  Next, the actual packet is
   stored in the prev_sic_P{} structure, line 13.
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 =======================================================================
 |                        sic Server algorithm                         |
 =======================================================================
 1  prev_sic_P{} <- null, prev_sig{} <-- null
 2  while (RUNNING == true) then
 3   |   if (receive() == true) then
 4   |    |  t2 <- get_timestamp()
 5   |    |  prev_sig <- get_signature(prev_sic_P{receive().CLIENT_add})
 6   |    |  if (prev_sig == null)  ||
     |    |           (verify(prev_sig, CLIENT_add.CERT) == true)  then
 7   [    |   |  t3 <- get_timestamp()
 8   |    |   |  sic_P<-sic_pack(t1, t2, t3, prev_sig)
 9   |    |   |  send(sic_P, CLIENT_add.UDP, CLIENT_add.IP, TIMEOUT)
 10  |    |   |  prev_sig <- get_signature(sic_P)
 11  |    |   |  prev_sig{receive().CLIENT_add} <- prev_sig
 12  |    |  end if
 13  |    |  prev_sic_P{receive().CLIENT_add} <- receive().sic_pack
 14  |   end if
 15  end while
 =======================================================================

                 Figure 6: Algorithm sic for the Server.--

3.2.  Protocol definitions

   We provide a formal definition of each used constant and variables;
   the RECOMMENDED values are displayed in parentheses at the end of the
   description.  These constant and variables MUST be represented in a
   sic frequency implementation.  All the types MUST be respected.  They
   are expressed in "C" programming language running on a 64-bit
   processor.

   a.  Constants used for the sic frequency algorithm (Figure 4)

       1.   RUNNING_TIME: is the period between sic packets are sent (1
            second).

       2.   MEDIAN_MAX_SIZE: is the window size used to compute the
            median of the measurements (600).

       3.   P: is the period between phi's estimation (60).

       4.   alpha: is a float in the [0,1], the coefficient of the
            autoregressive estimation of the slope of phi(t) (0.05).

       5.   TIMEOUT: is the maximum time in seconds that a sic packet
            reply is expected (0.8 seconds).
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       6.   SERVER_IP: is the IP address of the server (@IP in version 4
            or 6).

       7.   errRTT: is a float that bounds the maximum difference to
            detect a route change (0.2).

       8.   MAX_to: is an integer representing the maximum number of
            packet lost (P/10).

       9.   CERT: is a public certificate of the other end, it is used
            to verify signs of the packets.

       10.  UDP_PORT: is an integer with the port UDP where the service
            is running on the server. (4444)

       11.  SERVER_IP: is the IP address of the server.

       12.  CLIENT_IP: is the IP address of the client.

   b.  States used for the sic frequency algorithm (Figure 4)

       1.  NOSYNC: a boolean indicates that it is not possible to
           correct the local time.

       2.  PRESYNC: an integer indicates that sic is almost (P
           RUNNING_TIME) seconds from the synchronization.

       3.  SYNC: a boolean indicates that sic is synchronized.

   c.  Variables used for the sic frequency algorithms (Figure 4,
       Figure 5 and Figure 6)

       1.   errsync: is an integer with the UNIX timestamp epoch of the
            initial NOSYNC cycle.  It is used to complete the window or
            measurements (Wm) to compute their medians.

       2.   presync: is an integer with the UNIX timestamp epoch of the
            initial PRESYNC cycle.  It is used to wait until (P
            RUNNING_TIME) seconds to the linear fit of phi(t).

       3.   synck: is an integer with the UNIX timestamp epoch of the
            initial SYNC cycle.  Every P RUNNING_TIME) seconds the
            phi(t) function is estimated.

       4.   epochsync: is an integer with the last UNIX timestamp epoch
            of synchronization.  It is used to compute a new estimation
            of phi(t), every (P RUNNING_TIME) seconds.
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       5.   epoch: is an integer with UNIX timestamp in seconds.  It
            carries the initial epoch of each sic measurement packet.

       6.   t1, t2, t3, t4: are long long integers to store the t UNIX
            timestamps in microseconds.

       7.   actual_m : is a double with the slope for the phi(t)
            estimation.

       8.   actual_c: is a double with the intercept for the phi(t)
            estimation.

       9.   Wm: is an array of doubles of MEDIAN_MAX_SIZE.  It stores
            the instantaneous estimates of phi(t).

       10.  Wmedian: is an array of doubles of P size.  It saves the
            computed medians of Wm every RUNNING_TIME.

       11.  WRTT: is an array of doubles of (2 P) size.  It stores the
            calculated RTT of last measurements.

       12.  RTTl: is a double with the minimum of last P RTTs.  It is
            used to detect changes on the route from the client to the
            server.

       13.  RTTf: is a double with the minimum of previous P RTTs.  It
            is used to detect changes on the route from the client to
            the server.

       14.  n_to: is an integer representing the number of lost packets
            in the actual synchronization window P.

       15.  e_prev: is an integer with the UNIX timestamp epoch of the
            last valid packet.

       16.  prev_rcv_pck: is a sic packet structure, the previous
            received one.

3.3.  Protocol packet specification

   The sic frequency uses UNIX microsecond format timestamps.  Regarding
   Figure 2, the client takes a timestamp t1 just before it sends the
   packet.  When the server receives the packet, it immediately computes
   t2, and just before it is sent back to the client, it computes t3.
   When the client receives the packet, it calculates t4.
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   The server does not need the timestamp t1 because the proposed
   protocol synchronizes a client with the server clock.  This
   information could however be useful for the server for future use.

   The packets are shown in Figure 7.  They MUST be sent as UDP data,
   and it MUST have five fields.  The first three correspond to t1
   (client), t2 (server), and t3 (server); the last one is the signature
   of the previous message of the sender (client o server) with its
   private key.  The timestamps t1, t2, and t3 MUST be the UNIX
   timestamp in microseconds represented with a long long integer of
   64-bit C language.

   The client and server certificates SHOULD be valid and signed ones
   (only for experimentation user MAY use autogenerated ones).

                   f1         f2       f3        f4
                +----------------------------------------+
                |  t1_c  |    0   |    0   |  Sig_c n-1  |
                +----------------------------------------+
                              Client --> Server

                    f1        f2       f3        f4
                +----------------------------------------+
                |  t1_c  |  t2_s  |  t3_s  |  Sig_s n-1  |
                +----------------------------------------+
                              Server --> Client

              Figure 7: Packet format for the sic protocol.--

3.4.  Minimum sic deployment

   To deploy the sic frequency algorithm, as a minimum a Server and one
   Client are needed.  The Server can support multiple clients.  The
   maximum number of clients is for further study.  The Server clock is
   considered the master one, and all clients synchronize with it.  The
   Server side runs sic frequency as a server with a UDP_PORT number, as
   specified by the algorithm shown in Figure 6.

   Client sic runs the algorithm shown in Figure 4 and also SHOULD
   provide the corrected time as

   t = actual_c + actual_m * timestamp     (8)

                                 Figure 8

   Different ways of doing this task are possible:
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      Providing a client capable of reading the variables actual_m and
      actual_c in shared memory and producing the result of Equation 8.

      Providing a service in a UDP port answering the correcter
      timestamp queries with Equation 8.

      Other solution.

4.  Implementation of sic frequency protocol

   In this section we present the prove of the sic concept through some
   test that we already performed, and the current implementation of sic
   in C language.  Our implementation is publicly available
   [sic-implementation].  Currently, the authentication process
   requiring transport of packet signatures is under development.

   @@@@ We started with a version to test sic without the MitM
   protection; soon we will finish with the secured version.

   This protocol implements protection against MitM attacks.  The
   identity of endpoints is guarantee by signed certificates using the
   deterministic Elliptic Curve Digital Signature Algorithm (ECDSA)
   specified in the [RFC6979].  Server and Client should use signed and
   valid ECDSA certificates to ensure their identity, and each side has
   is responsible to verify the public certificate of the other side
   before to run the algorithm in Figure 4.

4.1.  Evaluation

   To verify the sic proposal, we tested it using three hosts with GPS
   units.  The first two were located at Buenos Aires, and the third at
   Los Angeles.  We slightly modified the algorithm in Figure 4 to
   trigger each measurement using the PPS (pulse per second) signal
   provided by the GPS unit.  Then, recording the client and server
   clocks with the PPS signal, we can determine the real phi function of
   Equation 1, within the GPS error (it is several orders of magnitude
   smaller than the error of the sic frequency protocol).

   We use MTIE defined as follows (Maximum Time Interval Error, see
   [ToIM1996]):

                MTIE = max [phi(t')] - min [phi (t)] ,  (9)

   for every t' and t in the interval [t,t+s]; and we chose s=60
   seconds.  We first used two host (RaspBerriesPI-2) connected back to
   back to analyze the minimum achievable precision, yielding a MTIE of
   15.8 microseconds for the 90 percentile.  Then, we selected two real
   cases of study, one national and other international.  In Figure 9 we

https://datatracker.ietf.org/doc/html/rfc6979
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   show the result of the MTIE, evaluated in 60 seconds intervals, for
   the experiment Buenos Aires-Buenos Aires (RTT of 10ms) and Buenos
   Aires-Los Angeles (RTT of 198ms).  The percentile 90 corresponds to
   18.35 microseconds for the Buenos Aires case, and 25.4 microseconds
   for the Los Angeles case.  The percentile 97.5 corresponds to 30
   microseconds for the Buenos Aires case, and 42 microseconds for the
   Los Angeles case.  We display the quartiles in Figure 10 . These
   measurements were performed during a week in each case.

     CDF
         +--|-------|-------|-----|-------|----------|------|------+
       1 |-+        +       +     + #########*#*#*#*#*#*#*#*#******|
         |                      ##### *******                      |
         |                   ####  ****                            |
     0.8 |-+                ##   ***                             +-|
         |                ###   **                                 |
         |               ##   ***                                  |
     0.6 |-+            ##   **                                  +-|
         |             ##   **                                     |
         |            ##   **                                      |
     0.4 |-+        ##    **                                     +-|
         |         ##    **                                        |
         |        ##    **                                         |
     0.2 |-+     ##   ***                                        +-|
         |    ####  ***                  Buenos Aires  #######     |
         | ####   ***                    Los Angeles   *******     |
       0 |##******* +       +     +       +     +    +      +    +-|
         +--|-------|-------|-----|-------|-----|----|------|------+
            7       10      15    20      30    40   50     70    100
                                                      [micro-seconds]

      Figure 9: Cumulative distribution function of the MTIE (60s).--

                 |Buenos Aires (10ms) | Los Angeles (198ms) |
             ====+====================+=====================+
              Q3 |      14.69         |        19.29        |
             ----+--------------------+---------------------+
              Q2 |      11.60         |        14.93        |
             ----+--------------------+---------------------+
              Q1 |       9.41         |        12.26        |

    Figure 10: Table with MTIE quartiles for two RTT cases (the numbers
                         indicate microseconds).--
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5.  Conclusions

   This document presents the sic algorithm to synchronize host clock
   frequency using the Internet and resistant to MitM attacks.  It also
   shows the complete specification, implementation, and experiments
   results that support it working principle.  In particular, sic
   frequency provides a clock rate stability of less than 1ppm for most
   of the time.

6.  Security Considerations

   Following [RFC7384] enumeration of Time Protocols in packet-switched
   networks, the proposed encryption of timing packets, based on a
   mechanism of secure key distribution, provides the following
   characteristics:

      3.2.1 Packet Manipulation: Prevented by packet signature.

      3.2.2 Spoofing: Prevented by packet signature and secure key
      distribution.

      3.2.3 Replay Attack: Prevented by chain signing of packets.

      3.2.4 Rogue Master Attack: Prevented by secure key distribution.

      3.2.5 Packet Interception and Removal: If several packets are
      removal, the protocol do not arrive to SYNC state.

      3.2.6 Packet Delay Manipulation: Not prevented.  Future versions
      may prevent this using over-specification of timing (using
      redundant masters)

      3.2.7 L2/L3 DoS attacks: Not prevented.  This can be prevented in
      future versions using over-specification of timing and redundant
      masters time servers.

      3.2.8 Cryptographic performance attacks: Not an issue in ECDSA.

      3.2.9 DoS attacks agains the time protocol: Prevented by secure
      key distribution.

      3.2.10 Grandmaster Time source attack (GPS attacks): Not
      prevented.  Future versions may prevent this using over-
      specification of timing (using several time servers) .

      3.2.11 Exploiting vulnerabilities in the time protocol: Not
      prevented, future vulnerabilities are unknown.

https://datatracker.ietf.org/doc/html/rfc7384
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      3.2.12 Network Reconnaissance: Not prevented in this version.  No
      countermeasures were done in node anonymization.

   The Packet Delay manipulation is one of the hardest problems to solve
   because there exist some smart ways to attack any synchronization
   protocol.  Even thou, the sic frequency protocol can protect itself
   because can identify several attacks of this type, i.e., it is
   challenging to mimic traffic behavior.

7.  IANA Considerations

   This memo makes no requests of IANA.
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Appendix A.  Example of RTT to NTP servers

   This appendix shows an experiment to measure the RTT and the distance
   in hops from four different points to a time server in Buenos Aires
   city (the capital of Argentina).  We did the measures two times from
   the four points, and we used one hundred packets to determine some
   statistical parameters.  Next traceroute measurements show that the
   number of hops and RTT are very different from each point also
   changes a lot.  For instance, taking a distinctive look at the STD,
   average, and maximum is possible to detect huge variations.  We
   provide here a case in Argentina, trying to reach an NTP server from
   4 different points at the Buenos Aires city.

-------------------------------------------------------------------------

https://github.com/CoNexDat/SIC
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host1$ mtr -r -c 100 time.afip.gov.ar
Start: Tue Mar 27 19:03:51 2018
HOST: raspbian-server             Loss%  Snt  Last  Avg  Best  Wrst StDev
  1.|-- gw-vlan-srv.innova-red.ne  0.0%  100   2.2  2.8   2.1  37.7   4.9
  2.|-- rnoc5.BUENOS-AIRES.innova  0.0%  100   2.3  3.8   2.1  55.8   7.9
  3.|-- 10.5.10.2                  0.0%  100   2.5  2.6   2.2   3.1   0.0
  4.|-- 200.0.17.104               0.0%  100   3.1  3.1   2.4  13.7   1.1
  5.|-- 172.18.2.53                0.0%  100   4.8  5.7   3.8  12.4   1.7
  6.|-- time.afip.gob.ar           0.0%  100   5.2  5.2   3.8  12.0   1.3

host1$ mtr -r -c 100 time.afip.gov.ar
Start: Tue Mar 27 18:57:06 2018
HOST: raspbian-server             Loss%  Snt  Last  Avg  Best  Wrst StDev
  1.|-- gw-vlan-srv.innova-red.ne  0.0%   50   2.4  2.8   2.0  34.2   4.5
  2.|-- rnoc5.BUENOS-AIRES.innova  0.0%   50   2.1  3.8   2.1  52.8   7.7
  3.|-- 10.5.10.2                  0.0%   50   2.7  2.9   2.2  15.6   1.8
  4.|-- 200.0.17.104               0.0%   50   2.8  3.0   2.3   3.9   0.0
  5.|-- 172.18.2.53                0.0%   50   4.5  5.8   3.8  17.8   2.2
  6.|-- time.afip.gob.ar           0.0%   50   4.7  9.9   4.2 238.5  33.0

-------------------------------------------------------------------------

host2$ mtr -r -c 100 time.afip.gov.ar
Start: Tue Mar 27 19:03:47 2018
HOST: ws-david                    Loss%  Snt  Last  Avg  Best  Wrst StDev
  1.|-- 10.10.96.1                 0.0%  100   0.3  0.2   0.2   0.3   0.0
  2.|-- 200.16.116.171             0.0%  100   1.0  5.9   0.6 158.4  22.9
  3.|-- static.33.229.104.190.cps  1.0%  100   1.6  2.5   1.5  80.6   8.0
  4.|-- static.129.192.104.190.cp  0.0%  100   2.1  1.9   1.8   3.0   0.1
  5.|-- 200.0.17.104               1.0%  100   2.0  2.2   1.8   9.4   0.7
  6.|-- 172.18.2.53                0.0%  100   3.2  4.2   3.1  12.0   1.5
  7.|-- auth.afip.gob.ar           0.0%  100   4.2  4.5   3.3   9.8   1.2

host2$ mtr -r -c 100 time.afip.gov.ar
Start: Tue Mar 27 18:57:00 2018
HOST: ws-david                    Loss%  Snt  Last  Avg  Best  Wrst StDev
  1.|-- 10.10.96.1                 0.0%   50   0.3  0.3   0.2   0.7   0.0
  2.|-- 200.16.116.171             0.0%   50   0.9  6.7   0.7 196.5  29.1
  3.|-- static.33.229.104.190.cps  2.0%   50   1.6  1.7   1.5   2.2   0.0
  4.|-- static.129.192.104.190.cp  0.0%   50   2.1  2.0   1.7   2.4   0.0
  5.|-- 200.0.17.104               0.0%   50   2.0  2.1   1.8   2.6   0.0
  6.|-- 172.18.2.53                0.0%   50   4.8  4.3   3.2   9.1   1.3
  7.|-- time.afip.gob.ar           0.0%   50   4.3  9.4   3.3 234.9  32.7

-------------------------------------------------------------------------

host3$ mtr -r -c 100 time.afip.gov.ar
Start: 2018-03-27T19:03:51-0300
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HOST: aleph.local                 Loss%  Snt  Last  Avg  Best  Wrst StDev
 1.|-- 10.17.71.254               0.0%  100   4.7  30.3   3.5 280.4  52.4
 2.|-- 10.255.254.250             0.0%  100   2.5  31.1   1.8 285.4  59.2
 3.|-- 209.13.133.10              0.0%  100  30.5  43.9   2.3 237.2  64.9
 4.|-- host169.advance.com.ar     3.0%  100  36.0  64.8   3.1 404.4  86.9
 5.|-- 200.32.33.33               2.0%  100 106.9  70.6   2.8 315.0  80.4
 6.|-- 200.32.34.66               5.0%  100  93.1  56.8   2.7 336.1  74.5
 7.|-- 200.32.33.38               7.0%  100  42.8  58.0   2.9 357.8  76.7
 8.|-- 209.13.139.211             4.0%  100  46.2  56.7   2.8 298.8  69.9
 9.|-- 209.13.139.209             1.0%  100  84.5  57.1   2.6 277.7  72.3
10.|-- 209.13.166.211             1.0%  100  43.4  63.5   3.2 390.6  78.7
11.|-- 200.32.34.137              2.0%  100  68.7  64.1   3.7 259.5  75.5
12.|-- 200.32.33.37               0.0%  100   4.1  56.9   3.3 249.6  64.3
13.|-- 200.32.34.121              3.0%  100  10.9  65.0   4.1 415.7  85.1
14.|-- 200.32.33.241              2.0%  100 252.6  61.8   3.8 355.9  74.5
15.|-- 200.16.206.198             3.0%  100 188.0  54.6   3.1 461.7  74.9
16.|-- 172.18.2.53                2.0%  100 133.4  53.1   4.3 402.1  69.2
17.|-- time.afip.gob.ar           4.0%  100  72.5  54.1   4.9 343.2  66.9

host3$ mtr -r -c 100 time.afip.gov.ar
Start: 2018-03-27T18:57:05-0300
HOST: aleph.local                 Loss%  Snt  Last  Avg  Best  Wrst StDev
 1.|-- 10.17.71.254               0.0%   50 125.6  88.1   3.7 392.4  79.3
 2.|-- 10.255.254.250             0.0%   50  62.1  54.8   2.1 333.2  68.0
 3.|-- 209.13.133.10              0.0%   50   4.0  33.9   2.4 280.8  51.3
 4.|-- host169.advance.com.ar     2.0%   50   4.1  21.3   2.9 236.7  40.4
 5.|-- 200.32.33.33               2.0%   50   4.5  32.2   3.2 341.3  69.4
 6.|-- 200.32.34.66               4.0%   50   7.7  26.0   3.5 278.8  55.8
 7.|-- 200.32.33.38               2.0%   50   4.8  29.4   3.0 221.3  43.4
 8.|-- 209.13.139.211             0.0%   50  84.8  40.3   3.1 250.4  53.0
 9.|-- 209.13.139.209             0.0%   50  25.1  35.0   2.8 249.2  55.4
10.|-- 209.13.166.211             0.0%   50   3.7  33.5   2.6 188.9  54.3
11.|-- 200.32.34.137              0.0%   50   5.6  28.2   3.7 224.3  51.1
12.|-- 200.32.33.37               0.0%   50   3.7  24.2   3.5 189.5  44.9
13.|-- 200.32.34.121              0.0%   50   4.7  30.8   4.0 213.2  51.6
14.|-- 200.32.33.241              0.0%   50  14.4  33.1   3.9 364.6  67.2
15.|-- 200.16.206.198             0.0%   50   5.0  58.2   3.1 300.7  88.5
16.|-- 172.18.2.53                0.0%   50   9.4 117.8   4.4 315.1 103.4
17.|-- time.afip.gob.ar           0.0%   50 199.6 120.2   5.2 484.0  96.2

-------------------------------------------------------------------------

host4$ mtr -r -c 100 time.afip.gov.ar
Start: 2018-03-27T19:03:51-0300
HOST: cnet                        Loss%  Snt  Last  Avg  Best  Wrst StDev
 1.|-- 157.92.58.1                0.0%  100   6.6   2.8   0.3  12.8   2.5
 2.|-- ???                       100.0  100   0.0   0.0   0.0   0.0   0.0
 3.|-- ???                       100.0  100   0.0   0.0   0.0   0.0   0.0
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 4.|-- host98.131-100-186.static  0.0%  100   5.7   5.6   1.5   9.4   2.2
 5.|-- host130.131-100-186.stati  0.0%  100   6.5   6.3   2.5  10.3   2.2
 6.|-- 200.0.17.104               0.0%  100   2.4   2.7   2.3  15.6   1.4
 7.|-- ???                       100.0  100   0.0   0.0   0.0   0.0   0.0
 8.|-- time.afip.gob.ar           0.0%  100   4.9   7.6   3.9 243.0  23.9

host4$ mtr -r -c 100 time.afip.gov.ar
Start: Tue Mar 27 18:41:40 2018
HOST: cnet                        Loss%  Snt  Last   Avg  Best Wrst StDev
 1.|-- 157.92.58.1                0.0%   50   4.0   1.6   0.3   9.1   1.6
 2.|-- ???                       100.0   50   0.0   0.0   0.0   0.0   0.0
 3.|-- ???                       100.0   50   0.0   0.0   0.0   0.0   0.0
 4.|-- host98.131-100-186.static  0.0%   50   4.7   5.5   1.5  10.9   2.4
 5.|-- host130.131-100-186.stati  0.0%   50   8.4   6.5   2.6  10.5   2.2
 6.|-- 200.0.17.104               0.0%   50   2.5   2.8   2.3  11.0   1.2
 7.|-- ???                       100.0   50   0.0   0.0   0.0   0.0   0.0
 8.|-- time.afip.gob.ar           0.0%   50   4.9   9.2   3.8 226.7  31.4
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Authors' Addresses

   Jose Ignacio Alvarez-Hamelin (editor)
   Universidad de Buenos Aires - CONICET
   Av. Paseo Colon 850
   Buenos Aires  C1063ACV
   Argentina

   Phone: +54 11 5285-0716
   Email: ihameli@cnet.fi.uba.ar
   URI:   http://cnet.fi.uba.ar/ignacio.alvarez-hamelin/

   David Samaniego
   Universidad de Buenos Aires
   Av. Paseo Colon 850
   Buenos Aires  C1063ACV
   Argentina

   Phone: +54 11 5285-0716
   Email: dsamanie@fi.uba.ar

http://cnet.fi.uba.ar/ignacio.alvarez-hamelin/


Alvarez-Hamelin, et al.  Expires April 26, 2019                [Page 24]



Internet-Draft               (sic frequency)                October 2018

   Alfredo A. Ortega
   Universidad de Buenos Aires
   Av. Paseo Colon 850
   Buenos Aires  C1063ACV
   Argentina

   Phone: +54 11 5285-0716
   Email: ortegaalfredo@gmail.com

   Ruediger Geib
   Deutsche Telekom
   Heinrich-Hertz-Str. 3-7
   Darmstadt  64297
   Germany

   Phone: +49 6151 5812747
   Email: Ruediger.Geib@telekom.de



Alvarez-Hamelin, et al.  Expires April 26, 2019                [Page 25]


