
Network Working Group J. Algermissen
Internet-Draft Jan Algermissen Solutions Engineering
Intended status: Informational March 03, 2019
Expires: September 4, 2019

Digital Product Life Cycle Model
draft-algermissen-digital-product-life-cycle-model-00

Abstract

 This specification defines an abstract model for Digital Products and
 their relationships with each other in order to establish a basic
 abstraction on which the lifecycle of Digital Products and
 collaborations around them can be expressed. In addition, this
 specification defines a number of message formats and hypermedia
 controls, to enable the creation of tools and application in the
 space of Digital Product Life Cycle Management.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 4, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Algermissen Expires September 4, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-DraAtmodel for digital product life cycle managemen March 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Glossary . 3
3. The Digital Product Life Cycle Model 4
4. Services . 4
5. Execution Environment Types 6
6. Digital Product Composition Model 8
7. Product Documents . 10
8. Stage Sets . 11
9. The Stage Set JSON Object 12
10. Delivery Fabrics . 13
11. Extension Resource Families 13
12. Well Defined Execution Environment Variables 13
13. Example Implementations 14
14. Security Considerations 14
15. IANA Considerations . 14
16. References . 16
Appendix A. Acknowledgements 18
Appendix B. Implementation Notes 18

 Author's Address . 18

1. Introduction

 A wide variety of applications exists that support the journey of
 developers and other collaborators around the lifecycle of digital
 products.

 The aim of this specification is to facilitate integration options
 between such tools and applications by providing a common abstraction
 and coordination protocols.

 The abstract model differentiates between the notion of a Digital
 Product and any system or infrastructure configurations and
 installations created to facilitate collaboration around such digital
 products. A Digital Product in itself is purely abstract, primarily
 acting as a nexus for accountability and collaboration.

 Associated with Digital Products is a life cycle model that provides
 an abstraction of the individual phases in which a Digital Product
 lives to actually produce value. Collaboration of various actors is
 also logically organised on the basis of these phases.

 Collaboration and value creation only becomes possible if
 corresponding tooling or infrastructure is provided beyond the

Algermissen Expires September 4, 2019 [Page 2]

Internet-DraAtmodel for digital product life cycle managemen March 2019

 intangible notion of a Digital Product. For each of the life cycle
 phases a resource abstraction is defined in order to establish a
 model around which software can be created for creation and
 management of such life cycle specific resources.

 On top of this semantic foundation provided by these abstract models,
 this specification defines a number of message formats, hypermedia
 controls, and component roles that enable the creation of
 collaboration software systems and tools.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Glossary

 Throughout this specification the following terms are used with
 specific meaning as defined below:

 o Resource Family: An abstaction of coordinated resources that
 support a specific kind of usecase, such as deploying and running
 a product in some infrastructure or performing build, test,
 packaging, and publishing of products.

 o Resource Family Descriptor: A file or network message containing a
 description of a desired instance of a resource family, for
 example a stage set definition file.

 o Resource Manager: A software system that processes resource family
 descritors and creates or updates infrastructure accordingly.
 Examples are the creation of CI/CD pipelines and associated test
 systems, the creation of collaboration tool spaces and channels.

 o Resource Manager Client: A software system that interacts with a
 resource manager.

 o Provisioning Strategy: The specifics of the implementation how a
 given resource manager chooses to turn the abstract resource
 family descriptor into actually created structures. For example,
 a stage set resource manager could implement a strategy that puts
 all stage sets into a single account with shared runtimes and PaaS
 instances, or it could implement a strategy, where every processed
 stage set is provided an isolated environment.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Algermissen Expires September 4, 2019 [Page 3]

Internet-DraAtmodel for digital product life cycle managemen March 2019

 The following resource families are define by this specification:

 * Product Management Environment (TBD)

 * Stage Set

 * Delivery Fabric (TBD)

 * Operations Cockpit (TBD)

 * Report Workbench (TBD)

3. The Digital Product Life Cycle Model

 This specification differentiates the following Digital Products
 Lifecycle aspects:

 o Journey Portfolio Management Model

 o Product Management Model

 o Product Composition Model

 o Product Content Model

 o Product Delivery Model

 o Product Deployment Model

 o Product Operations Model

4. Services

 The Digital Product Life Cycle Model aims to facilitate the
 integration into existing Internet technology and thus uses existing
 specified semantics whenever possible.

 One of such integration points is the notion of _Service_, which
 refers to an abstract capability associated with an interaction
 protocol expectation. This specification uses the term _Service_ in
 the exact same sense as it is used by the various specifications
 available through the IETF.

 Some relevant specifications are [RFC3232]. [RFC2782], [RFC6763].

 On the one hand services are used by capability providing software
 systems to advertise that they meet the contract associated with a
 given service name, or in other words, that the providing system

https://datatracker.ietf.org/doc/html/rfc3232
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc6763

Algermissen Expires September 4, 2019 [Page 4]

Internet-DraAtmodel for digital product life cycle managemen March 2019

 meets the expectations of consuming systems of a given service. On
 the other hand, services are used by consuming systems to express
 that they have certain protocol and capability expectations when
 interacting with a providing system.

 While services in most existing specifications are rather protocol
 focussed, the service notion seamlessly supports referring to
 capabilities that exist in more functional areas. The following
 examples show services that illustrate the notion of _servciew_ as
 understood by this specification:

 'search', 'suggest', 'basket', 'ftp', 'postgres', 'smtp', 'http',
 'aws-dynamo', 'gcp-pubsub', 'google-maps',...

4.1. Service Names

 Service names MUST conform to the syntax requirements stated in
 [RFC1034], meaning that service names MUST only consist of ASCII
 letters, digits, and hyphens and that they MUST NOT be longer than 15
 characters.

 Service names are case insensitive.

 TBD: Differentiate between standardized global services and context-
 based services

4.2. Port Numbers

 Services MAY be assigned a port number, see [RFC3232] and
https://www.iana.org/assignments/port-numbers

4.3. Service Catalog

 In order to express dependencies of a product on one or more
 services, the list of services available in a given context must be
 known. Systems that have the ability to manage dependencies SHOULD
 expose service catalogs that list the available services.

4.4. The service-catalog Link Relation Type

 Links with the link relation type 'service-catalog' indicate that the
 target resource represents a service catalog.

4.5. Service List Documents

 The canonical model for a service list document is a JSON [RFC8259]
 object.

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc3232
https://www.iana.org/assignments/port-numbers
https://datatracker.ietf.org/doc/html/rfc8259

Algermissen Expires September 4, 2019 [Page 5]

Internet-DraAtmodel for digital product life cycle managemen March 2019

 When serialized as a JSON document, that format is identified with
 the "application/vnd.ply.servicelist+json" media type.

4.5.1. Syntax Example

 {
 "services" : [
 {
 "name" : "",
 "description" : "...",
 "docs" : ["" , ""]
 },
 {
 "name" : "",
 "description" : "...",
 "docs" : ["" , ""]
 }
]
 }

5. Execution Environment Types

 Common to all software systems is the differentiation between
 something being developed and actually running it in a given context.
 The things being develop are inherently bound to the target type of
 execution environment. This specification defines the notion of
 Execution Environment Type in order to capture this property of
 developed software items. An Execution Environment is anyting into
 which a developed software can be deployed to realize its
 capabilities in a given runtime environment.

 Examples of Execution Environment Types are the usual environments
 such as "Linux Operating System", "Docker", "AWS Lambda", "Java
 Application Server", "Oracle PL/SQL", but other possible runnable
 artefacts and Execution Environment Types are "Single Page
 Applications deployed to a CDN", "The configuration of an integration
 proxy", "A native mobile app deployed on a mobile phone".

5.1. Execution Environment Type Definitions

 Execution Environment Types establish a contract between product
 component developers and processors of component deployments and
 developers need to understand this contract when they develop the
 component. For example, part of this contract is the definition of
 how the well known environment variables are provided to the
 component at runtime. Another part is how component artifacts must
 be published before or during deployment.

Algermissen Expires September 4, 2019 [Page 6]

Internet-DraAtmodel for digital product life cycle managemen March 2019

 The contract established by a given Execution Environment Type must
 be made availble to the users as Execution Environment Type
 Definitions and must convey the fopllowing information:

5.1.1. Name

 The identifier and name of the execution environment type.

5.1.2. Description

 A detailed description of the contract in a way that is sufficient
 for the user to develop components and publish them. Specifically
 this MUST include

 o What is the expected artifact build and packaging format?

 o What is the expected runtime behaviour (TBD: explain)

 o What are the startup and shutdown constraints

 o What are the deployment parameters that MUST, SHOULD, or MAY be
 passed as party of deployment (eg cmount CPU)

 o How are the environment variables passed to the component at
 runtime?

 o How are secrets pertaining to individual variable values provided?

 o Anything else the developer needs to know the execution
 environment will expect from her software.

5.2. Execution Environment Variables

 TBD

5.3. Execution Environment Type Catalog

 Systems that support the deployment of software artifacts SHOULD
 provide an execution evironment type catalog to inform client systems
 about the supported execution environments.

5.4. The 'execenv-catalog' Link Relation Type

 Links with the link relation type 'execenv-catalog' indicate that the
 target resource represents an execution environment type catalog.

Algermissen Expires September 4, 2019 [Page 7]

Internet-DraAtmodel for digital product life cycle managemen March 2019

5.5. Execution Environment Type List Documents

 TBD

 The canonical model for an execution environment document is a JSON
 [RFC8259] object.

 When serialized as a JSON document, that format is identified with
 the "application/vnd.ply.execenvlist+json" media type.

5.5.1. Syntax Example

 {
 "execenvs" : [
 {
 "name" : "",
 "description" : "...",
 "docs" : ["" , ""] },
 {
 "name" : "",
 "description" : "...",
 "docs" : ["" , ""]
 }
]
 }

6. Digital Product Composition Model

 A digital product is understood to consist of components. Components
 can have dependencies on services. Services are either backing
 systems like databases or they are external services, such as a
 search API, a backend IT system, or another product in the sense of
 'product' used in this specification.

 Components can share dependencies that are specific to a product, but
 no two products may share the same service instances.

https://datatracker.ietf.org/doc/html/rfc8259

Algermissen Expires September 4, 2019 [Page 8]

Internet-DraAtmodel for digital product life cycle managemen March 2019

 +-----------------------------------+
 | Product |
 | ~~~~~~~ |
 | -name |
 | |
 | +-----------+ +-----------+ | +-------+
 | | Component | | Component +--+-- implements ->|Service|
 | | ~~~~~~~~~ | | ~~~~~~~~~ | | +-------+
 | | -name | | -name | |
 | | -type | | -type | |
 | +----+-+----+ +-----+-----+ |
 | | | | |
 | | +----------------+ |
 | | | |
 | V V |
 | +----------+ +----------+ |
 | |Dependency| |Dependency| |
 | |-name | |-name | |
 | +-----+----+ +----+-----+ |
 | | | |
 +--------+-----------------+--------+
 | |
 V V
 +-------+ +-------+
 |Service| |Service|
 +-------+ +-------+

6.1. Product

 TBD

6.1.1. Product Name Attribute

 Product objects MUST exhibit a "name" property with a string literal
 value which conforms to the syntax requirements for DNS labels. The
 labels must follow the rules for ARPANET host names. They must start
 with a letter, end with a letter or digit, and have as interior
 characters only letters, digits, and hyphen. There are also some
 restrictions on the length. Labels must be 63 characters or less
 ([RFC2181]).

6.2. Component

https://datatracker.ietf.org/doc/html/rfc2181

Algermissen Expires September 4, 2019 [Page 9]

Internet-DraAtmodel for digital product life cycle managemen March 2019

6.2.1. Component Name Attribute

 Component objects MUST exhibit a "name" property with a string
 literal value which conforms to the syntax requirements for DNS
 labels. The labels must follow the rules for ARPANET host names.
 They must start with a letter, end with a letter or digit, and have
 as interior characters only letters, digits, and hyphen. There are
 also some restrictions on the length. Labels must be 63 characters
 or less ([RFC2181]).

6.2.2. Component Type Attribute

 Components have an Execution Environment Type indicated by the 'type'
 attribute.

6.3. Dependency

 TBD

 Dependencies are named to differentiate between them. This makes it
 possible for a product to exhibit one or more dependencies on the
 same service.

6.4. Service Implementation

 When products expose capabilities for use by other products, they
 must expose them in order for other products to consume them as
 dependencies.

7. Product Documents

 In order to communicate product and product structure information
 between systems, this specification defines a syntax for product
 documents. In addition to the structural product information,
 product documents contain syntax elements that enable the
 coordination between resource managers and resource manager clients.

 Resource managers SHOULD use these syntax elements to embed discovery
 information into product data to enable resource manager clients to
 determine where to send product data- or resource descriptor updates
 and where to retrieve update status information.

 Resource manager clients SHOULD leverage the discovery elements as
 much as possible and understand product documents as the primary
 means of coordination between resource managers and clients.

 Focussing resource manager client development on the semantics of
 product documents and other hypermedia elements defined in this

https://datatracker.ietf.org/doc/html/rfc2181

Algermissen Expires September 4, 2019 [Page 10]

Internet-DraAtmodel for digital product life cycle managemen March 2019

 specification enables the creation of generic user agents for any
 resource manager implementation. In other words, resource manager
 clients SHOULD not rely on specific aspects of a certain resource
 manager instance to avoid coupling the client to the original design
 of that specific manager.

7.1. The Product JSON Object

 The canonical model for a product document is a JSON [RFC8259]
 object.

 When serialized as a JSON document, that format is identified with
 the "application/vnd.ply.product+json" media type.

7.2. A YAML-formatted example of a product model

 name: search
 dependencies:
 - name: index
 service: solr
 - name: config
 service: postgres
 components:
 - name: importer
 dependencies: ["index","config"]
 - name: searcher
 dependencies: ["index"]
 implements: ["opensearch","my-suggest"]

8. Stage Sets

 Stage Sets are a resource family that enables the creation of sets of
 related stages in a given infrastructure providing system. Resource
 Managers that accepts the processing of stage sets, are expected to
 create and configure infrastructure accoring to the desired target
 state as abstractly expressed in the processed state set.

 Many stage sets can be defined for any given product and different
 resource managers can be chosen to be responsible for any number of
 such stage sets.

 For example, one might choose (1) to apply one resource manager to a
 public cloud provider for managing the main delivery stages there,
 (2) to apply another resource manager to an on-premise infrastructure
 and manage individual, short lived, per-feature branch test stages in

https://datatracker.ietf.org/doc/html/rfc8259

Algermissen Expires September 4, 2019 [Page 11]

Internet-DraAtmodel for digital product life cycle managemen March 2019

 a cheaper environment, and (3), developers could use a local resource
 manager to manage local development stages and generate Docker
 Compose-based running systems from them.

 Therefore, stage sets enable a fully decentralized management of sets
 of related stages with, propably independent, collaborators or
 software systems.

 By allowing unrelated resource managers to manage unrelated sets of
 stages the approach also provides a clean path for migrating from one
 resource manager to another, for example, when switching
 infrastructure providers.

8.1. A Note on Provider-Coupling

 In order for resource managers to instantiate the necessary
 infrastructure (for example network) and PaaS-level structures (for
 example databases), and in order to perform component artifact
 deployment, infrastructure provider specific services and their
 configuration parameters need to be part of stage set definitions.
 The notion of stage sets does not aim to abstract from the specifcs
 of the chosen target infrastructure beyond maybe reducing its
 complexity by providing useful named predefined configurations (aka
 "T-shirt sizes").

9. The Stage Set JSON Object

 The canonical model for a Stage Set document is a JSON [RFC8259]
 object.

 When serialized as a JSON document, that format is identified with
 the "application/vnd.ply.stageset+json" media type.

9.1. A YAML-formatted example of a stage set model

https://datatracker.ietf.org/doc/html/rfc8259

Algermissen Expires September 4, 2019 [Page 12]

Internet-DraAtmodel for digital product life cycle managemen March 2019

 name: myset
 'product-ref': ply://acme/search
 budget: '66474-gghk-88733/00'
 'status-href': http://example.org/acme/search/stagesets/status
 stages:
 - name: dev
 criticality: work
 dependencyInstances:
 - name: mydb
 parameters:
 - name: foo
 value: bar
 componentDeployments:
 - name: searcher
 artifact: myrepo.example.com/images/foo:1
 dns: www.example.org
 - name: prod
 ...

10. Delivery Fabrics

 TBD: Describe delivery fabrics and their documents analog to stage
 sets.

11. Extension Resource Families

 This specifications defines two resource families, stage sets and
 delivery fabrics.

 New resource families can be defined outside of this specification as
 extensions. The following SHOULD be supported by such extensions:

 TBD: What can be required from extensions to allow for some generic
 tools support?

12. Well Defined Execution Environment Variables

 TBD Define the list of common environment variables for execution
 environments

 o PLY_LOC_STAGE

 o PLY_LOC_REGION

 o PLY_LOC_SYSTEM

 o ...

Algermissen Expires September 4, 2019 [Page 13]

Internet-DraAtmodel for digital product life cycle managemen March 2019

13. Example Implementations

 TBD

14. Security Considerations

 TBD

15. IANA Considerations

 This specification defines new Internet media types [RFC6838].

15.1. application/vnd.ply.product+json

 o Type name: application

 o Subtype name: vnd.ply.product+json

 o Required parameters: None

 o Optional parameters: None; unrecognized parameters should be
 ignored

 o Encoding considerations: Same as [RFC8259]

 o Security considerations: see Section 5 of this document

 o Interoperability considerations: None

 o Published specification: TBD (this document)

 o Applications that use this media type: HTTP

 o Fragment identifier considerations: Same as for application/json
 ([RFC8259])

 o Additional information:

 o Deprecated alias names for this type: n/a

 * Magic number(s): n/a

 * File extension(s): n/a

 * Macintosh file type code(s): n/a

 o Person and email address to contact for further information: Jan
 Algermissen algermissen@acm.org [1]

https://datatracker.ietf.org/doc/html/rfc6838
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8259

Algermissen Expires September 4, 2019 [Page 14]

Internet-DraAtmodel for digital product life cycle managemen March 2019

 o Intended usage: COMMON

 o Restrictions on usage: None.

 o Author: Jan Algermissen algermissen@acm.org [2]

 o Change controller: IESG

15.2. application/vnd.ply.product+yaml

 TBD

15.3. application/vnd.ply.servicelist+json

 TBD

15.4. application/vnd.ply.servicelist+yaml

 TBD

15.5. application/vnd.ply.execenvlist+json

 TBD

15.6. application/vnd.ply.execenvlist+yaml

 TBD

15.7. application/vnd.ply.stageset+json

 TBD

15.8. application/vnd.ply.stageset+yaml

 TBD

15.9. The ply URI scheme

 TBD

15.10. The service-catalog link relation

 TBD

Algermissen Expires September 4, 2019 [Page 15]

Internet-DraAtmodel for digital product life cycle managemen March 2019

15.11. The execenv-catalog link relation

16. References

16.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997,
 <https://www.rfc-editor.org/info/rfc2181>.

 [RFC3232] Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced
 by an On-line Database", RFC 3232, DOI 10.17487/RFC3232,
 January 2002, <https://www.rfc-editor.org/info/rfc3232>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

16.2. Informative References

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 DOI 10.17487/RFC2782, February 2000,
 <https://www.rfc-editor.org/info/rfc2782>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

https://datatracker.ietf.org/doc/html/rfc1034
https://www.rfc-editor.org/info/rfc1034
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2181
https://www.rfc-editor.org/info/rfc2181
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc3232
https://www.rfc-editor.org/info/rfc3232
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://datatracker.ietf.org/doc/html/rfc2782
https://www.rfc-editor.org/info/rfc2782
https://datatracker.ietf.org/doc/html/rfc6763
https://www.rfc-editor.org/info/rfc6763

Algermissen Expires September 4, 2019 [Page 16]

Internet-DraAtmodel for digital product life cycle managemen March 2019

16.3. URIs

 [1] mailto:algermissen@acm.org

 [2] mailto:algermissen@acm.org

Algermissen Expires September 4, 2019 [Page 17]

Internet-DraAtmodel for digital product life cycle managemen March 2019

Appendix A. Acknowledgements

 Thanks to TBD for their comments.

Appendix B. Implementation Notes

 TBD

Author's Address

 Jan Algermissen
 Jan Algermissen Solutions Engineering

 EMail: algermissen@acm.org
 URI: http://algermissen.io

Algermissen Expires September 4, 2019 [Page 18]

http://algermissen.io

