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Abstract

Synchronizing Internet Clock (sic) Frequency specifies a new secure

method to synchronize clocks on the Internet, assuring smoothness

(i.e., frequency stability) and robustness to man-in-the-middle

attacks. This protocol is oriented to assure the quality of Internet

performance measurements, where they are frequently obtained as the

difference of timestamps, hence frequency stability is needed. In

90% of all cases, Synchronized Internet Clock Frequency is highly

accurate, with a Maximum Time Interval Error of fewer than 25

microseconds by a minute. Synchronized Internet Clock Frequency is

based on a regular packet exchange and works with commodity terminal

hardware.
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The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].
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provisions of BCP 78 and BCP 79.
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working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."
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1. Introduction

One way metric measurements [RFC7679] require synchronization of

sender and receiver clocks to obtain reliable results. This

synchronization should be smooth (i.e., operate without steps in

synchronization and detect and reach a stable operation state),

offer a precise frequency, easily implemented in any host on the

Internet, and faithful. A reliable clock frequency is needed to

perform precise differential metric measurements between any two

hosts to capture performance metrics like packet delay variation or

loss of packets exchanged between arbitrary measurement hosts. The
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required clock synchronization is designed to be implementable by

software to allow deployment with hosts in arbitrary locations. It

cannot replace or compete against commodity clock synchronization

standards (and any intent to do so is out of scope). Finally, some

security measures are needed to avoid some common types of attacks

in the Internet, given more robustness to the sytem.

There are different types of clock synchronization on the Internet.

NTP [RFC5905] remains one of the most popular because a potential

user does not need any extra hardware, and it is practically a

standard in most of the operating-systems distributions. Its working

principle relies on time servers with precise clock source, as

atomic clocks or GPS based. For most of the needs, NTP provides an

accurate synchronization. Moreover, NTP recently incorporates some

strategies oriented to avoid man-in-the-middle (MitM) attacks. NTPs

potential accuracy is in the order of tens of milliseconds..

Another proposal is the TSClocks [ToN2008], which take advantage of

the internal computers' clock. This work has been shown an

attractive solution because it is not expensive and can be used on

any computer connected to the Internet. This solution was proposed

in the beginning at LAN (Local Area Network) level, and then it has

been extended to other situations. In [ToN2008] authors report a

differential clock error of about half of hundred of microseconds

for a WAN connection with 40ms of RTT (Round Trip Time), i.e., the

absolute error is the same order that RTT.

When accuracy and stability are needed, further options arise, e.g.,

the PTP clock [RFC8173] (this mechanism was also defined as the IEEE

Std. 1588-2008). However, the PTP clock incorporates specialized

hardware to provide a highly accurate clock required in each point

to be synchronized. Also, the GPS (Global Position System) requires

specialized hardware at every point of measurement. While GPS may be

less expensive than PTP, the GPS unit requires a sky-clear view for

working. The latter may be costly or impossible in some locations

due to the antenna installation.

This document introduce the Synchronizing Internet Clock frequency

(sic frequency), which is a protocol providing synchronized

differential clocks (i.e., when the amount to measure is the elapsed

time between two timestamps) in two endpoints connected to the

Internet. While synchronized absolute clocks aim at a measurement of

exact time differences between them, synchronized differential

clocks allow measurements during identical time intervals at two

locations. This property is useful for Internet performance

measurements, like congestion, jitter, or delay variation; which are

based on the elapsed time between timestamps.
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The sic frequency design is close to TSClocks, but it takes

advantage of statistics to perform better. The sic frequency

synchronization relies on Internet-based delay measurements,

including the frequent routes' change detection. Finally, our

implementation also contemplates protecting MitM attacks, including

light but a powerful signature of measurements in each packet. The

sic frequency protocol does neither put constraints on the quality

of a server's clock nor require a limitation of synchronized end

systems' physical distance. The quality of the absolute

synchronization is determined by the stability of the reference

clock and the RTT/2 as in NTP, but the sic frequency protocol has a

better performance in frequency stability than NTP.

Finally, we mention the [ITU-G.8260] shows a methodology to measure

delays in networks. It is based on filtering that selects some

packets to perform the delay computation. The packet selection is

based on the minimum and average RTT, and we show that both of them

have some statistical problems to determine both, the average and

the minimum RTT (see Section 2).

2. The sic frequency protocol overview

Synchronizing Internet Clock frequency (sic frequency) is a protocol

providing synchronized differential clocks in two endpoints

connected to the Internet. Synchronized differential clocks allow

measurements during identical time intervals at two locations. This

is useful if congestion, packet loss or a variation in delay is to

be measured. The model of typical Internet time-measurement is shown

in Figure 1.

Figure 1: The clock synchronization of sic.--
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In this model, sic frequency performs measurements with packets in

the way shown in

Figure 2.

Figure 2: Time line of packets.--

Here, C_s is the server clock, C_c is the client clock and t1...t4

are timestamps.

Figure 2 shows a horizontal timeline for client and server. The

diagonal lines depict a packet traversing some physical space

(wires, routers, and switches). The packet travel times are not

assumed to be identical because routes and background load may

differ in each direction.

The difference between the client clock C_c and the server clock C_s

can be modeled as:

where phi is the absolute clock difference. If RTT is constant (i.e.

little or no background load) and routes are symmetric in both

directions, the difference between clocks can be computed as:

and phi[c->s] = phi[c<-s]. The general equation for the RTT is:

¶
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                        t2      t3

 Server +---------------@-------*----------------------------->

                       /         \_                     C_s [s]

                      /            \_

                     /               \_

                    /                  \_

                   /                     \_

                  /                        \_

                 /                           \_

                /                              \_

               /                                 \_

              /                                    \_

             /                                       \_ C_c [s]
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¶
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C_c = C_s + phi                           ,¶

phi(t) = C_c(t) - C_s(t) ,              (1)¶

¶

phi[c->s] = t1 - ( t2 - RTT/2 ) ,       (2)¶

phi[c<-s] = t4 - ( t3 + RTT/2 ) ,       (3)¶
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Computing Equations 2 and 3 for this simplified case allows

calculation of phi as an RTT function. Note that if routes are not

symmetrical, it is impossible to determine the absolute clocks'

difference.

The sic frequency protocol is based on statistics, background

traffic and network behavior observations. The RTT between two

endpoints follows a heavy-tailed distribution. An alpha-stable

distribution shows as one possible model [traffic-stable]. This

distribution can be characterized by four parameters: the

localization "delta," the stretching "gamma," the tail "alpha," and

the symmetry "beta," [alfa-stables]. The location parameter is

highly related to the mode of the distribution: delta > 0. The

stretching is related to the dispersion: gamma > 0. The symmetry, -1

<= beta <= 1, indicates if the distribution is skewed to the right

(the tail decays to the left) for positive values or the opposite

direction for negatives ones. Finally, the tail alpha, defined in

(0,2], indicates if the distribution is Gaussian one when alpha=2, a

power-law without variance for alpha <2, and without statistic mean

for alpha<1. The alpha-stable distribution is the generalization of

the Central Limit Theorem for any distribution (i.e., it includes

the cases without variance or mean).

Then, the phi(t) estimation involves the subtraction of two alpha-

stable random variables, which yields on another alfa-stable

distribution but symmetrical [alfa-stables]. Due to this result's

characteristic, i.e., a fixed mode and symmetry, a good estimator of

the mode is the median.

Therefore, sic performs periodic measurements to infer the

difference of two clocks on the Internet, taking advantage of the

empiric observations. The periodicity of RTT measurements is set to

1 second.

The parameters of the simple skew model [ToN2008] are estimated by

the following equation:

where phi(t) = C_c - C_s, K is a constant representing the absolute

difference of time of client clock C_c and server clock C_s, and F

is the rate parameter. As sic frequency is a differential clock, we

only estimate the frequency parameter "F."

Note that the "K" parameter cannot be estimated using just endpoints

measurements. Assessing the "K" parameter accurately is out of

scope, and we use K=min(RTT)/2, as it is used in several

RTT = ( t2 - t1 ) + ( t4 - t3 ) .       (4)¶
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phi(t) = K + F * t ,                    (5)¶
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synchronization protocols under the assumption of symmetric paths,

e,g, NTP. Considering the following asymmetry definition,

where t[c->s] is the minimum delay measured from the client to the

server. The maximum asymmetry A of equation 6 is A=1, which is

unlucky, and this establishes the hardbound for the error of K as

min(RTT): if t[c->s] approaches RTT, t[c->s] approaches zero. The

difference between the two is phi (t), and this difference hence is

close to min(RTT), if A=1. In our experiments (see Section 4.1), the

error in estimation phi(t) was always less than min(RTT)/2.

Another problem with most of the synchronization protocols is the

minimum RTT estimation, which depends upon the time-window within

which the RTT is captured. A minimum RTT can only be measured in the

absence of any cross traffic. In the first step, the minimum RTT

measured during a window of 10 minutes (mRTT10m) is captured. Based

on these values, the minimum RTT over a week (mRTTw) is determined.

RTTee is defined as mRTT10m - mRTTw. Figure 3 shows the the RTT

estimation error captured during an experiment where the minimum the

latency between probes was 9431 microseconds during one week, i.e.,

mRTTw=9431 microseconds. Notice that mRTT10m varies a lot, and the

observed values can be more than 450 microseconds above the minimum

RTT over a week. This error is a consequence of the statistical

behavior of the RTT, which can be modeled by the alfa-stable

distribution.

Finally, it is mostly believed there always exist NTP servers at

less than five hops with few milliseconds of RTT because of the NTP

deployment. In Appendix A we show a typical case in Latin America

region where the RTT differs notably from a host in the same city

(Buenos Aires). This example reveals that some countries could not

have this desired situation, and other synchronization tools are

needed.
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         t[c->s]

A = 1 - --------- ,                     (6)

         t[c<-s]
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Figure 3: Min RTT error, estimated every 10 minutes along 7 hours.--

The sic frequency protocol estimates phi(t) of Equation 5 using

measurement statistics and taking advantage of the inherent RTT

properties, i.e., the heavy tail distribution and its alfa-stable

distribution model. The basic sic frequency operation is to

periodically send packets, estimate phi(t), and correct the local

clock with:

where t_c is the corrected time and t the local clock time (notice

that phi(t) is calculated according to Equation 1).

The sic protocol also detects route changes by seeking a non-

negligible difference between the minimum RTT of the actual and past

round trip measurement. The next section also discusses different

mechanisms to detect route changes by RTT evaluation.

3. The formal definition of sic frequency protocol

Section 3.1 presents the sic frequency algorithm. In addition,

parameters and their definitions are introduced. Finally, formal

packet formats are provided.

The sic frequency protocol MUST sign the packets with the

deterministic Elliptic Curve Digital Signature Algorithm (ECDSA)

specified by [RFC6979] to protect sic frequency from MitM attacks.

Error of the min(RTT)

[micro-seconds]

  500 +------|-------|------|------|------|-------|------|------+

      |      +       +      +   O  +      +       +      +      |

      |                         *                               |
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      |O   * ***   O   *  *           *                         |

  100 |-+   O  O       O *            O                       +-|

      |                 **                                      |

      |                 **                                      |
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      +------|-------|------|------|------|-------|------|------+

      0     50      100    150    200    250     300    350    400

                                                    time [minutes]
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To avoid delays when a packet is signed, sic frequency signs them in

a deferred fashion. That is, in each packet carries the signature of

the previous packet (see algorithms in Figure 6 and Figure 5).

3.1. Algorithm description

A sic frequency implementations MUST support the formal description

specified by this section. Once activated, the sic frequency

protocol MUST operate permanently while a client and a receiver

exchange measurement packets. The sic frequency works with three

states: NOSYNC, PRESYNC and SYNC. These states are triggered by the

variables errsync, presync, and synck.

Lines 1 to 4 of the pseudocode in Figure 4 initialize the required

data structures needed and set the sic frequency state to NOSYNC. In

NOSYNC state, a complete measurement window estimates phi's by

Equation 2 (see line 8). Notice that also Equation 3 can be used, or

an average of both Equations. During the experiments, using a single

equation only resulted in estimations with a smaller error. The

possible explanation is that measurements are affected by the same

type of traffic.

The median of the measurement window is computed in line 9, while

lines 10-12 are used to verify if the path changed during the

measurements. When an appreciable difference is detected (bounded by

errRTT) in line 13, the "else" clause is executed and the systems

re-initiates the cycle (see lines 17-22). Notice that line 13

verifies if the minimum RTTs' absolute value is lower than a

percentage of minimum over the complete RTT window.

The sic three tables of pseudocode present frequency algorithm

specification. The parameters are explained after the third table.
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Figure 4: Formal description of sic.--

=======================================================================

|                     sic frequency algorithm                         |

=======================================================================

1  Wmedian <-0, Wm <-0, WRTT <-0, actual_m <-0, actual_c <-0

2  presync <- INT_MAX - P, epochsync <- INT_MAX - P, n_to <-0

3  synck <- false, errsync <- epoch, set(0, 0, NOSYNC), e_prev<-epoch

4  send_sic_packet(SERVER_IP, TIMEOUT)

5  for each timer(RUNNING_TIME) == 0

6   |   (epoch, t1, t2, t3, t4, to) <- send_sic_p(SERVER_IP,TIMEOUT)

7   |   if (to == false) then

8   |    |   Wm <- t1 - t2 + (t2 - t1 + t4 - t3)/2

9   |    |   Wmedian <- median(Wm)

10  |    |   WRTT <- t4 - t1 size(W)

11  |    |   RTTf <- min(WRTT[size(WRTT)/2,size(WRTT)])

12  |    |   RTTl <- min(WRTT[0,size(WRTT)/2])

13  |    |   if ((|RTTf - RTTl| <= errRTT * min(WRTT)) then

14  |    |    |   if (epoch >= presynck + P))  then

15  |    |    |    |   presynck <- true

16  |    |    |   end if

17  |    |    else

18  |    |    |   synck <- false, Wmedian <- 0

19  |    |    |   Wm <- 0, errsync <- epoch, n_to <- 0

20  |    |    |   epoch_sync <- INT_MAX - P, pre_sync <- INT_MAX - P

21  |    |    |   set(0, 0, NOSYNC)

22  |    |   end if

23  |    |   if ((synck == true) && (epoch >= epochsync + P)) then

24  |    |    |   (m, c) <- linear_fit(Wmedian)

25  |    |    |   actual_c <- c

26  |    |    |   actual_m <- (1-alpha) * m + alpha * actual_m

27  |    |    |   epochsync <- epoch,  n_to <- 0

28  |    |    |   set(actual_m, actual_c, SYNC)

29  |    |    else

30  |    |    |   if (epoch == errsync + MEDIAN_MAX_SIZE) then

31  |    |    |    |   presync <- epoch

32  |    |    |   end if

33  |    |    |   if (epoch >= presync + P) then

34  |    |    |    |   (actual_m, actual_c) <- linear_fit(Wmedian)

35  |    |    |    |   synck <- true , epoch_sync <- epoch

36  |    |    |    |   set(actual_m, actual_c, PRESYNC)

37  |    |    |   end if

38  |    |    end if

39  |    else

40  |    |   to <- false

41  |   end if

42 end for

=======================================================================



Several conditions should be verified to pass from NOSYNC to

PRESYNC. First, the "else" condition of line 29 should occur, and

also the elapsed time between errsync and actual epoch should be

MEDIAN_MAX_SIZE (30-32). Therefore, when it also P time is passed

form presync, the condition on line 33 is true, and the system

arrives at PRESYNC, providing an initial estimation of phi.

Then, if there is no route change, the condition in line 14 will be

true when the time was increased in another P period. Then, the

system is in the SYNC state, and it provides the estimation of

phi(t) in line 28. Notice that every P time, the estimation of

phi(t) is computed unless a route change occurs (lines 13 and

17-22).

The function in line 6: (epoch, t1, t2, t3, t4, to) <-

send_sic_packet(SERVER_IP, TIMEOUT), has a special treatment. It

sends the packets specified in Section 3.3, which have signatures.

To avoid the processing delay caused by the signature computation,

we implemented a policy to send the signature of the previous

packet, and if an error is detected, we can stop the synchronization

just one loop ahead.

Figure 5 illustrates how the client-side MUST implement the function

send_sic_p (SERVER_IP, TIMEOUT). This function computes the

timestamp t1 in line 1 and builds and sends the UDP packet in lines

2-3. Then, if there is no timeout, it calculates the t4 timestamp

(line 5), and if no packets were lost, verifies the signature of the

previous one in lines 8-18. If the signature is not valid with the

received certificate, then the system MUST change to NOSYNC state

immediately (see line 11). NOSYNC state MUST also be set if the

limit of time without receiving packets MAX_to is reached. Finally,

it stores the received packet into prev_rcv_pck (a global variable)

to use in the next packet (line 19). Notice that n_to, the lost

packets, is a global variable, as well as the epoch of the previous

packet: e_prev.

¶

¶

¶

¶



Figure 5: The send_sic_p function.--

The server sic algorithm is presented in Figure 6. It uses

prev_sic_P{}, which is a structure to store the received previous

signatures, indexed by the IP client addresses (CLIENT_add contains

its IP and UDP port), and the same for prev_sig{} with the

previously sent signatures. Line 6 verifies either signature is null

because it is the first packet or a valid signature. In both cases,

the algorithm process the packet computing t3, building up the sic

frequency packet, sending it, and computing its signature (stored to

send in the next reply) in lines 7-11. Next, the actual packet is

stored in the prev_sic_P{} structure, line 13.

=======================================================================

|                function: send_sic_p(server, TIMEOUT)                |

=======================================================================

1  t1 <- get_timestamp()

2  sic_P <- sic_pck(t1, 0, 0, prev_sig)

3  (to, rcv_sic_pck) <- send(sic_P,UDP_PORT, SERVER_IP, TIMEOUT)

4  if (to == false) then

5   |  t4 <- get_timestamp()

6   |  epoch <- trunc_to_seconds(t1)

7   |  prev_sig <- get_signature(sic_P)

8   |  if (epoch - e_prev <= RUNNING_TIME) then

9   |   |  if (n_to < MAX_to) then

10  |   |   |  if (verify(prev_rcv_pck,rcv_sic.CERT) == false) then

11  |   |   |   |  set(0, 0, NOSYNC)

12  |   |   |  else

13  |   |   |   |  n_to <- 0,  e_prev <- epoch

14  |   |   |  end if

15  |   |  else

16  |   |   |   set(0, 0, NOSYNC)

17  |   |  end if

18  |  end if

19  |  prev_rcv_pck <- rcv_sic_pck

20  |  t2 <- rcv_sic_pck.t2

21  |  t3 <- rcv_sic_pck.t3

22 else

23  |  n_to <- n_to + 1

24 end if

25 return (epoch, t1, t2, t3, t4, to)

=======================================================================

¶



Figure 6: Algorithm sic for the Server.--

3.2. Protocol definitions

We provide a formal definition of each used constant and variables;

the RECOMMENDED values are displayed in parentheses at the end of

the description. These constant and variables MUST be represented in

a sic frequency implementation. All the types MUST be respected.

They are expressed in "C" programming language running on a 64-bit

processor.

Constants used for the sic frequency algorithm (Figure 4)

RUNNING_TIME: is the period between sic packets are sent

(1 second).

MEDIAN_MAX_SIZE: is the window size used to compute the

median of the measurements (600).

P: is the period between phi's estimation (60).

alpha: is a float in the [0,1], the coefficient of the

autoregressive estimation of the slope of phi(t) (0.05).

TIMEOUT: is the maximum time in seconds that a sic packet

reply is expected (0.8 seconds).

=======================================================================

|                        sic Server algorithm                         |

=======================================================================

1  prev_sic_P{} <- null, prev_sig{} <-- null

2  while (RUNNING == true) then

3   |   if (receive() == true) then

4   |    |  t2 <- get_timestamp()

5   |    |  prev_sig <- get_signature(prev_sic_P{receive().CLIENT_add})

6   |    |  if (prev_sig == null)  ||

    |    |           (verify(prev_sig, CLIENT_add.CERT) == true)  then

7   [    |   |  t3 <- get_timestamp()

8   |    |   |  sic_P<-sic_pack(t1, t2, t3, prev_sig)

9   |    |   |  send(sic_P, CLIENT_add.UDP, CLIENT_add.IP, TIMEOUT)

10  |    |   |  prev_sig <- get_signature(sic_P)

11  |    |   |  prev_sig{receive().CLIENT_add} <- prev_sig

12  |    |  end if

13  |    |  prev_sic_P{receive().CLIENT_add} <- receive().sic_pack

14  |   end if

15  end while

=======================================================================

¶
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SERVER_IP: is the IP address of the server (@IP in version

4 or 6).

errRTT: is a float that bounds the maximum difference to

detect a route change (0.2).

MAX_to: is an integer representing the maximum number of

packet lost (P/10).

CERT: is a public certificate of the other end, it is used

to verify signs of the packets.

UDP_PORT: is an integer with the port UDP where the

service is running on the server. (4444)

SERVER_IP: is the IP address of the server.

CLIENT_IP: is the IP address of the client.

States used for the sic frequency algorithm (Figure 4)

NOSYNC: a boolean indicates that it is not possible to

correct the local time.

PRESYNC: an integer indicates that sic is almost (P

RUNNING_TIME) seconds from the synchronization.

SYNC: a boolean indicates that sic is synchronized.

Variables used for the sic frequency algorithms (Figure 4, 

Figure 5 and Figure 6)

errsync: is an integer with the UNIX timestamp epoch of

the initial NOSYNC cycle. It is used to complete the

window or measurements (Wm) to compute their medians.

presync: is an integer with the UNIX timestamp epoch of

the initial PRESYNC cycle. It is used to wait until (P

RUNNING_TIME) seconds to the linear fit of phi(t).

synck: is an integer with the UNIX timestamp epoch of the

initial SYNC cycle. Every P RUNNING_TIME) seconds the

phi(t) function is estimated.

epochsync: is an integer with the last UNIX timestamp

epoch of synchronization. It is used to compute a new

estimation of phi(t), every (P RUNNING_TIME) seconds.

epoch: is an integer with UNIX timestamp in seconds. It

carries the initial epoch of each sic measurement packet.
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t1, t2, t3, t4: are long long integers to store the t UNIX

timestamps in microseconds.

actual_m : is a double with the slope for the phi(t)

estimation.

actual_c: is a double with the intercept for the phi(t)

estimation.

Wm: is an array of doubles of MEDIAN_MAX_SIZE. It stores

the instantaneous estimates of phi(t).

Wmedian: is an array of doubles of P size. It saves the

computed medians of Wm every RUNNING_TIME.

WRTT: is an array of doubles of (2 P) size. It stores the

calculated RTT of last measurements.

RTTl: is a double with the minimum of last P RTTs. It is

used to detect changes on the route from the client to the

server.

RTTf: is a double with the minimum of previous P RTTs. It

is used to detect changes on the route from the client to

the server.

n_to: is an integer representing the number of lost

packets in the actual synchronization window P.

e_prev: is an integer with the UNIX timestamp epoch of the

last valid packet.

prev_rcv_pck: is a sic packet structure, the previous

received one.

3.3. Protocol packet specification

The sic frequency uses UNIX microsecond format timestamps. Regarding

Figure 2, the client takes a timestamp t1 just before it sends the

packet. When the server receives the packet, it immediately computes

t2, and just before it is sent back to the client, it computes t3.

When the client receives the packet, it calculates t4.

The server does not need the timestamp t1 because the proposed

protocol synchronizes a client with the server clock. This

information could, however, be useful for the server for future use.

The packets respect the NTP4 format as they are defined in the

Section A.1.2 of [RFC5905] and the signature of the fields, shown in 

Figure 7. We use the time formats of 64 bits with seconds and a
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fraction of seconds. They MUST be sent as UDP data, and it MUST have

the mentioned fields.

The client and server certificates SHOULD be valid and signed ones

(only for experimentation, the user MAY use autogenerated ones).

Figure 7: Packet format for the sic protocol.--

3.4. Minimum sic deployment

To deploy the sic frequency algorithm, as a minimum, a Server and

one Client are needed. The Server can support multiple clients. The

maximum number of clients is for further study. The Server clock is

considered the master one, and all clients synchronize with it. The

Server-side runs sic frequency as a server with a UDP_PORT number,

as specified by the algorithm shown in Figure 6.

Client sic runs the algorithm shown in Figure 4 and also SHOULD

provide the corrected time as

Figure 8

Different ways of doing this task are possible:

Providing a client capable of reading the variables actual_m and

actual_c in shared memory and producing the result of Equation 8.

Providing a service in a UDP port answering the correct timestamp

queries with Equation 8.

Other solution.

4. Implementation of sic frequency protocol

In this section we present the prove of the sic concept through some

test that we already performed, and the current implementation of

¶

¶

+-----------------------------------------------------------+

|  NTP_packet (t1_c,t2_s,t3_s)  |  Sig_r n-1  |  Sig_s n-1  |

+-----------------------------------------------------------+

                      Client --> Server

+-----------------------------------------------------------+

|  NTP_packet (t1_c,t2_s,t3_s)  |  Sig_r n-1  |  Sig_s n-1  |

+-----------------------------------------------------------+

                      Server --> Client
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t = actual_c + actual_m * timestamp     (8)
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sic in C language. Our implementation is publicly available [sic-

implementation].

This protocol implements protection against MitM attacks. The

identity of endpoints is guaranteed by signed certificates using the

deterministic Elliptic Curve Digital Signature Algorithm (ECDSA)

specified in the [RFC6979]. Server and Client should use signed and

valid ECDSA certificates to ensure their identity, and each side has

responsible to verify the public certificate of the other side

before to run the algorithm in Figure 4.

4.1. Evaluation

To verify the sic proposal, we tested it using three hosts with GPS

units. The first two were located in Buenos Aires, and the third at

Los Angeles. We slightly modified the algorithm in Figure 4 to

trigger each measurement using the PPS (pulse per second) the signal

provided by the GPS unit. Then, recording the client and server

clocks with the PPS signal, we can determine the real phi function

of Equation 1, within the GPS error (it is several orders of

magnitude smaller than the error of the sic frequency protocol).

We use MTIE defined as follows (Maximum Time Interval Error, see 

[ToIM1996]):

for every t' and t in the interval [t,t+s]; and we chose s=60

seconds. We first used two host (RaspBerriesPI-2) connected back to

back to analyze the minimum achievable precision, yielding an MTIE

of 15.8 microseconds for the 90 percentile. Then, we selected two

real cases of study, one national and the other international. In 

Figure 9 we show the result of the MTIE, evaluated in 60 seconds

intervals, for the experiment Buenos Aires-Buenos Aires (RTT of

10ms) and Buenos Aires-Los Angeles (RTT of 198ms). The percentile 90

corresponds to 18.35 microseconds for the Buenos Aires case, and

25.4 microseconds for the Los Angeles case. The percentile 97.5

corresponds to 30 microseconds for the Buenos Aires case, and 42

microseconds for the Los Angeles case. We display the quartiles in 

Figure 10. These measurements were performed during a week in each

case.
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MTIE = max [phi(t')] - min [phi (t)] ,  (9)¶
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Figure 9: Cumulative distribution function of the MTIE (60s).--

Figure 10: Table with MTIE quartiles for two RTT sic cases, and for a

local NTP4 system (the numbers indicate microseconds).--

We also conducted another test for NTP4 in Buenos Aires, Argentina.

We used a host with GPS, whose PPS signal triggered a process to log

actual timestamps. This host was also running NTP4 with the server

time.afip.gov.ar, also located in Buenos Aires city, with an average

RTT of 12ms. Applying the same process of the previous cases, we

obtained that the following quartiles Q3: 9.1ms, Q2: 5.2ms, and Q1:

3.3ms for the MTIE of the NTP4 measurements (also reported in Figure

10). Finally, percentile 90 of the NTP4's MTIE is 11.1ms.

The comparison of NTP4 with frequency sic shows that this new method

performs two orders of magnitude better.

  CDF

      +--|-------|-------|-----|-------|----------|------|------+

    1 |-+        +       +     + #########*#*#*#*#*#*#*#*#******|

      |                      ##### *******                      |

      |                   ####  ****                            |

  0.8 |-+                ##   ***                             +-|

      |                ###   **                                 |

      |               ##   ***                                  |

  0.6 |-+            ##   **                                  +-|

      |             ##   **                                     |

      |            ##   **                                      |

  0.4 |-+        ##    **                                     +-|

      |         ##    **                                        |

      |        ##    **                                         |

  0.2 |-+     ##   ***                                        +-|

      |    ####  ***                  Buenos Aires  #######     |

      | ####   ***                    Los Angeles   *******     |

    0 |##******* +       +     +       +     +    +      +    +-|

      +--|-------|-------|-----|-------|-----|----|------|------+

         7       10      15    20      30    40   50     70    100

                                                   [micro-seconds]

    |Buenos Aires (10ms) | Los Angeles (198ms) |local NTP4 (12ms)

====+====================+=====================+=================

 Q3 |      14.69         |        19.29        |      9059

----+--------------------+---------------------+-----------------

 Q2 |      11.60         |        14.93        |      5245

----+--------------------+---------------------+-----------------

 Q1 |       9.41         |        12.26        |      3338

¶

¶



5. Conclusions

This document presents the sic frequency protocol, employed to

synchronize host clock frequency across the Internet, and which is

also resistant to MitM attacks. The main field of application is the

Internet performance analysis, e.g., to measure congestion, jitter,

or delay variations parameters; all of them are based on a

difference of timestamps. It shows the complete specification,

implementation, and experiment results that support its working

principle. In particular, sic frequency provides a clock rate

stability of less than 1ppm for most of the time.

6. Security Considerations

Following [RFC7384] enumeration of Time Protocols in packet-switched

networks, the proposed encryption of timing packets, based on a

mechanism of secure key distribution, provides the following

characteristics:

3.2.1 Packet Manipulation: Prevented by packet signature.

3.2.2 Spoofing: Prevented by packet signature and secure key

distribution.

3.2.3 Replay Attack: Prevented by chain signing of packets.

3.2.4 Rogue Master Attack: Prevented by secure key distribution.

3.2.5 Packet Interception and Removal: If several packets are

removal, the protocol does not arrive at SYNC state.

3.2.6 Packet Delay Manipulation: Not prevented. Future versions

may prevent this using over-specification of timing (using

redundant masters)

3.2.7 L2/L3 DoS attacks: Not prevented. This attack can be

prevented in future versions using over-specification of timing

and redundant masters time servers.

3.2.8 Cryptographic performance attacks: Not an issue in ECDSA.

3.2.9 DoS attacks agains the time protocol: Prevented by secure

key distribution.

3.2.10 Grandmaster Time source attack (GPS attacks): Not

prevented. Future versions may prevent this using over-

specification of timing (using several time servers) .

3.2.11 Exploiting vulnerabilities in the time protocol: Not

prevented, future vulnerabilities are unknown.
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[RFC2119]

[RFC5905]

[RFC6979]

[RFC7384]

[RFC7679]

3.2.12 Network Reconnaissance: Not prevented in this version. No

countermeasures were done in node anonymization.

The Packet Delay manipulation is one of the hardest problems to

solve because there exist some smart ways to attack any

synchronization protocol. Even thou, the sic frequency protocol can

protect itself because it can identify several attacks of this type,

i.e., it is challenging to mimic traffic behavior. This emulation of

behavior can be easily overcome regarding the RTTs' distribution,

which has to be a heavy-tailed one. This way, the analysis should be

studied to ensure the implementation of a robust and light test of

the raw data.

7. IANA Considerations

This memo makes no requests of IANA.
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Appendix A. Example of RTT to NTP servers

This appendix shows an experiment to measure the RTT and the

distance in hops from four different points to a time server in

Buenos Aires city (the capital of Argentina). We did the measures

two times from the four points, and we used one hundred packets to

determine some statistical parameters. Next traceroute measurements

show that the number of hops and RTT are very different from each

point also changes a lot. For instance, taking a distinctive look at

the STD, average, and maximum is possible to detect huge variations.

We provide here a case in Argentina, trying to reach an NTP server

from 4 different points at the Buenos Aires city.¶
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-------------------------------------------------------------------------

host1$ mtr -r -c 100 time.afip.gov.ar

Start: Tue Mar 27 19:03:51 2018

HOST: raspbian-server             Loss%  Snt  Last  Avg  Best  Wrst StDev

  1.|-- gw-vlan-srv.innova-red.ne  0.0%  100   2.2  2.8   2.1  37.7   4.9

  2.|-- rnoc5.BUENOS-AIRES.innova  0.0%  100   2.3  3.8   2.1  55.8   7.9

  3.|-- 10.5.10.2                  0.0%  100   2.5  2.6   2.2   3.1   0.0

  4.|-- 200.0.17.104               0.0%  100   3.1  3.1   2.4  13.7   1.1

  5.|-- 172.18.2.53                0.0%  100   4.8  5.7   3.8  12.4   1.7

  6.|-- time.afip.gob.ar           0.0%  100   5.2  5.2   3.8  12.0   1.3

host1$ mtr -r -c 100 time.afip.gov.ar

Start: Tue Mar 27 18:57:06 2018

HOST: raspbian-server             Loss%  Snt  Last  Avg  Best  Wrst StDev

  1.|-- gw-vlan-srv.innova-red.ne  0.0%   50   2.4  2.8   2.0  34.2   4.5

  2.|-- rnoc5.BUENOS-AIRES.innova  0.0%   50   2.1  3.8   2.1  52.8   7.7

  3.|-- 10.5.10.2                  0.0%   50   2.7  2.9   2.2  15.6   1.8

  4.|-- 200.0.17.104               0.0%   50   2.8  3.0   2.3   3.9   0.0

  5.|-- 172.18.2.53                0.0%   50   4.5  5.8   3.8  17.8   2.2

  6.|-- time.afip.gob.ar           0.0%   50   4.7  9.9   4.2 238.5  33.0

-------------------------------------------------------------------------

host2$ mtr -r -c 100 time.afip.gov.ar

Start: Tue Mar 27 19:03:47 2018

HOST: ws-david                    Loss%  Snt  Last  Avg  Best  Wrst StDev

  1.|-- 10.10.96.1                 0.0%  100   0.3  0.2   0.2   0.3   0.0

  2.|-- 200.16.116.171             0.0%  100   1.0  5.9   0.6 158.4  22.9

  3.|-- static.33.229.104.190.cps  1.0%  100   1.6  2.5   1.5  80.6   8.0

  4.|-- static.129.192.104.190.cp  0.0%  100   2.1  1.9   1.8   3.0   0.1

  5.|-- 200.0.17.104               1.0%  100   2.0  2.2   1.8   9.4   0.7

  6.|-- 172.18.2.53                0.0%  100   3.2  4.2   3.1  12.0   1.5

  7.|-- auth.afip.gob.ar           0.0%  100   4.2  4.5   3.3   9.8   1.2

host2$ mtr -r -c 100 time.afip.gov.ar

Start: Tue Mar 27 18:57:00 2018

HOST: ws-david                    Loss%  Snt  Last  Avg  Best  Wrst StDev

  1.|-- 10.10.96.1                 0.0%   50   0.3  0.3   0.2   0.7   0.0

  2.|-- 200.16.116.171             0.0%   50   0.9  6.7   0.7 196.5  29.1

  3.|-- static.33.229.104.190.cps  2.0%   50   1.6  1.7   1.5   2.2   0.0

  4.|-- static.129.192.104.190.cp  0.0%   50   2.1  2.0   1.7   2.4   0.0

  5.|-- 200.0.17.104               0.0%   50   2.0  2.1   1.8   2.6   0.0

  6.|-- 172.18.2.53                0.0%   50   4.8  4.3   3.2   9.1   1.3

  7.|-- time.afip.gob.ar           0.0%   50   4.3  9.4   3.3 234.9  32.7

-------------------------------------------------------------------------

host3$ mtr -r -c 100 time.afip.gov.ar



Start: 2018-03-27T19:03:51-0300

HOST: aleph.local                 Loss%  Snt  Last  Avg  Best  Wrst StDev

 1.|-- 10.17.71.254               0.0%  100   4.7  30.3   3.5 280.4  52.4

 2.|-- 10.255.254.250             0.0%  100   2.5  31.1   1.8 285.4  59.2

 3.|-- 209.13.133.10              0.0%  100  30.5  43.9   2.3 237.2  64.9

 4.|-- host169.advance.com.ar     3.0%  100  36.0  64.8   3.1 404.4  86.9

 5.|-- 200.32.33.33               2.0%  100 106.9  70.6   2.8 315.0  80.4

 6.|-- 200.32.34.66               5.0%  100  93.1  56.8   2.7 336.1  74.5

 7.|-- 200.32.33.38               7.0%  100  42.8  58.0   2.9 357.8  76.7

 8.|-- 209.13.139.211             4.0%  100  46.2  56.7   2.8 298.8  69.9

 9.|-- 209.13.139.209             1.0%  100  84.5  57.1   2.6 277.7  72.3

10.|-- 209.13.166.211             1.0%  100  43.4  63.5   3.2 390.6  78.7

11.|-- 200.32.34.137              2.0%  100  68.7  64.1   3.7 259.5  75.5

12.|-- 200.32.33.37               0.0%  100   4.1  56.9   3.3 249.6  64.3

13.|-- 200.32.34.121              3.0%  100  10.9  65.0   4.1 415.7  85.1

14.|-- 200.32.33.241              2.0%  100 252.6  61.8   3.8 355.9  74.5

15.|-- 200.16.206.198             3.0%  100 188.0  54.6   3.1 461.7  74.9

16.|-- 172.18.2.53                2.0%  100 133.4  53.1   4.3 402.1  69.2

17.|-- time.afip.gob.ar           4.0%  100  72.5  54.1   4.9 343.2  66.9

host3$ mtr -r -c 100 time.afip.gov.ar

Start: 2018-03-27T18:57:05-0300

HOST: aleph.local                 Loss%  Snt  Last  Avg  Best  Wrst StDev

 1.|-- 10.17.71.254               0.0%   50 125.6  88.1   3.7 392.4  79.3

 2.|-- 10.255.254.250             0.0%   50  62.1  54.8   2.1 333.2  68.0

 3.|-- 209.13.133.10              0.0%   50   4.0  33.9   2.4 280.8  51.3

 4.|-- host169.advance.com.ar     2.0%   50   4.1  21.3   2.9 236.7  40.4

 5.|-- 200.32.33.33               2.0%   50   4.5  32.2   3.2 341.3  69.4

 6.|-- 200.32.34.66               4.0%   50   7.7  26.0   3.5 278.8  55.8

 7.|-- 200.32.33.38               2.0%   50   4.8  29.4   3.0 221.3  43.4

 8.|-- 209.13.139.211             0.0%   50  84.8  40.3   3.1 250.4  53.0

 9.|-- 209.13.139.209             0.0%   50  25.1  35.0   2.8 249.2  55.4

10.|-- 209.13.166.211             0.0%   50   3.7  33.5   2.6 188.9  54.3

11.|-- 200.32.34.137              0.0%   50   5.6  28.2   3.7 224.3  51.1

12.|-- 200.32.33.37               0.0%   50   3.7  24.2   3.5 189.5  44.9

13.|-- 200.32.34.121              0.0%   50   4.7  30.8   4.0 213.2  51.6

14.|-- 200.32.33.241              0.0%   50  14.4  33.1   3.9 364.6  67.2

15.|-- 200.16.206.198             0.0%   50   5.0  58.2   3.1 300.7  88.5

16.|-- 172.18.2.53                0.0%   50   9.4 117.8   4.4 315.1 103.4

17.|-- time.afip.gob.ar           0.0%   50 199.6 120.2   5.2 484.0  96.2

-------------------------------------------------------------------------

host4$ mtr -r -c 100 time.afip.gov.ar

Start: 2018-03-27T19:03:51-0300

HOST: cnet                        Loss%  Snt  Last  Avg  Best  Wrst StDev

 1.|-- 157.92.58.1                0.0%  100   6.6   2.8   0.3  12.8   2.5

 2.|-- ???                       100.0  100   0.0   0.0   0.0   0.0   0.0

 3.|-- ???                       100.0  100   0.0   0.0   0.0   0.0   0.0



 4.|-- host98.131-100-186.static  0.0%  100   5.7   5.6   1.5   9.4   2.2

 5.|-- host130.131-100-186.stati  0.0%  100   6.5   6.3   2.5  10.3   2.2

 6.|-- 200.0.17.104               0.0%  100   2.4   2.7   2.3  15.6   1.4

 7.|-- ???                       100.0  100   0.0   0.0   0.0   0.0   0.0

 8.|-- time.afip.gob.ar           0.0%  100   4.9   7.6   3.9 243.0  23.9

host4$ mtr -r -c 100 time.afip.gov.ar

Start: Tue Mar 27 18:41:40 2018

HOST: cnet                        Loss%  Snt  Last   Avg  Best Wrst StDev

 1.|-- 157.92.58.1                0.0%   50   4.0   1.6   0.3   9.1   1.6

 2.|-- ???                       100.0   50   0.0   0.0   0.0   0.0   0.0

 3.|-- ???                       100.0   50   0.0   0.0   0.0   0.0   0.0

 4.|-- host98.131-100-186.static  0.0%   50   4.7   5.5   1.5  10.9   2.4

 5.|-- host130.131-100-186.stati  0.0%   50   8.4   6.5   2.6  10.5   2.2

 6.|-- 200.0.17.104               0.0%   50   2.5   2.8   2.3  11.0   1.2

 7.|-- ???                       100.0   50   0.0   0.0   0.0   0.0   0.0

 8.|-- time.afip.gob.ar           0.0%   50   4.9   9.2   3.8 226.7  31.4

--------------------------------------------------------------------------

¶
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