
DKIM E. Allman
Internet-Draft Sendmail, Inc.
Expires: April 26, 2006 J. Callas
 PGP Corporation
 M. Delany
 M. Libbey
 Yahoo! Inc
 J. Fenton
 M. Thomas
 Cisco Systems, Inc.
 October 23, 2005

DomainKeys Identified Mail (DKIM)
draft-allman-dkim-base-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 26, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 DomainKeys Identified Mail (DKIM) defines a domain-level

Allman, et al. Expires April 26, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft DKIM October 2005

 authentication framework for email using public-key cryptography and
 key server technology to permit verification of the source and
 contents of messages by either Mail Transfer Agents (MTAs) or Mail
 User Agents (MUAs). The ultimate goal of this framework is to permit
 a signing domain to assert responsibility for a message, thus proving
 and protecting message sender identity and the integrity of the
 messages they convey while retaining the functionality of Internet
 email as it is known today. Proof and protection of email identity,
 including repudiation and non-repudiation, may assist in the global
 control of "spam" and "phishing".

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

(Unresolved Issues/To Be Done)

 Security Considerations needs further work.

 Need to add new and check existing ABNF.

 Need to resolve remaining cross references (XINDX and XREF).

 Need to clean up or eliminate appendices.

https://datatracker.ietf.org/doc/html/rfc2119

Allman, et al. Expires April 26, 2006 [Page 2]

Internet-Draft DKIM October 2005

Table of Contents

1. Introduction . 5
1.1 Overview . 5
1.2 Signing Identity . 6
1.3 Scalability . 6
1.4 Simple Key Management 6

2. Terminology and Definitions 6
2.1 Signers . 6
2.2 Verifiers . 7
2.3 White Space . 7
2.4 Imported ABNF tokens 7

3. Protocol Elements . 8
3.1 Selectors . 8
3.2 Tag=Value Format for DKIM header fields 9
3.3 Signing and Verification Algorithms 10
3.4 Canonicalization . 11
3.5 The DKIM-Signature header field 15
3.6 The Authentication-Results header field 21
3.7 Key Management and Representation 21
3.8 Computing the Message Hash 23

4. Semantics of Multiple Signatures 25
5. Signer Actions . 25
5.1 Determine if the Email Should be Signed and by Whom . . . 25

 5.2 Select a private-key and corresponding selector
 information . 26

5.3 Normalize the Message to Prevent Transport Conversions . . 26
5.4 Determine the header fields to Sign 27
5.5 Compute the Message Hash 29
5.6 Insert the DKIM-Signature header field 30

6. Verifier Actions . 30
6.1 Introduction . 30
6.2 Extract the Signature from the Message 30
6.3 Get the Public Key . 31
6.4 Compute the Verification 32
6.5 Apply Sender Signing Policy 33
6.6 Interpret Results/Apply Local Policy 34

7. Compliance . 36
8. IANA Considerations . 36
9. Security Considerations 36
9.1 Misuse of Body Length Limits ("l=" Tag) 36
9.2 Misappropriated Private Key 37
9.3 Key Server Denial-of-Service Attacks 38
9.4 Attacks Against DNS 38
9.5 Replay Attacks . 39
9.6 Limits on Revoking Keys 39
9.7 Intentionally malformed Key Records 39
9.8 Intentionally Malformed DKIM-Signature header fields . . . 40

Allman, et al. Expires April 26, 2006 [Page 3]

Internet-Draft DKIM October 2005

10. References . 40
10.1 References -- Normative 40
10.2 References -- Informative 41

 Authors' Addresses . 42
A. Usage Examples (INFORMATIVE) 43
A.1 Simple message transfer 43
A.2 Outsourced business functions 43
A.3 PDAs and Similar Devices 44
A.4 Mailing Lists . 44
A.5 Affinity Addresses . 45
A.6 Third-party Message Transmission 45

B. Example of Use (INFORMATIVE) 45
B.1 The user composes an email 46
B.2 The email is signed 46
B.3 The email signature is verified 47

C. Creating a public key (INFORMATIVE) 48
D. Acknowledgements . 50
E. Edit History . 50
E.1 Changes since -00 version 50

 Intellectual Property and Copyright Statements 51

Allman, et al. Expires April 26, 2006 [Page 4]

Internet-Draft DKIM October 2005

1. Introduction

1.1 Overview

 DomainKeys Identified Mail (DKIM) defines a simple, low cost, and
 effective mechanism by which email messages can be cryptographically
 signed, permitting a signing domain to claim responsibility for the
 use of a given email address. Message recipients can verify the
 signature by querying the signer's domain directly to retrieve the
 appropriate public key, and thereby confirm that the message was
 attested to by a party in possession of the private key for the
 signing domain.

 The approach taken by DKIM differs from previous approaches to
 message signing (e.g. S/MIME [RFC1847], OpenPGP [RFC2440]) in that:

 o the message signature is written to the message header fields so
 that neither human recipients nor existing MUA (Mail User Agent)
 software are confused by signature-related content appearing in
 the message body,

 o there is no dependency on public and private key pairs being
 issued by well-known, trusted certificate authorities,

 o there is no dependency on the deployment of any new Internet
 protocols or services for public key distribution or revocation,

 o it makes no attempt to include encryption as part of the
 mechanism.

 DKIM:

 o is transparent and compatible with the existing email
 infrastructure

 o requires minimal new infrastructure

 o can be implemented independently of clients in order to reduce
 deployment time

 o does not require the use of a trusted third party (such as a
 certificate authority or other entity) which might impose
 significant costs or introduce delays to deployment

 o can be deployed incrementally

 o allows delegation of signing to third parties.

https://datatracker.ietf.org/doc/html/rfc1847
https://datatracker.ietf.org/doc/html/rfc2440

Allman, et al. Expires April 26, 2006 [Page 5]

Internet-Draft DKIM October 2005

 A "selector" mechanism allows multiple keys per domain, including
 delegation of the right to authenticate a portion of the namespace to
 a trusted third party.

1.2 Signing Identity

 DKIM separates the question of the signer of the message from the
 purported author of the message. In particular, a signature includes
 the identity of the signer. Recipients can use the signing
 information to decide how they want to process the message.

 INFORMATIVE RATIONALE: The signing address associated with a DKIM
 signature is not required to match a particular header field
 because of the broad methods of interpretation by recipient mail
 systems, including MUAs.

1.3 Scalability

 The email identification problem is characterized by extreme
 scalability requirements. There are currently over 70 million
 domains and a much larger number of individual addresses. It is
 important to preserve the positive aspects of the current email
 infrastructure, such as the ability for anyone to communicate with
 anyone else without introduction.

1.4 Simple Key Management

 DKIM differs from traditional hierarchical public-key systems in that
 no key signing infrastructure is required; the verifier requests the
 public key from the claimed signer directly.

 The DNS is proposed as the initial mechanism for publishing public
 keys. DKIM is designed to be extensible to other key fetching
 services as they become available.

2. Terminology and Definitions

2.1 Signers

 Elements in the mail system that sign messages are referred to as
 signers. These may be MUAs (Mail User Agents), MSAs (Mail Submission
 Agents), MTAs (Mail Transfer Agents), or other agents such as mailing
 list exploders. In general any signer will be involved in the
 injection of a message into the message system in some way. The key
 issue is that a message must be signed before it leaves the
 administrative domain of the signer.

Allman, et al. Expires April 26, 2006 [Page 6]

Internet-Draft DKIM October 2005

2.2 Verifiers

 Elements in the mail system that verify signatures are referred to as
 verifiers. These may be MTAs, Mail Delivery Agents (MDAs), or MUAs.
 In most cases it is expected that verifiers will be close to an end
 user (reader) of the message or some consuming agent such as a
 mailing list exploder.

2.3 White Space

 There are three forms of white space:

 o WSP represents simple white space, i.e., a space or a tab
 character, and is inherited from [RFC2822].

 o SWSP is streaming white space; it adds the CR and LF characters.

 o FWS, also from [RFC2822], is folding white space. It allows
 multiple lines separated by CRLF followed by at least one white
 space, to be joined.

 Using the syntax of [RFC4234], the formal ABNF for SWSP is:

 SWSP = CR / LF / WSP ; streaming white space

 Other terminology is based on [ID-MAIL-ARCH].

2.4 Imported ABNF tokens

 The following tokens are imported from other RFCs as noted. Those
 RFCs should be considered definitive. However, all tokens having
 names beginning with "obs-" should be excluded from this import.

 The following tokens are imported from [RFC2821]:

 o Local-part (implementation warning: this permits quoted strings)

 o Domain (implementation warning: this permits address-literals)

 o sub-domain

 The following definitions are imported from [RFC2822]:

 o WSP (space or tab)

 o FWS (folding white space)

https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc2821
https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires April 26, 2006 [Page 7]

Internet-Draft DKIM October 2005

 o field-name (name of a header field)

 Other tokens not defined herein are imported from [RFC4234]. These
 are mostly intuitive primitives such as SP, ALPHA, CRLF, etc.

3. Protocol Elements

 Protocol Elements are conceptual parts of the protocol that are not
 specific to either signers or verifiers. The protocol descriptions
 for signers and verifiers are described in later sections.

3.1 Selectors

 To support multiple concurrent public keys per signing domain, the
 key namespace is subdivided using "selectors". For example,
 selectors might indicate the names of office locations (e.g.,
 "sanfrancisco", "coolumbeach", and "reykjavik"), the signing date
 (e.g., "january2005", "february2005", etc.), or even the individual
 user.

 INFORMATIVE IMPLEMENTERS' NOTE: reusing a selector with a new key
 (for example, changing the key associated with a user's name)
 makes it impossible to tell the difference between a message that
 didn't verify because the key is no longer valid versus a message
 that is actually forged. Signers SHOULD NOT change the key
 associated with a selector. When creating a new key, signers
 SHOULD associate it with a new selector.

 Selectors are needed to support some important use cases. For
 example:

 o Domains which want to delegate signing capability for a specific
 address for a given duration to a partner, such as an advertising
 provider or other outsourced function.

 o Domains which want to allow frequent travelers to send messages
 locally without the need to connect with a particular MSA.

 o "Affinity" domains (e.g., college alumni associations) which
 provide forwarding of incoming mail but which do not operate a
 mail submission agent for outgoing mail.

 Periods are allowed in selectors and are component separators. If
 keys are stored in DNS, the period defines sub-domain boundaries.
 Sub-selectors might be used to combine dates with locations; for
 example, "march2005.reykjavik". This can be used to allow delegation
 of a portion of the selector name-space.

https://datatracker.ietf.org/doc/html/rfc4234

Allman, et al. Expires April 26, 2006 [Page 8]

Internet-Draft DKIM October 2005

 ABNF:
 selector = sub-domain *("." sub-domain)

 The number of public keys and corresponding selectors for each domain
 are determined by the domain owner. Many domain owners will be
 satisfied with just one selector whereas administratively distributed
 organizations may choose to manage disparate selectors and key pairs
 in different regions or on different email servers.

 Beyond administrative convenience, selectors make it possible to
 seamlessly replace public keys on a routine basis. If a domain
 wishes to change from using a public key associated with selector
 "january2005" to a public key associated with selector
 "february2005", it merely makes sure that both public keys are
 advertised in the public-key repository concurrently for the
 transition period during which email may be in transit prior to
 verification. At the start of the transition period, the outbound
 email servers are configured to sign with the "february2005" private-
 key. At the end of the transition period, the "january2005" public
 key is removed from the public-key repository.

 While some domains may wish to make selector values well known,
 others will want to take care not to allocate selector names in a way
 that allows harvesting of data by outside parties. E.g., if per-user
 keys are issued, the domain owner will need to make the decision as
 to whether to make this selector associated directly with the user
 name, or make it some unassociated random value, such as the
 fingerprint of the public key.

3.2 Tag=Value Format for DKIM header fields

 DKIM uses a simple "tag=value" syntax in several contexts, including
 in messages, domain signature records, and policy records.

 Values are a series of strings containing either base64 text, plain
 text, or quoted printable text, as defined in [RFC2045], section 6.7.
 The name of the tag will determine the encoding of each value.

 Formally, the syntax rules are:
 tag-list = tag-spec 0*(";" tag-spec) [";"]
 tag-spec = [FWS] tag-name [FWS] ?=? [FWS] tag-value [FWS]
 tag-name = ALPHA 0*ALNUMPUNC
 tag-value = *VALCHAR ; SWSP prohibited at beginning and end
 VALCHAR = %9 / %d32 - %d58 / %d60 - %d126
 ; HTAB and SP to TILDE except SEMICOLON
 ALNUMPUNC = ALPHA / DIGIT / "-"
 ; alphanumeric plus hyphen.

https://datatracker.ietf.org/doc/html/rfc2045#section-6.7

Allman, et al. Expires April 26, 2006 [Page 9]

Internet-Draft DKIM October 2005

 Note that WSP is allowed anywhere around tags; in particular, WSP
 between the tag-name and the "=", and any WSP before the terminating
 ";" is not part of the value.

 Tags MUST be interpreted in a case-sensitive manner. Values MUST be
 processed as case sensitive unless the specific tag description of
 semantics specifies case insensitivity.

 Duplicate tags MUST NOT be specified within a single tag-list.

 Whitespace within a value MUST be retained unless explicitly excluded
 by the specific tag description.

 Tag=value pairs that represent the default value MAY be included to
 aid legibility.

 Unrecognized tags MUST be ignored.

 Tags that have an empty value are not the same as omitted tags. An
 omitted tag is treated as having the default value; a tag with an
 empty value explicitly designates the empty string as the value. For
 example, "g=" does not mean "g=*", even though "g=*" is the default
 for that tag.

3.3 Signing and Verification Algorithms

 DKIM supports multiple key signing/verification algorithms. The only
 algorithm defined by this specification at this time is rsa-sha1,
 which is the default if no algorithm is specified and which MUST be
 supported by all implementations.

3.3.1 The rsa-sha1 Signing Algorithm

 The rsa-sha1 Signing Algorithm computes a SHA-1 hash of the message
 header field and body as described in section Section 3.8 below.
 That hash is then encrypted by the signer using the RSA algorithm
 (actually PKCS#1 version 1.5 [RFC3447]) and the signer's private key.
 The hash MUST NOT be truncated or converted into any form other than
 the native binary form before being signed.

 More formally, the algorithm for the signature using rsa-sha1 is:

 RSA(SHA1(canon_message || DKIM-SIG), key)

 where canon_message is the canonicalized message header and body as
 defined in Section 3.4 and DKIM-SIG is the canonicalized DKIM-
 Signature header field sans the signature value itself.

https://datatracker.ietf.org/doc/html/rfc3447

Allman, et al. Expires April 26, 2006 [Page 10]

Internet-Draft DKIM October 2005

3.3.2 Other algorithms

 Other algorithms MAY be defined in the future. Verifiers MUST ignore
 any signatures using algorithms that they do not understand.

3.3.3 Key sizes

 Selecting appropriate key sizes is a trade-off between cost,
 performance and risk. All implementations MUST support keys of sizes
 512, 768, 1024, 1536 and 2048 bits and MAY support larger keys.

 Factors that should influence the key size choice include:

 o The practical constraint that a 2048 bit key is the largest key
 that fits within a 512 byte DNS UDP response packet

 o The security constraint that keys smaller than 1024 bits are
 subject to brute force attacks.

 o Larger keys impose higher CPU costs to verify and sign email

 o Keys can be replaced on a regular basis, thus their lifetime can
 be relatively short

 o The security goals of this specification are modest compared to
 typical goals of public-key systems

3.4 Canonicalization

 Empirical evidence demonstrates that some mail servers and relay
 systems modify email in transit, potentially invalidating a
 signature. There are two competing perspectives on such
 modifications. For most signers, mild modification of email is
 immaterial to the authentication status of the email. For such
 signers a canonicalization algorithm that survives modest in-transit
 modification is preferred.

 Other signers however, demand that any modification of the email --
 however minor -- results in an authentication failure. These signers
 prefer a canonicalization algorithm that does not tolerate in-transit
 modification of the signed email.

 Some signers may be willing to accept modifications to headers that
 are within the bounds of email standards such as [RFC2822], but are
 unwilling to accept any modification to the body of messages.

 To satisfy all requirements, two canonicalization algorithms are

https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires April 26, 2006 [Page 11]

Internet-Draft DKIM October 2005

 defined for each of the header and the body: a "simple" algorithm
 that tolerates almost no modification and a "relaxed" algorithm that
 tolerates common modifications such as white-space replacement and
 header field line re-wrapping. A signer MAY specify either algorithm
 for header or body when signing an email. If no canonicalization
 algorithm is specified by the signer, the "simple" algorithm is used
 for both header and body. A verifier MUST be able to process email
 using either canonicalization algorithm. Further canonicalization
 algorithms MAY be defined in the future; verifiers MUST ignore any
 signatures that use unrecognized canonicalization algorithms.

 In all cases, the header fields of the message are presented to the
 signing algorithm first in the order indicated by the signature
 header field and canonicalized using the indicated algorithm. Only
 header fields listed as signed in the signature header field are
 included. The CRLF separating the header field from the body is then
 presented, followed by the canonicalized body. Note that the header
 and body may use different canonicalization algorithms.

 Canonicalization simply prepares the email for presentation to the
 signing or verification algorithm. It MUST NOT change the
 transmitted data in any way. Canonicalization of header fields and
 body are described below.

3.4.1 The "simple" Header Field Canonicalization Algorithm

 The "simple" header field canonicalization algorithm does not change
 the header field in any way. Header fields MUST be presented to the
 signing or verification algorithm exactly as they are in the message
 being signed or verified. In particular, header names MUST NOT be
 case folded.

3.4.2 The "relaxed" Header Field Canonicalization Algorithm

 The "relaxed" header field canonicalization algorithm should apply
 the following steps in order:

 o Convert all header field names (not the header field values) to
 lower case. For example, convert "SUBJect: AbC" to "subject:
 AbC".

 o Unwrap all header field continuation lines as described in
 [RFC2822]; in particular, line terminators embedded in continued
 header field values (that is, CRLF sequences followed by WSP) MUST
 be interpreted without the CRLF. Implementations MUST NOT remove
 the CRLF at the end of the header field value.

https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires April 26, 2006 [Page 12]

Internet-Draft DKIM October 2005

 o Convert all sequences of one or more WSP characters to a single SP
 character. WSP characters here include those before and after a
 line wrapping boundary.

 o Delete all WSP characters at the end of each unwrapped header
 field value.

 o Delete any WSP character remaining after the colon separating the
 header field name from the header field value. The colon
 separator MUST be retained.

 [NON-NORMATIVE DOCUMENTATION NOTE: The only difference between
 "relaxed" header field canonicalization and "nowsp" listed in the
 previous version of this draft is that nowsp reduces all strings
 of white space to zero characters while "relaxed" reduces strings
 of white space to one space.]

3.4.3 The "simple" Body Canonicalization Algorithm

 The "simple" body canonicalization algorithm ignores all empty lines
 at the end of the message body. An empty line is a line of zero
 length after removal of the line terminator. It makes no other
 changes to the message body.

3.4.4 The "relaxed" Body Canonicalization Algorithm

 [[This section may be deleted; see discussion below.]] The "relaxed"
 body canonicalization algorithm:

 o Ignores all white space at the end of lines.

 o Reduces all sequences of WSP within a line to a single SP
 character.

 o Ignores all empty lines at the end of the message body. "Empty
 line" is defined in Section 3.4.3.

 NON-NORMATIVE DISCUSSION: The authors are undecided whether to
 leave the "relaxed" body canonicalization algorithm in to the
 specification or delete it entirely. We believe that for the vast
 majority of cases, the "simple" body canonicalization algorithm
 should be sufficient. We simply do not have enough data to know
 whether retain the "relaxed" body canonicalization algorithm or
 not.

Allman, et al. Expires April 26, 2006 [Page 13]

Internet-Draft DKIM October 2005

3.4.5 Body Length Limits

 A body length count MAY be specified to limit the signature
 calculation to an initial prefix of the body text. If the body
 length count is not specified then the entire message body is signed
 and verified.

 INFORMATIVE IMPLEMENTATION NOTE: The l= tag could be useful in
 increasing signature robustness when sending to a mailing list
 that both appends to content sent to it and does not sign its
 messages. However, using the l= tag enables an attack in which a
 sender with malicious intent modifies a message to include content
 that solely benefits the attacker. It is possible for the
 appended content to completely replace the original content in the
 end recipient's eyes and to defeat duplicate message detection
 algorithms. To avoid this attack, signers should be wary of using
 this tag, and verifiers might wish to ignore the tag or remove
 text that appears after the specified content length.

 The body length count allows the signer of a message to permit data
 to be appended to the end of the body of a signed message. The body
 length count is made following the canonicalization algorithm; for
 example, any white space ignored by a canonicalization algorithm is
 not included as part of the body length count.

 INFORMATIVE RATIONALE: This capability is provided because it is
 very common for mailing lists to add trailers to messages (e.g.,
 instructions how to get off the list). Until those messages are
 also signed, the body length count is a useful tool for the
 verifier since it MAY as a matter of policy accept messages having
 valid signatures with extraneous data.

 Signers of MIME messages that include a body length count SHOULD be
 sure that the length extends to the closing MIME boundary string.

 INFORMATIVE IMPLEMENTATION NOTE: A signer wishing to ensure that
 the only acceptable modifications are to add to the MIME postlude
 would use a body length count encompassing the entire final MIME
 boundary string, including the final "--CRLF". A signer wishing
 to allow additional MIME parts but not modification of existing
 parts would use a body length count extending through the final
 MIME boundary string, omitting the final "--CRLF".

 A body length count of zero means that the body is completely
 unsigned.

 Note that verifiers MAY choose to reject or truncate messages that
 have body content beyond that specified by the body length count.

Allman, et al. Expires April 26, 2006 [Page 14]

Internet-Draft DKIM October 2005

 INFORMATIVE IMPLEMENTATION ADVICE: Signers wishing to ensure that
 no modification of any sort can occur SHOULD specify the "simple"
 algorthm and no body length count.

 Despite the measures described above, some messages, particularly
 those containing 8-bit data, could be subject to modification in
 transit invalidating the signature. Messages containing 8-bit data
 SHOULD be converted to MIME format prior to signing, using a suitable
 content transfer-encoding such as quoted-printable or base64. Such
 conversion is outside the scope of DKIM; the actual message SHOULD be
 converted to 7-bit MIME by an MUA or MSA prior to presentation to the
 DKIM algorithm.

3.4.6 Example

 Assuming a "c=relaxed/relaxed" canonification algorithm,

 INFORMATIVE EXAMPLE: A message reading:

 A: <SP> X <CRLF>
 B: <SP> Y <CRLF>
 <SP> Z <CRLF>
 <CRLF>
 <SP> C <SP><CRLF>
 D <SP><TAB><SP> E <CRLF>

 when canonicalized using "relaxed" for both header and body
 results in:

 a:X<CRLF>
 b:Y<SP>Z<CRLF>
 <CRLF>
 <SP>C<CRLF>
 D<SP>E<CRLF>

3.5 The DKIM-Signature header field

 The signature of the email is stored in the "DKIM-Signature:" header
 field. This header field contains all of the signature and key-
 fetching data. The DKIM-Signature value is a tag-list as described
 in Section 3.2.

 The "DKIM-Signature:" header field SHOULD be treated as though it
 were a trace header field as defined in section 3.6 of [RFC2822], and
 hence SHOULD NOT be reordered and SHOULD be kept in blocks prepended

https://datatracker.ietf.org/doc/html/rfc2822#section-3.6

Allman, et al. Expires April 26, 2006 [Page 15]

Internet-Draft DKIM October 2005

 to the message. In particular, the "DKIM-Signature" header field
 SHOULD precede the original email header fields presented to the
 canonicalization and signature algorithms.

 The "DKIM-Signature:" header field is included in the signature
 calculation, after the body of the message; however, when calculating
 or verifying the signature, the b= (signature value) value MUST be
 treated as though it were the null string. Unknown tags MUST be
 signed but MUST be otherwise ignored by verifiers.

 The encodings for each field type are listed below. Tags described
 as quoted-printable are as described in section 6.7 of [RFC2045],
 with the additional conversion of semicolon and vertical bar
 characters to =3B and =7C, respectively.

 Tags on the DKIM-Signature header field along with their type and
 requirement status are shown below. Valid tags are:

 v= Version (MUST NOT be included). This tag is reserved for future
 use to indicate a possible new, incompatible version of the
 specification. It MUST NOT be included in the DKIM-Signature
 header field.

 a= The algorithm used to generate the signature (plain-text;
 REQUIRED). Signers and verifiers MUST support "rsa-sha1", an RSA-
 signed SHA-1 digest. See Section 3.3 for a description of
 algorithms.

 INFORMATIVE RATIONALE: The authors understand that SHA-1 has
 been theoretically compromised. However, viable attacks
 require the attacker to choose both sets of input text; given a
 preexisting input (a "preimaging" attack), it is still hard to
 determine another input that produces an SHA-1 collision, and
 the chance that such input would be of value to an attacker is
 minimal. Also, there is broad library for SHA-1, whereas
 alternatives such as SHA-256 are just emerging. Finally, DKIM
 is not intended to have legal- or military-grade requirements.
 There is nothing inherent in using SHA-1 here other than
 implementer convenience. See
 <http://www3.ietf.org/proceedings/05mar/slides/saag-3.pdf> for
 a discussion of the security issues.

 b= The signature data (base64; REQUIRED). Whitespace is ignored in
 this value and MUST be ignored when re-assembling the original
 signature. This is another way of saying that the signing process
 can safely insert FWS in this value in arbitrary places to conform
 to line-length limits. See section Section 5 for how the
 signature is computed.

https://datatracker.ietf.org/doc/html/rfc2045#section-6.7
http://www3.ietf.org/proceedings/05mar/slides/saag-3.pdf

Allman, et al. Expires April 26, 2006 [Page 16]

Internet-Draft DKIM October 2005

 c= Body canonicalization (plain-text; OPTIONAL, default is "simple/
 simple"). This tag informs the verifier of the type of
 canonicalization used to prepare the message for signing. It
 consists of two names separated by a "slash" (%d47) character,
 corresponding to the header and body canonicalization algorithms
 respectively. These algorithms are described in section

Section 3.4. If only one algorithm is named, that algorithm is
 used for the header and "simple" is used for the body. For
 example, "relaxed" is treated the same as "relaxed/simple".

 d= The domain of the signing entity (plain-text; REQUIRED). This
 is the domain that will be queried for the public key. This
 domain MUST be the same as or a parent domain of the "i=" tag.
 When presented with a signature that does not meet this
 requirement, verifiers MUST either ignore the signature or reject
 the message..

 h= Signed header fields (plain-text, but see description;
 REQUIRED). A colon-separated list of header field names that
 identify the header fields presented to the signing algorithm.
 The field MUST contain the complete list of header fields in the
 order presented to the signing algorithm. The field MAY contain
 names of header fields that do not exist when signed; nonexistent
 header fields do not contribute to the signature computation (that
 is, they are treated as the null input, including the header field
 name, the separating colon, the header field value, and any CRLF
 terminator), and when verified non-existent header fields MUST be
 treated in the same way. The field MUST NOT include the DKIM-
 Signature header field that is being created or verified. Folding
 white space (FWS) MAY be included on either side of the colon
 separator. Header field names MUST be compared against actual
 header field names in a case insensitive manner.

 ABNF:

 sig-h-tag = "h=" *FWS hdr-name 0*(*FWS ":" *FWS hdr-name)
 hdr-name = field-name

 INFORMATIVE EXPLANATION: By "signing" header fields that do
 not actually exist, a signer can prevent insertion of those
 header fields before verification. However, since a sender
 cannot possibly know what header fields might be created in the
 future, and that some MUAs might present header fields that are
 embedded inside a message (e.g., as a message/rfc822 content
 type), the security of this solution is not total.

Allman, et al. Expires April 26, 2006 [Page 17]

Internet-Draft DKIM October 2005

 INFORMATIVE EXPLANATION: The exclusion of the header field
 name and colon as well as the header field value for non-
 existent header fields prevents an attacker from inserting an
 actual header field with a null value.

 i= Identity of the user or agent (e.g., a mailing list manager) on
 behalf of which this message is signed (quoted-printable;
 OPTIONAL, default is an empty local-part followed by an "@"
 followed by the domain from the "d=" tag). The syntax is a
 standard email address where the local-part is optional. If the
 signing domain is unable or unwilling to commit to an individual
 user name within their domain, the local-part of the address MUST
 be omitted. If the local-part of the address is omitted or the
 "i=" tag is not present, the key used to sign MUST be valid for
 any address in the domain. The domain part of the address MUST be
 the same as or a subdomain of the value of the "d=" tag.

 ABNF:

 sig-i-tag = "i=" [Local-part] "@" Domain

 INFORMATIVE DISCUSSION: This document does not require the
 value of the "i=" tag to match the identity in any message
 header field fields. This is considered to be a verifier
 policy issue, described in another document [XREF-TBD].
 Constraints between the value of the "i=" tag and other
 identities in other header fields seek to apply basic
 authentication into the semantics of trust associated with a
 role such as content author. Trust is a broad and complex
 topic and trust mechanisms are subject to highly creative
 attacks. The real-world efficacy of any but the most basic
 bindings between the "i=" value and other identities is not
 well established, nor is its vulnerability to subversion by an
 attacker. Hence reliance on the use of these options SHOULD be
 strictly limited. In particular it is not at all clear to what
 extent a typical end-user recipient can rely on any assurances
 that might be made by successful use of the "i=" options.

 l= Body count (plain-text decimal integer; OPTIONAL, default is
 entire body). This tag informs the verifier of the number of
 bytes in the body of the email included in the cryptographic hash,
 starting from 0 immediately following the CRLF preceding the body.

 INFORMATIVE IMPLEMENTATION WARNING: Use of the l= tag might
 allow display of fraudulent content without appropriate warning
 to end users. The l= tag is intended for increasing signature
 robustness when sending to mailing lists that both modify their

Allman, et al. Expires April 26, 2006 [Page 18]

Internet-Draft DKIM October 2005

 content and do not sign their messages. However, using the l=
 tag enables man-in-the-middle attacks in which an intermediary
 with malicious intent modifies a message to include content
 that solely benefits the attacker. It is possible for the
 appended content to completely replace the original content in
 the end recipient's eyes and to defeat duplicate message
 detection algorithms. Examples are described in Security
 Considerations Section 9.

 To avoid this attack, signers should be extremely wary of using
 this tag, and verifiers might wish to ignore the tag or remove
 text that appears after the specified content length.

 q= A colon-separated list of query methods used to retrieve the
 public key (plain-text; OPTIONAL, default is "dns"). Each query
 method is of the form "type[/options]", where the syntax and
 semantics of the options depends on the type. If there are
 multiple query mechanisms listed, the choice of query mechanism
 MUST NOT change the interpretation of the signature. Currently
 the only valid value is "dns" which defines the DNS lookup
 algorithm described elsewhere in this document. No options are
 defined for the "dns" query type, but the string "dns" MAY have a
 trailing "/" character. Verifiers and signers MUST support "dns".

 INFORMATIVE RATIONALE: Explicitly allowing a trailing "/" on
 "dns" allows for the possibility of adding options later and
 makes it clear that matching of the query type must terminate
 on either "/" or end of string.

 s= The selector subdividing the namespace for the "d=" (domain) tag
 (plain-text; REQUIRED).

 t= Signature Timestamp (plain-text; RECOMMENDED, default is an
 unknown creation time). The time that this signature was created.
 The format is the standard Unix seconds-since-1970. The value is
 expressed as an unsigned integer in decimal ASCII.

 INFORMATIVE IMPLEMENTATION NOTE: This value is not constrained
 to fit into a 31- or 32-bit integer. Implementations SHOULD be
 prepared to handle values up to at least 10^12 (until
 approximately AD 200,000; this fits into 40 bits). To avoid
 denial of service attacks, implementations MAY consider any
 value longer than 12 digits to be infinite.

Allman, et al. Expires April 26, 2006 [Page 19]

Internet-Draft DKIM October 2005

 x= Signature Expiration (plain-text; RECOMMENDED, default is no
 expiration). Signature expiration in seconds-since-1970 format as
 an absolute date, not as a time delta from the signing timestamp.
 Signatures MUST NOT be considered valid if the current time at the
 verifier is past the expiration date. The value is expressed as
 an unsigned integer in decimal ASCII.

 INFORMATIVE IMPLEMENTATION NOTE: See above.

 INFORMATIVE NOTE: The x= tag is not intended as an anti-replay
 defense.

 z= Copied header fields (plain-text, but see description; OPTIONAL,
 default is null). A vertical-bar-separated list of header field
 names and copies of header field values that identify the header
 fields presented to the signing algorithm. The field MUST contain
 the complete list of header fields in the order presented to the
 signing algorithm. Copied header field values MUST immediately
 follow the header field name with a colon separator (no white
 space permitted). Header field values MUST be represented as
 Quoted-Printable [RFC2045] with vertical bars, colons, semicolons,
 and white space encoded in addition to the usual requirements.

 Verifiers MUST NOT use the copied header field values for
 verification should they be present in the h= field. Copied
 header field values are for forensic use only.

 Header fields with characters requiring conversion (perhaps from
 legacy MTAs which are not [RFC2822] compliant) SHOULD be converted
 as described in [RFC2047].

 ABNF:

 sig-z-tag = "z=" *FWS hdr-copy *(*FWS "|" hdr-copy)
 *FWS <hdr-copy = hdr-name ":"
 *FWS qp-hdr-value
 qp-hdr-value = <quoted-printable text with WS,
 "|", ":", and ";" encoded>
 ; needs to be updated with real definition
 ; (could be messy)

 INFORMATIVE EXAMPLE of a signature header field spread across
 multiple continuation lines:

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2047

Allman, et al. Expires April 26, 2006 [Page 20]

Internet-Draft DKIM October 2005

 DKIM-Signature: a=rsa-sha1; d=example.net; s=brisbane
 c=simple; q=dns; i=@eng.example.net; t=1117574938; x=1118006938;
 h=from:to:subject:date;
 z=From:foo@eng.example.net|To:joe@example.com|
 Subject:demo%20run|Date:July%205,%202005%203:44:08%20PM%20-0700
 b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+yuU4zGeeruD00lszZ
 VoG4ZHRNiYzR

3.6 The Authentication-Results header field

 Verifiers wishing to communicate the results of verification via an
 email header field SHOULD use the Authentication-Results header field
 [ID-AUTH-RES].

3.7 Key Management and Representation

 DKIM keys do not require third party signatures by Certificate
 Authorities in order to be trusted, since the public key is retrieved
 directly from the signer.

 DKIM keys can potentially be stored in multiple types of key servers
 and in multiple formats. The storage and format of keys are
 irrelevant to the remainder of the DKIM algorithm.

 Parameters to the key lookup algorithm are the domain of the
 responsible signer (the "d=" tag of the DKIM-Signature header field),
 the selector (the "s=" tag), and the signing identity (the "i=" tag).
 The "i=" tag value could be ignored by some key services.

 This document defines a single binding, using DNS to distribute the
 keys.

3.7.1 Textual Representation

 It is expected that many key servers will choose to present the keys
 in a text format. The following definition MUST be used for any DKIM
 key represented in textual form.

 The overall syntax is a key-value-list as described above. The
 current valid tags are:

 v= Version of the DKIM key record (plain-text; RECOMMENDED, default
 is "DKIM1"). If specified, this tag MUST be set to "DKIM1"
 (without the quotes). This tag MUST be the first tag in the
 response. Responses beginning with a "v=" tag with any other
 value MUST be discarded.

Allman, et al. Expires April 26, 2006 [Page 21]

Internet-Draft DKIM October 2005

 g= granularity of the key (plain-text; OPTIONAL, default is "*").
 This value MUST match the local part of the signing address, with
 a "*" character acting as a wildcard. The intent of this tag is
 to constrain which signing address can legitimately use this
 selector. An email with a signing address that does not match the
 value of this tag constitutes a failed verification. Wildcarding
 allows matching for addresses such as "user+*". An empty "g="
 value never matches any addresses.

 h= Acceptable hash algorithms (plain-text; OPTIONAL, defaults to
 allowing all algorithms). A colon-separated list of hash
 algorithms that might be used. Signers and Verifiers MUST support
 the "sha1" hash algorithm.

 k= Key type (plain-text; OPTIONAL, default is "rsa"). Signers and
 verifiers MUST support the 'rsa' key type, as defined in [RFC3447]

 n= Notes that might be of interest to a human (quoted-printable;
 OPTIONAL, default is empty). No interpretation is made by any
 program. This tag should be used sparingly in any key server
 mechanism that has space limitations (notably DNS).

 p= Public-key data (base64; REQUIRED). An empty value means that
 this public key has been revoked. The syntax and semantics of
 this tag value is defined by the k= tag.

 s= Service Type (plain-text; OPTIONAL; default is "*"). A colon-
 separated list of service types to which this record applies.
 Verifiers for a given service type MUST ignore this record if the
 appropriate type is not listed. Currently defined service types
 are:

 * matches all service types

 email electronic mail (not necessarily limited to SMTP)

 This tag is intended to permit senders to constrain the use of
 delegated keys, e.g., where a company is willing to delegate the
 right to send mail in their name to an outsourcer, but not to send
 IM or make VoIP calls. (This of course presumes that these keys
 are used in other services in the future.)

 t= Flags, represented as a colon-separated list of names (plain-
 text; OPTIONAL, default is no flags set). The defined flags are:

https://datatracker.ietf.org/doc/html/rfc3447

Allman, et al. Expires April 26, 2006 [Page 22]

Internet-Draft DKIM October 2005

 y This domain is testing DKIM; unverified email MUST NOT be
 treated differently from verified email. Verifier systems MAY
 wish to track testing mode results to assist the signer.

 Unrecognized flags MUST be ignored.

3.7.2 DNS binding

 A binding using DNS as a key service is hereby defined. All
 implementations MUST support this binding.

3.7.2.1 Name Space.

 All DKIM keys are stored in a "_domainkey" subdomain. Given a DKIM-
 Signature field with a "d=" tag of "domain" and an "s=" tag of
 "selector", the DNS query will be for "selector._domainkey.domain".

 The value of the "i=" tag is not used by the DNS binding.

3.7.2.2 Resource Record Types for Key Storage

 This section needs to be fleshed out. ACTUALLY: will be addressed
 in another document.

 Two RR types are used: DKK and TXT.

 The DKK RR is expected to be a non-text, binary representation
 intended to allow the largest possible keys to be represented and
 transmitted in a UDP DNS packet. Details of this RR are described in
 [ID-DKIM-RR].

 TXT records are encoded as described in section Section 3.7.1 above.

 Verifiers SHOULD search for a DKIM RR first, if possible, followed by
 a TXT RR. If the verifier is unable to search for a DKK RR or a DKK
 RR is not found, the verifier MUST search for a TXT RR.

3.8 Computing the Message Hash

 Both signing and verifying message signatures starts with a step of
 computing a cryptographic hash of the message. Signers will choose
 the parameters of the signature as described in Section 5; verifiers
 will use the parameters specified in the "DKIM-Signature" header
 being verified. In the following discussion, the names of the tags
 in the "DKIM-Signature" header which either exists (when verifying)
 or will be created (when signing) are used.

Allman, et al. Expires April 26, 2006 [Page 23]

Internet-Draft DKIM October 2005

 The signer or verifier passes the following to the hash algorithm in
 the indicated order. Note that canonicalization (described in

Section 3.4) is only used to prepare the email for signing or
 verifying; it does not affect the transmitted email in any way.

 1. The header fields chosen in as specified by the "h=" tag, in the
 order specified in that tag, and canonicalized using the header
 canonicalization algorithm specified in the "c=" tag.

 2. A single CRLF.

 3. The message body, canonicalized using the body canonicalization
 algorithm specified in the "c=" tag, and truncated to the length
 specified in the "l=" tag.

 4. A single CRLF.

 5. The "DKIM-Signature" header field that exists (verifying) or will
 be inserted (signing) in the message, with the content of the
 "b=" tag deleted (i.e., treated as the empty string),
 canonicalized using the header canonicalization algorithm
 specified in the "c=" tag, and without a trailing CRLF.

 After the body is processed, a single CRLF followed by the "DKIM-
 Signature" header field being created or verified is presented to the
 algorithm. The value portion of the "b=" tag (that is, the portion
 after the "=" sign) must be treated as though it were empty, and the
 header field must be canonicalized according to the algorithm that is
 specified in the "c=" tag. Any final CRLF on the "DKIM-Signature"
 header field MUST NOT be included in the signature computation.

 All tags and their values in the DKIM-Signature header field are
 included in the cryptographic hash with the sole exception of the
 value portion of the "b=" (signature) tag, which MUST be treated as
 the null string. All tags MUST be included even if they might not be
 understood by the verifier. The header field MUST be presented to
 the hash algorithm after the body of the message rather than with the
 rest of the header fields and MUST be canonicalized as specified in
 the "c=" (canonicalization) tag. The DKIM-Signature header field
 MUST NOT be included in its own h= tag.

 When calculating the hash on values that will be transmitted using
 base64 or quoted-printable encoding, signers MUST compute the hash
 after the encoding. Likewise, the verifier MUST incorporate the
 values into the hash before decoding the base64 or quoted-printable
 text. However, the hash MUST be computed before transport level
 encodings such as SMTP "dot-stuffing."

Allman, et al. Expires April 26, 2006 [Page 24]

Internet-Draft DKIM October 2005

 With the exception of the canonicalization procedure described in
 section Section 3.4, the DKIM signing process treats the body of
 messages as simply a string of characters. DKIM messages MAY be
 either in plain-text or in MIME format; no special treatment is
 afforded to MIME content. Message attachments in MIME format MUST be
 included in the content which is signed.

4. Semantics of Multiple Signatures

 Considerable energy has been spent discussing the desirability and
 semantics of multiple DKIM signatures in a single message,
 particularly in a "re-sending" scenario such as a mailing list. On
 the one hand, discarding existing signature header fields loses
 information which could prove to be valuable in the future. On the
 other hand, since header fields are known to be re-ordered in transit
 by at least some MTAs, determining the most interesting signature
 header field is non-trivial.

 Further confusion could occur with multiple signatures added at the
 same logical "depth". For example, a signer could choose to sign
 using different signing or canonicalization algorithms. There is no
 a priori way to determine that two signatures are alternatives versus
 nested in a re-sending scenario.

 Also, many agents are expected to break existing signatures (e.g., a
 mailing list that modifies Subject header fields or adds unsubscribe
 information to the end of the message). Retaining signature
 information that is known to be bad could create more problems than
 it solves.

 For these reasons, multiple signatures are not prohibited but are
 left undefined.

 INFORMATIVE IMPLEMENTATION GUIDANCE: Agents that forward mail
 without modification could decide whether to add another signature
 or simply retain an existing signatures. Agents that are known to
 break existing signatures MAY leave the existing signature or
 delete it. Agents that re-sign messages that are already signed
 SHOULD verify the previous signature and should probably refuse to
 sign any critical information that failed a signature
 verification.

5. Signer Actions

5.1 Determine if the Email Should be Signed and by Whom

 A signer can obviously only sign email for domains for which it has a

Allman, et al. Expires April 26, 2006 [Page 25]

Internet-Draft DKIM October 2005

 private-key and the necessary knowledge of the corresponding public
 key and selector information. However there are a number of other
 reasons beyond the lack of a private key why a signer could choose
 not to sign an email.

 A SUBMISSION server MAY sign if the sender is authenticated by some
 secure means, e.g., SMTP AUTH. Within a trusted enclave the signing
 address MAY be derived from the header field according to local
 signer policy. Within a trusted enclave an MTA MAY do the signing.

 INFORMATIVE IMPLEMENTER ADVICE: SUBMISSION servers should not
 sign Received header fields if the outgoing gateway MTA obfuscates
 Received header fields, for example to hide the details of
 internal topology.

 A signer MUST NOT sign an email if it is unwilling to be held
 responsible for the message; in particular, the signer SHOULD ensure
 that the submitter has a bona fide relationship with the signer and
 that the submitter has the right to use the address being claimed.

 A signer SHOULD NOT remove an existing "DKIM-Signature:" header field
 unless that signature was added by an entity under the same domain.
 That is, DKIM-Signature header fields SHOULD NOT be removed unless
 the d= tag of that existing DKIM-Signature header field is the same
 as or a subdomain of the d= tag of the new DKIM-Signature header
 field that is being added.

 If an email cannot be signed for some reason, it is a local policy
 decision as to what to do with that email.

5.2 Select a private-key and corresponding selector information

 This specification does not define the basis by which a signer should
 choose which private-key and selector information to use. Currently,
 all selectors are equal as far as this specification is concerned, so
 the decision should largely be a matter of administrative
 convenience.

 A signer SHOULD NOT sign with a key that is expected to expire within
 seven days; that is, when rotating to a new key, signing should
 immediately commence with the new key and the old key SHOULD be
 retained for at least seven days before being removed from the key
 server.

5.3 Normalize the Message to Prevent Transport Conversions

 Some messages, notably those using 8-bit characters, are subject to
 conversion to 7-bit during transmission. Such conversions will break

Allman, et al. Expires April 26, 2006 [Page 26]

Internet-Draft DKIM October 2005

 DKIM signatures. In order to minimize the chances of such breakage,
 signers SHOULD convert the message to MIME-encoded 7-bit form as
 described in [RFC2045] before signing.

 Should the message be submitted to the signer with any local encoding
 that will be modified before transmission, such conversion to
 canonical form MUST be done before signing. In particular, some
 systems use local line separator conventions (such as the Unix
 newline character) internally rather than the SMTP-standard CRLF
 sequence. All such local conventions MUST be converted to canonical
 format before signing.

 More generally, the signer MUST sign the message as it will be
 emitted on the wire rather than in some local or internal form.

5.4 Determine the header fields to Sign

 The From header field MUST be signed (that is, included in the h= tag
 of the resulting DKIM-Signature header field); any header field that
 describes the role of the signer (for example, the Sender or Resent-
 From header field if the signature is on behalf of the corresponding
 address and that address is different from the From address) MUST
 also be included. The signed header fields SHOULD also include the
 Subject and Date header fields as well as all MIME header fields.
 Signers SHOULD NOT sign an existing header field likely to be
 legitimately modified or removed in transit. In particular,
 [RFC2821] explicitly permits modification or removal of the "Return-
 Path" header field in transit. Signers MAY include any other header
 fields present at the time of signing at the discretion of the
 signer. It is RECOMMENDED that all other existing, non-repeatable
 header fields be signed.

 The DKIM-Signature header field is always implicitly signed and MUST
 NOT be included in the h= tag except to indicate that other
 preexisting signatures are also signed.

 Signers MUST sign any header fields that the signers wish to have the
 verifiers treat as trusted. Put another way, verifiers MAY treat
 unsigned header fields with extreme skepticism, up to and including
 refusing to display them to the end user.

 Signers MAY claim to have signed header fields that do not exist
 (that is, signers MAY include the header field name in the h= tag
 even if that header field does not exist in the message). When
 computing the signature, the non-existing header field MUST be
 treated as the null string (including the header field name, header
 field value, all punctuation, and the trailing CRLF).

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2821

Allman, et al. Expires April 26, 2006 [Page 27]

Internet-Draft DKIM October 2005

 INFORMATIVE RATIONALE: This allows signers to explicitly assert
 the absence of a header field; if that header field should be
 added later the signature will fail.

 Signers choosing to sign an existing replicated header field (such as
 Received) MUST sign the physically last instance of that header field
 in the header field block. Signers wishing to sign multiple
 instances of an existing replicated header field MUST include the
 header field name multiple times in the h= tag of the DKIM-Signature
 header field, and MUST sign such header fields in order from the
 bottom of the header field block to the top. The signer MAY include
 more header field names than there are actual corresponding header
 fields to indicate that additional header fields of that name SHOULD
 NOT be added. (However, header fields that can be replicated should
 not be signed; see below.)

 INFORMATIVE EXAMPLE:

 If the signer wishes to sign two existing Received header fields,
 and the existing header contains: then the resulting DKIM-
 Signature header field should read:

 Received: <A>
 Received:
 Received: <C>

 DKIM-Signature: ... h=Received : Received : ...

 and Received header fields <C> and will be signed in that
 order.

 Signers SHOULD NOT sign header fields that might be replicated
 (either at the time of signing or potentially in the future), with
 the exception of trace header fields such as Received. Comment and
 non standard header fields (including X-* header fields) are
 permitted by [RFC2822] to be replicated; however, many such header
 fields are, by convention, not replicated. Signers need to
 understand the implications of signing header field fields that might
 later be replicated, especially in the face of header field
 reordering. In particular, [RFC2822] only requires that trace header
 fields retain the original order.

 INFORMATIVE RATIONALE: Received: is allowed because these header
 fields, as well as Resent-* header fields, are already order-

https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires April 26, 2006 [Page 28]

Internet-Draft DKIM October 2005

 sensitive.

 INFORMATIVE ADMONITION: Despite the fact that [RFC2822] permits
 header field blocks to be reordered (with the exception of
 Received header fields), reordering of signed replicated header
 fields by intermediate MTAs will cause DKIM signatures to be
 broken; such anti-social behavior should be avoided.

 INFORMATIVE IMPLEMENTER'S NOTE: Although not required by this
 specification, all end-user visible header fields should be signed
 to avoid possible "indirect spamming." For example, if the
 "Subject" header field is not signed, a spammer can resend a
 previously signed mail, replacing the legitimate subject with a
 one-line spam.

 INFORMATIVE NOTE: There has been some discussion that a Sender
 Signing Policy include the list of header fields that the signer
 always signs. N.B. In theory this is unnecessary, since as long
 as the signer really always signs the indicated header fields
 there is no possibility of an attacker replaying an existing
 message that has such an unsigned header field.

5.5 Compute the Message Hash

 The signer MUST compute the message hash as described in Section 3.8
 and then sign it using the selected public-key algorithm.

 To avoid possible ambiguity, a signer SHOULD either sign or remove
 any preexisting "Authentication-Results:" header fields from the
 email prior to preparation for signing and transmission.
 "Authentication-Results" header fields MUST only be signed if the
 signer is certain of the authenticity of the preexisting header
 field, for example, if it is locally generated or signed by a
 previous DKIM-Signature line that the current signer has verified.
 Signers MUST NOT sign Authentication-Results header fields that could
 be forgeries.

 Entities such as mailing list managers that implement DKIM and which
 modify the message or the header field (for example, inserting
 unsubscribe information) before retransmitting the message SHOULD
 check any existing signature on input and MUST make such
 modifications before re-signing the message; such signing SHOULD
 include the Authentication-Results header field, if any, inserted
 upon message receipt.

https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires April 26, 2006 [Page 29]

Internet-Draft DKIM October 2005

5.6 Insert the DKIM-Signature header field

 The final step in the signing process is that the signer MUST insert
 the "DKIM-Signature:" header field prior to transmitting the email.
 The "DKIM-Signature" header MUST be the same as used to compute the
 hash as described above, except that the value of the "b=" tag MUST
 be the appropriately signed hash computed in the previous step,
 signed using the algorithm specified in the "a=" tag of the "DKIM-
 Signature" header and using the private key corresponding to the
 selector given in the "s=" tag of the "DKIM-Signature" header field,
 as chosen above in section Section 5.2

 The "DKIM-Signature" SHOULD be inserted before any header fields that
 it signs in the header field block.

 INFORMATIVE IMPLEMENTATION NOTE: The easiest way to achieve this
 is to insert the "DKIM-Signature" header field at the beginning of
 the header field block.

6. Verifier Actions

6.1 Introduction

 Since a signer MAY expire a public key at any time, it is recommended
 that verification occur in a timely manner with the most timely place
 being during acceptance by the border MTA.

 A border or intermediate MTA MAY verify the message signatures and
 add a verification header field to incoming messages. This
 considerably simplifies things for the user, who can now use an
 existing mail user agent. Most MUAs have the ability to filter
 messages based on message header fields or content; these filters
 would be used to implement whatever policy the user wishes with
 respect to unsigned mail.

 A verifying MTA MAY implement a policy with respect to unverifiable
 mail, regardless of whether or not it applies the verification header
 field to signed messages. Separate policies MAY be defined for
 unsigned messages, messages with incorrect signatures, and when the
 signature cannot be verified. Treatment of unsigned messages MUST be
 based on the results of the Sender Signing Policy check described in
 [ID-DKIM-SSP].

6.2 Extract the Signature from the Message

 The signature and associated signing identity is included in the
 value of the DKIM-Signature header field.

Allman, et al. Expires April 26, 2006 [Page 30]

Internet-Draft DKIM October 2005

 Verifiers MUST ignore DKIM-Signature header fields with a "v=" tag.
 Existence of such a tag indicates a new, incompatible version of the
 DKIM-Signature header field.

 If the "DKIM-Signature" header field does not contain the "i=" tag,
 the verifier MUST behave as though the value of that tag were "@d",
 where "d" is the value from the "d=" tag (which MUST exist).

 Verifiers MUST confirm that the domain specified in the "d=" tag is
 the same as or a superdomain of the domain part of the "i=" tag. If
 not, the DKIM-Signature header field MUST be ignored.

 Implementers MUST meticulously validate the format and values in the
 "DKIM-Signature:" header field; any inconsistency or unexpected
 values MUST result in an unverified email. Being "liberal in what
 you accept" is definitely a bad strategy in this security context.
 Note however that this does not include the existence of unknown tags
 in a "DKIM-Signature" header field, which are explicitly permitted.

 Verifiers MUST NOT attribute ultimate meaning to the order of
 multiple DKIM-Signature header fields. In particular, there is
 reason to believe that some relays will reorder the header field in
 potentially arbitrary ways.

 INFORMATIVE IMPLEMENTATION NOTE: Verifiers might use the order as
 a clue to signing order in the absence of any other information.
 However, other clues as to the semantics of multiple signatures
 must be considered before using ordering.

 Since there can be multiple signatures in a message, a verifier
 SHOULD ignore an invalid signature (regardless if caused by a
 syntactic or semantic problem) and try other signatures. A verifier
 MAY choose to treat a message with one or more invalid signatures
 with more suspicion than a message with no signature at all.

6.3 Get the Public Key

 The public key is needed to complete the verification process. The
 process of retrieving the public key depends on the query type as
 defined by the "q=" tag in the "DKIM-Signature:" header field line.
 Obviously, a public key should only be retrieved if the process of
 extracting the signature information is completely successful.
 Details of key management and representation are described in section

Section 3.7. The verifier MUST validate the key record and MUST
 ignore any public key records that are malformed.

 When validating a message, a verifier MUST:

Allman, et al. Expires April 26, 2006 [Page 31]

Internet-Draft DKIM October 2005

 1. Retrieve the public key as described under Key Management
 (Section 3.7) using the domain from the "d=" tag and the selector
 from the "s=" tag.

 2. If the query for the public key fails to respond, the verifier
 SHOULD defer acceptance of this email (normally this will be
 achieved with a 451/4.7.5 SMTP response code).

 3. If the query for the public key fails because the corresponding
 RR does not exist, the verifier MUST ignore the signature.

 4. If the result returned from the query does not adhere to the
 format defined in this specification, the verifier MUST ignore
 the signature.

 5. If the "g=" tag in the public key does not match the local part
 of the "i=" tag on the message signature, the verifier MUST treat
 the signature as invalid. If the local part of the "i=" tag on
 the message signature is not present, the g= tag must be * (valid
 for all addresses in the domain) or not present (which defaults
 to *), otherwise the verifier MUST ignore the signature. Other
 than this test, verifiers MUST NOT treat a message signed with a
 key record having a g= tag any differently than one without; in
 particular, verifiers MUST NOT prefer messages that seem to have
 an individual signature by virtue of a g= tag vs. a domain
 signature.

 6. If the "h=" tag exists in the public key record and the hash
 algorithm implied by the a= tag in the DKIM-Signature header is
 not included in the "h=" tag, the verifier MUST ignore the
 signature.

 7. If the public key data is not suitable for use with the algorithm
 type defined by the "a=" tag in the "DKIM-Signature" header
 field, the verifier MUST ignore the signature.

 If the public key data (the "p=" tag) is empty then this key has been
 revoked and the verifier MUST treat this as a failed signature check.

6.4 Compute the Verification

 Given a signer and a public key, verifying a signature consists of
 the following steps.

 o Based on the algorithm defined in the "c=" tag, the body length
 specified in the "l=" tag, and the header field names in the "h="
 tag, create a canonicalized copy of the email as is described in
 section Section 3.8. When matching header field names in the "h="

Allman, et al. Expires April 26, 2006 [Page 32]

Internet-Draft DKIM October 2005

 tag against the actual message header field, comparisons MUST be
 case-insensitive.

 o Based on the algorithm indicated in the "a=" tag,

 * Compute the message hash from the canonical copy as described
 in section Section 3.8.

 * Decrypt the signature using the signer's public key.

 o Compare the decrypted signature to the message hash. If they are
 identical, the hash computed by the signer must be the same as the
 hash computed by the verifier, and hence the two messages are
 identical.

 INFORMATIVE IMPLEMENTER'S NOTE: Implementations might wish to
 initiate the public-key query in parallel with calculating the
 hash as the public key is not needed until the final decryption is
 calculated.

 Verifiers MUST ignore any DKIM-Signature header fields where the
 signature does not validate. Verifiers that are prepared to validate
 multiple signature header fields SHOULD proceed to the next signature
 header field, should it exist. However, verifiers MAY make note of
 the fact that an invalid signature was present for consideration at a
 later step.

 INFORMATIVE NOTE: The rationale of this requirement is to permit
 messages that have invalid signatures but also a valid signature
 to work. For example, a mailing list exploder might opt to leave
 the original submitter signature in place even though the exploder
 knows that it is modifying the message in some way that will break
 that signature, and the exploder inserts its own signature. In
 this case the message should succeed even in the presence of the
 known-broken signature.

 If a body length is specified in the "l=" tag of the signature,
 verifiers MUST only verify the number of bytes indicated in the body
 length. Verifiers MAY decide that a message containing bytes beyond
 the indicated body length MAY still treat such a message as
 suspicious. Verifiers MAY truncate the message at the indicated body
 length or reject the message outright. MUAs MAY visually mark the
 unverified part of the body in a distinctive font or color to the end
 user.

6.5 Apply Sender Signing Policy

 Verifiers MUST consult the Sender Signing Policy as described in [ID-

Allman, et al. Expires April 26, 2006 [Page 33]

Internet-Draft DKIM October 2005

 DKIM-SSP] and act accordingly. The range of possibilities is up to
 the verifier, but it MAY include rejecting the email.

6.6 Interpret Results/Apply Local Policy

 It is beyond the scope of this specification to describe what actions
 a verifier system should make, but an authenticated email presents an
 opportunity to a receiving system that unauthenticated email cannot.
 Specifically, an authenticated email creates a predictable identifier
 by which other decisions can reliably be managed, such as trust and
 reputation. Conversely, unauthenticated email lacks a reliable
 identifier that can be used to assign trust and reputation. It is
 reasonable to treat unauthenticated email as lacking any trust and
 having no positive reputation.

 If the verifying MTA is capable of verifying the public key of the
 signer and check the signature on the message synchronously with the
 SMTP session and such signature is missing or does not verify the MTA
 MAY reject the message with an error such as:

 550 5.7.1 Unsigned messages not accepted

 550 5.7.5 Message signature incorrect

 If it is not possible to fetch the public key, perhaps because the
 key server is not available, a temporary failure message MAY be
 generated, such as:

 451 4.7.5 Unable to verify signature - key server unavailable

 Once the signature has been verified, that information MUST be
 conveyed to higher level systems (such as explicit allow/white lists
 and reputation systems) and/or to the end user. If the
 authentication status is to be stored in the message header field,
 the Authentication-Results header field [ID-AUTH-RES] SHOULD be used
 to convey this information. If the message is signed on behalf of
 any address other than that in the From: header field, the mail
 system SHOULD take pains to ensure that the actual signing identity
 is clear to the reader.

 The verifier MAY treat unsigned header fields with extreme
 skepticism, including marking them as untrusted or even deleting them
 before display to the end user.

 While the symptoms of a failed verification are obvious -- the
 signature doesn't verify -- establishing the exact cause can be more
 difficult. If a selector cannot be found, is that because the
 selector has been removed or was the value changed somehow in

Allman, et al. Expires April 26, 2006 [Page 34]

Internet-Draft DKIM October 2005

 transit? If the signature line is missing is that because it was
 never there, or was it removed by an over-zealous filter? For
 diagnostic purposes, the exact reason why the verification fails
 SHOULD be recorded in the "Authentication-Results" header field and
 possibly the system logs. However in terms of presentation to the
 end user, the result SHOULD be presented as a simple binary result:
 either the email is verified or it is not. If the email cannot be
 verified, then it SHOULD be rendered the same as all unverified email
 regardless of whether it looks like it was signed or not.

 Insert the Authentication-Results header field. That header field is
 described in [ID-AUTH-RES]. The Authentication-Results header field
 SHOULD be inserted before any existing DKIM-Signature or
 Authentication-Results header fields in the header field block.

 INFORMATIVE ADVICE to MUA filter writers:

 Patterns intended to search for Authentication-Results header
 fields to visibly mark authenticated mail for end users should
 verify that the Authentication-Results header field was added by
 the appropriate verifying domain and that the verified identity
 matches the sender identity that will be displayed by the MUA. In
 particular, MUA patterns should not be influenced by bogus
 Authentication-Results header fields added by attackers.

 In order to retain the current semantics and visibility of the From
 header field, verifying mail agents SHOULD take steps to ensure that
 the signing address is prominently visible to the user if it is
 different from the From address. If MUA implementations that
 highlight the signed address are not available, this MAY be done by
 the validating MTA or MDA by rewriting the From address in a manner
 which remains compliant with [RFC2822]. Such modifications MUST be
 performed after the final verification step since they will break the
 signature. If performed, the rewriting SHOULD include the name of
 the signer in the address. For example:

 From: John Q. User <user@example.com>

 might be converted to

 From: "John Q. User via <asrg-admin@ietf.org>" <user@example.com>

 This sort of address inconsistency is expected for mailing lists, but
 might be otherwise used to mislead the verifier, for example if a
 message supposedly from administration@your-bank.com had a Sender
 address of fraud@badguy.com.

https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires April 26, 2006 [Page 35]

Internet-Draft DKIM October 2005

 Under no circumstances should an unsigned header field be displayed
 in any context that might be construed by the end user as having been
 signed. Notably, unsigned header fields SHOULD be hidden from the
 end user to the extent possible.

7. Compliance

 [The issues to be described here have been redirected to the SSP
 document. This section will be deleted in the next draft.]

8. IANA Considerations

 Use of the _domainkey prefix in DNS records will require registration
 by IANA.

 To avoid conflicts, tag names for the DKIM-Signature header and key
 records should be registered with IANA.

 Tag values for the "a=", "c=", and "q=" tags in the DKIM-Signature
 header, and the "h=", "k=", "s=", and "t" tags in key records should
 be registered with IANA for the same reason.

 The DKK and DKP RR types must be registered by IANA.

9. Security Considerations

 It has been observed that any mechanism that is introduced which
 attempts to stem the flow of spam is subject to intensive attack.
 DKIM needs to be carefully scrutinized to identify potential attack
 vectors and the vulnerability to each.

9.1 Misuse of Body Length Limits ("l=" Tag)

 Body length limits (in the form of the "l=" tag) are subject to
 several potential attacks.

9.1.1 Addition of new MIME parts to multipart/*

 If the body length limit does not cover a closing MIME multipart
 header field (including the trailing "--CRLF" portion), then it is
 possible for an attacker to intercept a properly signed multipart
 message and add a new body part. Depending on the details of the
 MIME type and the implementation of the verifying MTA and the
 receiving MUA, this could allow an attacker to change the information
 displayed to an end user from an apparently trusted source.

 *** Example appropriate here ***

Allman, et al. Expires April 26, 2006 [Page 36]

Internet-Draft DKIM October 2005

9.1.2 Addition of new HTML content to existing content

 Several receiving MUA implementations do not cease display after a
 "</html>" tag. In particular, this allows attacks involving
 overlaying images on top of existing text.

 INFORMATIVE EXAMPLE: Appending the following text to an existing,
 properly closed message will in many MUAs result in inappropriate
 data being rendered on top of existing, correct data:
 <div style="position: relative; bottom: 350px; z-index: 2;">
 <img src="http://www.ietf.org/images/ietflogo2e.gif"
 width=578 height=370>
 </div>

9.2 Misappropriated Private Key

 If the private key for a user is resident on their computer and is
 not protected by an appropriately secure passphrase, it is possible
 for malware to send mail as that user and any other user sharing the
 same private key. The malware would, however, not be able to
 generate signed spoofs of other signers' addresses, which would aid
 in identification of the infected user and would limit the
 possibilities for certain types of attacks involving socially-
 engineered messages.

 A larger problem occurs if malware on many users' computers obtains
 the private keys for those users and transmits them via a covert
 channel to a site where they can be shared. The compromised users
 would likely not know of the misappropriation until they receive
 "bounce" messages from messages they are supposed to have sent. Many
 users might not understand the significance of these bounce messages
 and would not take action.

 One countermeasure is to use a user-entered passphrase to encrypt the
 private key, although users tend to choose weak passphrases and often
 reuse them for different purposes, possibly allowing an attack
 against DKIM to be extended into other domains. Nevertheless, the
 decoded private key might be briefly available to compromise by
 malware when it is entered, or might be discovered via keystroke
 logging. The added complexity of entering a passphrase each time one
 sends a message would also tend to discourage the use of a secure
 passphrase.

 A somewhat more effective countermeasure is to send messages through
 an outgoing MTA that can authenticate the submitter using existing
 techniques (e.g., SMTP Authentication), possibly validate the message
 itself (e.g., verify that the header is legitimate and that the

Allman, et al. Expires April 26, 2006 [Page 37]

Internet-Draft DKIM October 2005

 content passes a spam content check), and sign the message using a
 key appropriate for the submitter address. Such an MTA can also
 apply controls on the volume of outgoing mail each user is permitted
 to originate in order to further limit the ability of malware to
 generate bulk email.

9.3 Key Server Denial-of-Service Attacks

 Since the key servers are distributed (potentially separate for each
 domain), the number of servers that would need to be attacked to
 defeat this mechanism on an Internet-wide basis is very large.
 Nevertheless, key servers for individual domains could be attacked,
 impeding the verification of messages from that domain. This is not
 significantly different from the ability of an attacker to deny
 service to the mail exchangers for a given domain, although it
 affects outgoing, not incoming, mail.

 A variation on this attack is that if a very large amount of mail
 were to be sent using spoofed addresses from a given domain, the key
 servers for that domain could be overwhelmed with requests. However,
 given the low overhead of verification compared with handling of the
 email message itself, such an attack would be difficult to mount.

9.4 Attacks Against DNS

 Since DNS is a required binding for key services, specific attacks
 against DNS must be considered.

 While the DNS is currently insecure [RFC3833], it is expected that
 the security problems should and will be solved by DNSSEC [RFC4033],
 and all users of the DNS will reap the benefit of that work.

 Secondly, the types of DNS attacks relevant to DKIM are very costly
 and are far less rewarding than DNS attacks on other Internet
 applications.

 To systematically thwart the intent of DKIM, an attacker must conduct
 a very costly and very extensive attack on many parts of the DNS over
 an extended period. No one knows for sure how attackers will
 respond, however the cost/benefit of conducting prolonged DNS attacks
 of this nature is expected to be uneconomical.

 Finally, DKIM is only intended as a "sufficient" method of proving
 authenticity. It is not intended to provide strong cryptographic
 proof about authorship or contents. Other technologies such as
 OpenPGP [RFC2440] and S/MIME [RFC2633] address those requirements.

 A second security issue related to the DNS revolves around the

https://datatracker.ietf.org/doc/html/rfc3833
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc2440
https://datatracker.ietf.org/doc/html/rfc2633

Allman, et al. Expires April 26, 2006 [Page 38]

Internet-Draft DKIM October 2005

 increased DNS traffic as a consequence of fetching Selector-based
 data as well as fetching signing domain policy. Widespread
 deployment of DKIM will result in a significant increase in DNS
 queries to the claimed signing domain. In the case of forgeries on a
 large scale, DNS servers could see a substantial increase in queries.

9.5 Replay Attacks

 In this attack, a spammer sends a message to be spammed to an
 accomplice, which results in the message being signed by the
 originating MTA. The accomplice resends the message, including the
 original signature, to a large number of recipients, possibly by
 sending the message to many compromised machines that act as MTAs.
 The messages, not having been modified by the accomplice, have valid
 signatures.

 Partial solutions to this problem involve the use of reputation
 services to convey the fact that the specific email address is being
 used for spam, and that messages from that signer are likely to be
 spam. This requires a real-time detection mechanism in order to
 react quickly enough. However, such measures might be prone to
 abuse, if for example an attacker resent a large number of messages
 received from a victim in order to make them appear to be a spammer.

 Large verifiers might be able to detect unusually large volumes of
 mails with the same signature in a short time period. Smaller
 verifiers can get substantially the same volume information via
 existing collaborative systems.

9.6 Limits on Revoking Keys

 When a large domain detects undesirable behavior on the part of one
 of its users, it might wish to revoke the key used to sign that
 user's messages in order to disavow responsibility for messages which
 have not yet been verified or which are the subject of a replay
 attack. However, the ability of the domain to do so can be limited
 if the same key, for scalability reasons, is used to sign messages
 for many other users. Mechanisms for explicitly revoking keys on a
 per-address basis have been proposed but require further study as to
 their utility and the DNS load they represent.

9.7 Intentionally malformed Key Records

 It is possible for an attacker to publish key records in DNS which
 are intentionally malformed, with the intent of causing a denial-of-
 service attack on a non-robust verifier implementation. The attacker
 could then cause a verifier to read the malformed key record by
 sending a message to one of its users referencing the malformed

Allman, et al. Expires April 26, 2006 [Page 39]

Internet-Draft DKIM October 2005

 record in a (not necessarily valid) signature. Verifiers MUST
 thoroughly verify all key records retrieved from DNS and be robust
 against intentionally as well as unintentionally malformed key
 records.

9.8 Intentionally Malformed DKIM-Signature header fields

 Verifiers MUST be prepared to receive messages with malformed DKIM-
 Signature header fields, and thoroughly verify the header field
 before depending on any of its contents.

10. References

10.1 References -- Normative

 [ID-AUTH-RES]
 Kucherawy, M., "Message header field for Indicating Sender
 Authentication Status", draft-kucherawy-sender-auth-header
 field-02 (work in progress), 2005.

 [ID-DKIM-RR]
 "[*] dk rr", draft-dkk-rr-xx (work in progress), 2005.

 [ID-DKIM-SSP]
 Allman, E., "DKIM Sender Signing Policy",

draft-allman-dkim-ssp-XX (work in progress), 2005.

 [ID-MAIL-ARCH]
 Crocker, D., "Internet Mail Architecture",

draft-crocker-email-arch-02 (work in progress),
 April 2005.

 [OPENSSL] Team, C&D., "", WEB http://www.openssl.org/docs/,
 June 2005.

 [RFC1421] Linn, J., "Privacy Enhancement for Internet Electronic
 Mail: Part I: Message Encryption and Authentication
 Procedures", RFC 1421, February 1993.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2047] Moore, K., "MIME (Multipurpose Internet Mail Extensions)
 Part Three: Message header field Extensions for Non-ASCII
 Text", RFC 2047, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

https://datatracker.ietf.org/doc/html/draft-kucherawy-sender-auth-header
https://datatracker.ietf.org/doc/html/draft-dkk-rr-xx
https://datatracker.ietf.org/doc/html/draft-allman-dkim-ssp-XX
https://datatracker.ietf.org/doc/html/draft-crocker-email-arch-02
http://www.openssl.org/docs/
https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2047

Allman, et al. Expires April 26, 2006 [Page 40]

Internet-Draft DKIM October 2005

 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2821] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821,
 April 2001.

 [RFC2822] Resnick, P., "Internet Message Format", RFC 2822,
 April 2001.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep
 Profile for Internationalized Domain Names (IDN)",

RFC 3491, March 2003.

 [RFC4234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, October 2005.

10.2 References -- Informative

 [ID-DKIM-THREATS]
 Fenton, J., "Analysis of Threats Motivating DomainKeys
 Identified Mail (DKIM)", draft-fenton-dkim-threats-00
 (work in progress), September 2005.

 [RFC1847] Galvin, J., Murphy, S., Crocker, S., and N. Freed,
 "Security Multiparts for MIME: Multipart/Signed and
 Multipart/Encrypted", RFC 1847, October 1995.

 [RFC2440] Callas, J., Donnerhacke, L., Finney, H., and R. Thayer,
 "OpenPGP Message Format", RFC 2440, November 1998.

 [RFC2633] Ramsdell, B., "S/MIME Version 3 Message Specification",
RFC 2633, June 1999.

 [RFC3833] Atkins, D. and R. Austein, "Threat Analysis of the Domain
 Name System (DNS)", RFC 3833, August 2004.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",

RFC 4033, March 2005.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2821
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3491
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/draft-fenton-dkim-threats-00
https://datatracker.ietf.org/doc/html/rfc1847
https://datatracker.ietf.org/doc/html/rfc2440
https://datatracker.ietf.org/doc/html/rfc2633
https://datatracker.ietf.org/doc/html/rfc3833
https://datatracker.ietf.org/doc/html/rfc4033

Allman, et al. Expires April 26, 2006 [Page 41]

Internet-Draft DKIM October 2005

Authors' Addresses

 Eric Allman
 Sendmail, Inc.
 6425 Christie Ave, Suite 400
 Emeryville, CA 94608
 USA

 Phone: +1 510 594 5501
 Email: eric+dkim@sendmail.org
 URI:

 Jon Callas
 PGP Corporation
 3460 West Bayshore
 Palo Alto, CA 94303
 USA

 Phone: +1 650 319 9016
 Email: jon@pgp.com

 Mark Delany
 Yahoo! Inc
 701 First Avenue
 Sunnyvale, CA 95087
 USA

 Phone: +1 408 349 6831
 Email: markd+dkim@yahoo-inc.com
 URI:

 Miles Libbey
 Yahoo! Inc
 701 First Avenue
 Sunnyvale, CA 95087
 USA

 Email: mlibbeymail-mailsig@yahoo.com
 URI:

Allman, et al. Expires April 26, 2006 [Page 42]

Internet-Draft DKIM October 2005

 Jim Fenton
 Cisco Systems, Inc.
 MS SJ-24/2
 170 W. Tasman Drive
 San Jose, CA 95134-1706
 USA

 Phone: +1 408 526 5914
 Email: fenton@cisco.com
 URI:

 Michael Thomas
 Cisco Systems, Inc.
 MS SJ-9/2
 170 W. Tasman Drive
 San Jose, CA 95134-1706

 Phone: +1 408 525 5386
 Email: mat@cisco.com

Appendix A. Usage Examples (INFORMATIVE)

 This section taken directly from IIM without serious editing; it
 should be updated or deleted before publication. In no case should
 these examples be used as guidance when creating an implementation.

A.1 Simple message transfer

 The above sections largely describe the process of signing and
 verifying a message which goes directly from one user to another.
 One special case is where the recipient has requested forwarding of
 the email message from the original address to another, through the
 use of a Unix .forward file or equivalent. In this case the message
 is typically forwarded without modification, except for the addition
 of a Received header field to the message and a change in the
 Envelope-to address. In this case, the eventual recipient should be
 able to verify the original signature since the signed content has
 not changed, and attribute the message correctly.

A.2 Outsourced business functions

 Outsourced business functions represent a use case that motivates the
 need for user-level keying. Examples of outsourced business
 functions are legitimate email marketing providers and corporate
 benefits providers. In either case, the outsourced function would
 like to be able to send messages using the email domain of the client
 company. At the same time, the client may be reluctant to register a

Allman, et al. Expires April 26, 2006 [Page 43]

Internet-Draft DKIM October 2005

 key for the provider that grants the ability to send messages for any
 address in the domain.

 With user-level keying, the outsourcing company can generate a
 keypair and the client company can register the public key for a
 specific address such as promotions@example.com. This would enable
 the provider to send messages using that specific address and have
 them verify properly. The client company retains control over the
 email address because it retains the ability to revoke the key at any
 time.

A.3 PDAs and Similar Devices

 PDAs are one example of the use of multiple keys per user. Suppose
 that John Doe wanted to be able to send messages using his corporate
 email address, jdoe@example.com, and the device did not have the
 ability to make a VPN connection to the corporate network. If the
 device was equipped with a private key registered for
 jdoe@example.com by the administrator of that domain, and appropriate
 software to sign messages, John could send IIM messages through the
 outgoing network of the PDA service provider.

A.4 Mailing Lists

 There is a wide range of behavior in forwarders and mailing lists
 (collectively called "forwarders" below), ranging from those which
 make no modification to the message itself (other than to add a
 Received header field and change the envelope information) to those
 which may add header fields, change the Subject header field, add
 content to the body (typically at the end), or reformat the body in
 some manner.

 Forwarders which do not modify the body or signed header fields of a
 message with a valid signature MAY re-sign the message as described
 below.

 Forwarders which make any modification to a message that could result
 in its signature becoming invalid SHOULD sign or re-sign using an
 appropriate identification (e.g., mailing-list-name@example.net).
 Since in so doing the (re-)signer is taking responsibility for the
 content of the message, modifying forwarders MAY elect to forward or
 re-sign only for messages which were received with valid signatures
 or other indications that the messages being signed are not spoofed.

 Forwarders which wish to re-sign a message MUST apply a Sender header
 field to the message to identify the address being used to sign the
 message and MUST remove any preexisting Sender header field as
 required by [RFC2822]. The forwarder applies a new IIM-Sig header

https://datatracker.ietf.org/doc/html/rfc2822

Allman, et al. Expires April 26, 2006 [Page 44]

Internet-Draft DKIM October 2005

 field with the signature, public key, and related information of the
 forwarder. Previously existing IIM-Sig header fields SHOULD NOT be
 removed.

A.5 Affinity Addresses

 "Affinity addresses" are email addresses that users employ to have an
 email address that is independent of any changes in email service
 provider they may choose to make. They are typically associated with
 college alumni associations, professional organizations, and
 recreational organizations with which they expect to have a long-term
 relationship. These domains usually provide forwarding of incoming
 email, but (currently) usually depend on the user to send outgoing
 messages through their own service provider's MTA. They usually have
 an associated Web application which authenticates the user and allows
 the forwarding address to be changed.

 With DKIM, affinity domains could use the Web application to allow
 users to register their own public keys to be used to sign messages
 on behalf of their affinity address. This is another application
 that takes advantage of user-level keying, and domains used for
 affinity addresses would typically have a very large number of user-
 level keys. Alternatively, the affinity domain could decide to start
 handling outgoing mail, and could operate a mail submission agent
 that authenticates users before accepting and signing messages for
 them. This is of course dependent on the user's service provider not
 blocking the relevant TCP ports used for mail submission.

A.6 Third-party Message Transmission

 Third-party message transmission refers to the authorized sending of
 mail by an Internet application on behalf of a user. For example, a
 website providing news may allow the reader to forward a copy of the
 message to a friend; this is typically done using the reader's email
 address. This is sometimes referred to as the "Evite problem", named
 after the website of the same name that allows a user to send
 invitations to friends.

 One way this can be handled is to continue to put the reader's email
 address in the From field of the message, but put an address owned by
 the site into the Sender field, and sign the message on behalf of the
 Sender. A verifying MTA SHOULD accept this and rewrite the From
 field to indicate the address that was verified, i.e., From: John
 Doe via news@news-site.com <jdoe@example.com>.

Appendix B. Example of Use (INFORMATIVE)

 This section taken directly from DK without serious editing; it

Allman, et al. Expires April 26, 2006 [Page 45]

Internet-Draft DKIM October 2005

 should be updated or deleted before publication. In no case should
 these examples be used as guidance when creating an implementation.

 This section shows the complete flow of an email from submission to
 final delivery, demonstrating how the various components fit
 together.

B.1 The user composes an email

 From: Joe SixPack <joe@football.example.com>
 To: Suzie Q <suzie@shopping.example.net>
 Subject: Is dinner ready?
 Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)
 Message-ID: <20030712040037.46341.5F8J@football.example.com>

 Hi.

 We lost the game. Are you hungry yet?

 Joe.

B.2 The email is signed

 This email is signed by the example.com outbound email server and now
 looks like this:

Allman, et al. Expires April 26, 2006 [Page 46]

Internet-Draft DKIM October 2005

 DKIM-Signature: a=rsa-sha1; s=brisbane; d=example.com;
 c=simple; q=dns; i=joe@football.example.com;
 h=Received : From : To : Subject : Date : Message-ID;
 b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+yuU4zGeeruD00lszZ
 VoG4ZHRNiYzR;
 Received: from dsl-10.2.3.4.football.example.com [10.2.3.4]
 by submitserver.example.com with SUBMISSION;
 Fri, 11 Jul 2003 21:01:54 -0700 (PDT)
 From: Joe SixPack <joe@football.example.com>
 To: Suzie Q <suzie@shopping.example.net>
 Subject: Is dinner ready?
 Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)
 Message-ID: <20030712040037.46341.5F8J@football.example.com>

 Hi.

 We lost the game. Are you hungry yet?

 Joe.

 The signing email server requires access to the private-key
 associated with the "brisbane" selector to generate this signature.
 Distribution and management of private-keys is outside the scope of
 this document.

B.3 The email signature is verified

 The signature is normally verified by an inbound SMTP server or
 possibly the final delivery agent. However, intervening MTAs can
 also perform this verification if they choose to do so. The
 verification process uses the domain "example.com" extracted from the
 "d=" header field and the selector "brisbane" from the "s=" tag in
 the "DKIM-Signature" header field to form the DNS DKIM query for:

 brisbane._dkim.example.com

 Signature verification starts with the physically last "Received"
 header field, the "From" header field, and so forth, in the order
 listed in the "h=" tag. Verification follows with a single CRLF
 followed by the body (starting with "Hi."). The email is canonically
 prepared for verifying with the "simple" method. The result of the
 query and subsequent verification of the signature is stored in the
 "Authentication-Results" header field line. After successful
 verification, the email looks like this:

Allman, et al. Expires April 26, 2006 [Page 47]

Internet-Draft DKIM October 2005

 Authentication-Status: XXX
 Received: from mout23.football.example.com (192.168.1.1)
 by shopping.example.net with SMTP;
 Fri, 11 Jul 2003 21:01:59 -0700 (PDT)
 DKIM-Signature: a=rsa-sha1; s=brisbane; d=example.net;
 c=simple; q=dns; i=joe@football.example.com;
 h=Received : From : To : Subject : Date : Message-ID;
 b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+yuU4zGeeruD00lszZ
 VoG4ZHRNiYzR
 Received: from dsl-10.2.3.4.network.example.com [10.2.3.4]
 by submitserver.example.com with SUBMISSION;
 Fri, 11 Jul 2003 21:01:54 -0700 (PDT)
 From: Joe SixPack <joe@football.example.com>
 To: Suzie Q <suzie@shopping.example.net>
 Subject: Is dinner ready?
 Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)
 Message-ID: <20030712040037.46341.5F8J@football.example.com>

 Hi.

 We lost the game. Are you hungry yet?

 Joe.

Appendix C. Creating a public key (INFORMATIVE)

 Drop this section? It seems like this could clarify things for some
 people.

 The default signature is an RSA signed SHA1 digest of the complete
 email. For ease of explanation, the openssl command is used to
 describe the mechanism by which keys and signatures are managed. One
 way to generate a 768 bit private-key suitable for DKIM, is to use
 openssl like this:

 $ openssl genrsa ?out rsa.private 768

 This results in the file rsa.private containing the key information
 similar to this:

Allman, et al. Expires April 26, 2006 [Page 48]

Internet-Draft DKIM October 2005

 -----BEGIN RSA PRIVATE KEY-----
 MIIByQIBAAJhAKJ2lzDLZ8XlVambQfMXn3LRGKOD5o6lMIgulclWjZwP56LRqdg5
 ZX15bhc/GsvW8xW/R5Sh1NnkJNyL/cqY1a+GzzL47t7EXzVc+nRLWT1kwTvFNGIo
 AUsFUq+J6+OprwIDAQABAmBOX0UaLdWWusYzNol++nNZ0RLAtr1/LKMX3tk1MkLH
 +Ug13EzB2RZjjDOWlUOY98yxW9/hX05Uc9V5MPo+q2Lzg8wBtyRLqlORd7pfxYCn
 Kapi2RPMcR1CxEJdXOkLCFECMQDTO0fzuShRvL8q0m5sitIHlLA/L+0+r9KaSRM/
 3WQrmUpV+fAC3C31XGjhHv2EuAkCMQDE5U2nP2ZWVlSbxOKBqX724amoL7rrkUew
 ti9TEjfaBndGKF2yYF7/+g53ZowRkfcCME/xOJr58VN17pejSl1T8Icj88wGNHCs
 FDWGAH4EKNwDSMnfLMG4WMBqd9rzYpkvGQIwLhAHDq2CX4hq2tZAt1zT2yYH7tTb
 weiHAQxeHe0RK+x/UuZ2pRhuoSv63mwbMLEZAjAP2vy6Yn+f9SKw2mKuj1zLjEhG
 6ppw+nKD50ncnPoP322UMxVNG4Eah0GYJ4DLP0U=
 -----END RSA PRIVATE KEY-----

 Once a private-key has been generated, the openssl command can be
 used to sign an appropriately prepared email, like this:

 $ openssl dgst -sign rsa.private -sha1 <input.file

 This results in signature data similar to this when represented in
 Base64 [MIME] format:

 aoiDeX42BB/gP4ScqTdIQJcpAObYr+54yvctqc4rSEFYby9+omKD3pJ/TVxATeTz
 msybuW3WZiamb+mvn7f3rhmnozHJ0yORQbnn4qJQhPbbPbWEQKW09AMJbyz/0lsl

 How this signature is added to the email is discussed later in this
 document. To extract the public-key component from the private-key,
 use openssl like this:

 $ openssl rsa -in rsa.private -out rsa.public -pubout -outform PEM

 This results in the file rsa.public containing the key information
 similar to this:

 -----BEGIN PUBLIC KEY-----
 MHwwDQYJKoZIhvcNAQEBBQADawAwaAJhAKJ2lzDLZ8XlVambQfMXn3LRGKOD5o6l
 MIgulclWjZwP56LRqdg5ZX15bhc/GsvW8xW/R5Sh1NnkJNyL/cqY1a+GzzL47t7E
 XzVc+nRLWT1kwTvFNGIoAUsFUq+J6+OprwIDAQAB
 -----END PUBLIC KEY-----

 This public-key data (without the BEGIN and END tags) is placed in
 the DNS. With the signature, canonical email contents and public
 key, a verifying system can test the validity of the signature. The
 openssl invocation to verify a signature looks like this: openssl
 dgst -verify rsa.public -sha1 -signature signature.file <input.file

Allman, et al. Expires April 26, 2006 [Page 49]

Internet-Draft DKIM October 2005

Appendix D. Acknowledgements

 The authors wish to thank Russ Allbery, Edwin Aoki, Claus Assmann,
 Steve Atkins, Fred Baker, Mark Baugher, Nathaniel Borenstein, Dave
 Crocker, Michael Cudahy, Dennis Dayman, Jutta Degener, Patrik
 Faltstrom, Duncan Findlay, Elliot Gillum, Phillip Hallam-Baker, Tony
 Hansen, Arvel Hathcock, Amir Herzberg, Don Johnsen, Harry Katz,
 Murray S. Kucherawy, Barry Leiba, John Levine, Simon Longsdale, David
 Margrave, Justin Mason, David Mayne, Steve Murphy, Russell Nelson,
 Dave Oran, Shamim Pirzada, Juan Altmayer Pizzorno, Sanjay Pol, Blake
 Ramsdell, Christian Renaud, Scott Renfro, Dave Rossetti, the
 Spamhaus.org team, Malte S. Stretz, Robert Sanders, Rand Wacker, and
 Dan Wing for their valuable suggestions and constructive criticism.

 The DomainKeys specification was a primary source from which this
 specification has been derived. Further information about DomainKeys
 is at
 <http://domainkeys.sourceforge.net/license/patentlicense1-1.html>.

Appendix E. Edit History

E.1 Changes since -00 version

 o Changed "c=" tag to separate out header from body
 canonicalization.

 o Eliminated "nowsp" canonicalization in favor of "relaxed", which
 is somewhat less relaxed (but more secure) than "nowsp".

 o Moved the (empty) Compliance section to the Sender Signing Policy
 document.

 o Added several IANA Considerations.

 o Fixed a number of grammar and formatting errors.

http://domainkeys.sourceforge.net/license/patentlicense1-1.html

Allman, et al. Expires April 26, 2006 [Page 50]

Internet-Draft DKIM October 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Allman, et al. Expires April 26, 2006 [Page 51]

Internet-Draft DKIM October 2005

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Allman, et al. Expires April 26, 2006 [Page 52]

