
Internet Engineering Task Force Mark Allman
INTERNET DRAFT NASA GRC/BBN
File: draft-allman-tcp-early-rexmt-00.txt Konstantin Avrachenkov
 INRIA
 Urtzi Ayesta
 France Telecom R&D
 Josh Blanton
 Ohio University
 February, 2003
 Expires: August, 2003

Early Retransmit for TCP

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC2026].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document proposes a new TCP mechanism that can be used to more
 effectively recover lost segments when a connection's congestion
 window is small. The "Early Retransmit" mechanism allows TCP to
 reduce, in certain special circumstances, the number of duplicate
 acknowledgments required to trigger a fast retransmission. This
 allows TCP to use fast retransmit to recover packet losses that
 would otherwise require a lengthy retransmission timeout.

1 Introduction

 A number of researchers have pointed out that TCP's loss recovery
 strategies do not work well when the congestion window at a TCP
 sender is small. This can happen in a number of situations, such
 as:

https://datatracker.ietf.org/doc/html/draft-allman-tcp-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 (1) The TCP connection is "application limited" and has only a
 limited amount of data to send.

Expires: August 2003 [Page 1]

draft-allman-tcp-early-rexmt-00.txt February 2003

 (2) The TCP connection is limited by the receiver-advertised window.

 (3) The TCP connection is constrained by end-to-end congestion
 control when the connection's share of the path is small, the
 path has a small bandwidth-delay product or TCP is ascertaining
 the available bandwidth in the first few round-trip times of
 slow start.

 (4) The TCP connection is "winding down" at the end of a transfer
 such that data is draining from the network but no new data
 (from the application) is available to transmit.

 Many researchers have studied problems with TCP when the congestion
 window is small and have outlined possible mechanisms to mitigate
 these problems (e.g., [Mor97,BPS+98,Bal98,LK98,RFC3150,AA02]). When
 TCP detects a missing segment, the connection enters a loss recovery
 phase using one of two methods. First, if an acknowledgment (ACK)
 for a given segment is not received in a certain amount of time a
 retransmission timeout occurs and the segment is resent [RFC2988].
 Second, the ``Fast Retransmit'' algorithm resends a segment when
 three duplicate ACKs arrive at the sender [Jac88,RFC2581]. However,
 because duplicate ACKs from the receiver are also triggered by
 packet reordering in the Internet, the TCP sender waits for three
 duplicate ACKs in an attempt to disambiguate segment loss from
 packet reordering. Once in a loss recovery phase, a number of
 techniques can be used to retransmit lost segments, including slow
 start based recovery or Fast Recovery [RFC2581], NewReno [RFC2582],
 and loss recovery based on selective acknowledgments (SACKs)
 [RFC2018,FF96,BAFW02].

 TCP's retransmission timeout (RTO) is based on measured round-trip
 times (RTT) between the sender and receiver, as specified in
 [RFC2988]. To prevent spurious retransmissions of segments that are
 only delayed and not lost, the minimum RTO is conservatively chosen
 to be 1 second. Therefore, it behooves TCP senders to detect and
 recover from as many losses as possible without incurring a lengthy
 timeout during which the connection remains idle. However, if not
 enough duplicate ACKs arrive from the receiver, the Fast Retransmit
 algorithm is never triggered---this situation occurs when the
 congestion window is small, if a large number of segments in a
 window are lost or at the end of a transfer as data drains from the
 network. For instance, consider a congestion window (cwnd) of three
 segments. If one segment is dropped by the network, then at most
 two duplicate ACKs will arrive at the sender, assuming no ACK loss.
 Since three duplicate ACKs are required to trigger Fast Retransmit,
 a timeout will be required to resend the dropped packet.

 [BPS+98] shows that roughly 56% of retransmissions sent by a busy
 web server are sent after the RTO expires, while only 44% are

https://datatracker.ietf.org/doc/html/draft-allman-tcp-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/rfc3150
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2988

 handled by Fast Retransmit. In addition, only 4% of the RTO-based
 retransmissions could have been avoided with SACK, which has to
 continue to disambiguate reordering from genuine loss. Furthermore,
 [All00] shows that for one particular web server the median transfer
 size is less than four segments, indicating that more than half of

Expires: August 2003 [Page 2]

draft-allman-tcp-early-rexmt-00.txt February 2003

 the connections will be forced to rely on the RTO to recover from
 any losses that occur. Thus, loss recovery without relying on the
 conservative RTO is beneficial for short TCP transfers. In
 particular, as a consequence of points (3) and (4) above, a single
 segment loss will require TCP to RTO when a loss occurs in small
 transfers.

 The Limited Transmit mechanism introduced in [RFC3042] allows a TCP
 sender to send previously unsent data upon the reception of each of
 the two duplicate ACKs that precede a fast retransmit. By sending
 these two new segments the TCP sender is attempting to induce
 additional duplicate ACKs (if appropriate) so that Fast Retransmit
 will be triggered before the retransmission timeout expires. The
 "Early Retransmit" mechanism outlined in this document covers the
 case when previously unsent data is not available for transmission.

 The next section of this document outlines a small change to TCP
 senders that will decrease the reliance on the retransmission timer,
 and thereby improve TCP performance when Fast Retransmit would not
 otherwise be triggered.

2 Reduction of the Retransmission Threshold

 Limited Transmit [RFC3042] allows the sender to attempt to induce
 enough duplicate ACKs to trigger Fast Retransmit. However, in some
 cases the TCP sender may not have new data queued and ready to be
 transmitted or may be limited by the advertised window when the
 first two duplicate ACKs arrive. In these cases, the Limited
 Transmit algorithm cannot be utilized. If there is a large amount
 of outstanding data in the network, not being able to transmit new
 segments when the first two duplicate ACKs arrive is not a problem,
 as Fast Retransmit will be triggered naturally. However, when the
 amount of outstanding data is small the sender will have to rely on
 the RTO to repair any lost segments.

 As an example, consider the case when cwnd is three segments and one
 of these segments is dropped by the network. If the other two
 segments arrive at the receiver and the corresponding ACKs are not
 dropped by the network the sender will receive two duplicate ACKs,
 which is not enough to trigger the Fast Retransmit algorithm. The
 loss can therefore be repaired only after an RTO. However, the
 sender has enough information to infer that it cannot expect three
 duplicate ACKs when one segment is dropped.

 The first mitigation of the above problem involves lowering the
 duplicate ACK threshold when the amount of outstanding data is small
 and when no unsent data segments are enqueued. In particular, if
 the amount of outstanding data (ownd) is less than 4 segments and
 there are no unsent segments ready for transmission at the sender,

https://datatracker.ietf.org/doc/html/draft-allman-tcp-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc3042

 the duplicate ACK threshold used to trigger Fast Retransmit MAY be
 reduced to ownd-1 duplicate ACKs (where ownd is in terms of
 segments). In other words, when ownd is small enough that losing
 one segment would not trigger Fast Retransmit, we reduce the
 duplicate ACK threshold to the number of duplicate ACKs expected if

Expires: August 2003 [Page 3]

draft-allman-tcp-early-rexmt-00.txt February 2003

 one segment is lost. This mitigation is less robust in the face of
 reordered segments than the standard Fast Retransmit threshold of
 three duplicate ACKs. Research shows that a general reduction in
 the number of duplicate ACKs required to trigger fast retransmission
 of a segment to two (rather than three) leads to a reduction in the
 ratio of good to bad retransmits by a factor of three [Pax97].
 However, this analysis did not include the additional conditioning
 on the event that the ownd was smaller than 4 segments.

 We note two "worst case" scenarios for Early Retransmit:

 (1) Persistent reordering of segments, coupled with an application
 that does not constantly send data, can result in large numbers
 of needless retransmissions when using Early Retransmit. For
 instance, consider an application that sends data two segments
 at a time, followed by an idle period when no data is queued for
 delivery by TCP. If the network consistently reorders the two
 segments, the TCP sender will needlessly retransmit one out of
 every two unique segments transmitted (and one-third of all
 segments) when using the above algorithm. However, this would
 only be a problem for long-lived connections from applications
 that transmit in spurts.

 (2) Similar to the above, consider the case of 2 segment transfers
 that always experience reordering. Just as in (1) above, one
 out of every two unique data segments will be retransmitted
 needlessly, therefore one-third of the traffic will be spurious.

 Currently this document offers no suggestion on how to mitigate the
 above problems. Appendix A offers a survey of possible mitigations.
 However, the authors would like further input before choosing one of
 these options (or, deciding that the worst case scenarios listed
 above are sufficiently rare that Early Retransmit can be used
 without modification).

3 Related Work

 Deployment of Explicit Congestion Notification (ECN) [Flo94,RFC2481]
 may benefit connections with small congestion window sizes
 [RFC2884]. ECN provides a method for indicating congestion to the
 end-host without dropping segments. While some segment drops may
 still occur, ECN may allow TCP to perform better with small cwnd
 sizes because the sender will be required to detect less segment
 loss [RFC2884].

4 Security Considerations

 The security considerations found in [RFC2581] apply to this
 document. No additional security problems have been identified with

https://datatracker.ietf.org/doc/html/draft-allman-tcp-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/rfc2481
https://datatracker.ietf.org/doc/html/rfc2884
https://datatracker.ietf.org/doc/html/rfc2884
https://datatracker.ietf.org/doc/html/rfc2581

 Early Retransmit at this time.

Acknowledgments

 We thank Sally Floyd for her feedback in discussions about Early

Expires: August 2003 [Page 4]

draft-allman-tcp-early-rexmt-00.txt February 2003

 Retransmit. We also thank Sally Floyd and Hari Balakrishnan who
 helped with a large portion of the text of this document when it was
 part of a seperate effort.

References

 [AA02] Urtzi Ayesta, Konstantin Avrachenkov, "The Effect of the
 Initial Window Size and Limited Transmit Algorithm on the
 Transient Behavior of TCP Transfers", In Proc. of the 15th ITC
 Internet Specialist Seminar, Wurzburg, July 2002.

 [All00] Mark Allman. A Server-Side View of WWW Characteristics.
 ACM Computer Communications Review, October 2000.

 [AP99] Mark Allman, Vern Paxson. On Estimating End-to-End Network
 Path Properties. ACM SIGCOMM, September 1999.

 [BAFW02] Ethan Blanton, Mark Allman, Kevin Fall, Lili Wang. A
 Conservative SACK-based Loss Recovery Algorithm for TCP, October
 2002. Internet-Draft draft-allman-tcp-sack-13.txt (work in
 progress).

 [Bal98] Hari Balakrishnan. Challenges to Reliable Data Transport
 over Heterogeneous Wireless Networks. Ph.D. Thesis, University
 of California at Berkeley, August 1998.

 [BPS+98] Hari Balakrishnan, Venkata Padmanabhan, Srinivasan Seshan,
 Mark Stemm, and Randy Katz. TCP Behavior of a Busy Web Server:
 Analysis and Improvements. Proc. IEEE INFOCOM Conf., San
 Francisco, CA, March 1998.

 [BPS99] Jon Bennett, Craig Partridge, Nicholas Shectman. Packet
 Reordering is Not Pathological Network Behavior. IEEE/ACM
 Transactions on Networking, December 1999.

 [FF96] Kevin Fall, Sally Floyd. Simulation-based Comparisons of
 Tahoe, Reno, and SACK TCP. ACM Computer Communication Review,
 July 1996.

 [Flo94] Sally Floyd. TCP and Explicit Congestion Notification. ACM
 Computer Communication Review, October 1994.

 [Jac88] Van Jacobson. Congestion Avoidance and Control. ACM
 SIGCOMM 1988.

 [LK98] Dong Lin, H.T. Kung. TCP Fast Recovery Strategies: Analysis
 and Improvements. Proceedings of InfoCom, March 1998.

 [Mor97] Robert Morris. TCP Behavior with Many Flows. Proceedings
 of the Fifth IEEE International Conference on Network Protocols.

https://datatracker.ietf.org/doc/html/draft-allman-tcp-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/draft-allman-tcp-sack-13.txt

 October 1997.

 [Pax97] Vern Paxson. End-to-End Internet Packet Dynamics. ACM
 SIGCOMM, September 1997.

Expires: August 2003 [Page 5]

draft-allman-tcp-early-rexmt-00.txt February 2003

 [SCWA99] Stefan Savage, Neal Cardwell, David Wetherall, Tom
 Anderson. TCP Congestion Control with a Misbehaving Receiver.
 ACM Computer Communications Review, October 1999.

 [RFC2018] Matt Mathis, Jamshid Mahdavi, Sally Floyd, Allyn Romanow.
 TCP Selective Acknowledgement Options. RFC 2018, October 1996.

 [RFC2481] K. K. Ramakrishnan, Sally Floyd. A Proposal to Add
 Explicit Congestion Notification (ECN) to IP. RFC 2481, January
 1999.

 [RFC2581] Mark Allman, Vern Paxson, W. Richard Stevens. TCP
 Congestion Control. RFC 2581, April 1999.

 [RFC2582] Sally Floyd, Tom Henderson. The NewReno Modification to
 TCP's Fast Recovery Algorithm. RFC 2582, April 1999.

 [RFC2883] Sally Floyd, Jamshid Mahdavi, Matt Mathis, Matt Podolsky.
 An Extension to the Selective Acknowledgement (SACK) Option for
 TCP. RFC 2883, July 2000.

 [RFC2884] Jamal Hadi Salim and Uvaiz Ahmed. Performance Evaluation
 of Explicit Congestion Notification (ECN) in IP Networks. RFC

2884, July 2000.

 [RFC2988] Vern Paxson, Mark Allman. Computing TCP's Retransmission
 Timer. RFC 2988, April 2000.

 [RFC3042] Mark Allman, Hari Balakrishnan, Sally Floyd. Enhancing
 TCP's Loss Recovery Using Limited Transmit. RFC 3042, January
 2001.

 [RFC3150] Spencer Dawkins, Gabriel Montenegro, Markku Kojo, Vincent
 Magret. End-to-end Performance Implications of Slow Links. RFC

3150, July 2001.

Author's Addresses:

 Mark Allman
 NASA Glenn Research Center/BBN Technologies
 Lewis Field
 21000 Brookpark Rd. MS 54-2
 Cleveland, OH 44135
 Phone: 216-433-6586
 Fax: 216-433-8705
 mallman@bbn.com

http://roland.grc.nasa.gov/~mallman

 Konstantin Avrachenkov

https://datatracker.ietf.org/doc/html/draft-allman-tcp-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2481
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc2884
https://datatracker.ietf.org/doc/html/rfc2884
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc3150
https://datatracker.ietf.org/doc/html/rfc3150
http://roland.grc.nasa.gov/~mallman

 INRIA
 2004 route des Lucioles, B.P.93
 06902, Sophia Antipolis
 France

Expires: August 2003 [Page 6]

draft-allman-tcp-early-rexmt-00.txt February 2003

 Phone: 00 33 492 38 7751
 Email: k.avrachenkov@inria.fr

 Urtzi Ayesta
 France Telecom R&D
 905 rue Albert Einstein
 06921 Sophia Antipolis
 France
 Email: Urtzi.Ayesta@francetelecom.com

 Josh Blanton
 Ohio University
 301 Stocker Center
 Athens, OH 45701
 jblanton@irg.cs.ohiou.edu

Appendix A: Research Issues in Adjusting the Duplicate ACK Threshold

 Decreasing the number of duplicate ACKs required to trigger Fast
 Retransmit, as suggested in section 2, has the drawback of making
 Fast Retransmit less robust in the face of minor network reordering.
 Two egregious examples of problems caused by reordering are given in

section 2. This appendix outlines several schemes that have been
 suggested to mitigate the problems caused to Early Retransmit by
 reordering. These methods need further research before they are
 suggested for use in shared networks.

 One possible mitigation for the damge of spurious retransmits is to
 allow a TCP connection to only send one retransmission using a
 duplicate ACK threshold of less than three. This allows for
 enhanced recovery for short connections and protects the network
 from longer connections that could possibly use this algorithm to
 send many needless retransmissions.

 Using information provided by the DSACK option [RFC2883], a TCP
 sender can determine when its Fast Retransmit threshold is too low,
 causing needless retransmissions due to reordering in the network.
 Coupling the information provided by DSACKs with the algorithm
 outlined in section 2 may provide a further enhancement.
 Specifically, the proposed reduction in the duplicate ACK threshold
 would not be taken if the network path is known to be reordering
 segments.

 The next method is to detect needless retransmits based on the time
 between the retransmission and the next ACK received. As outlined
 in [AP99] if this time is less than half of the minimum RTT observed
 thus far the retransmission was likely unnecessary. When using less
 than three duplicate ACKs as the threshold to trigger Fast
 Retransmit, a TCP sender could attempt to determine whether the

https://datatracker.ietf.org/doc/html/draft-allman-tcp-early-rexmt-00.txt
https://datatracker.ietf.org/doc/html/rfc2883

 retransmission was needed or not. In the case when it was
 unnecessary, the sender could refrain from further use of Fast
 Retransmit with a threshold of less than three duplicate ACKs. This
 method of detecting bad retransmits is not as robust as using
 DSACKs. However, the advantage is that this mechanism only requires

Expires: August 2003 [Page 7]

draft-allman-tcp-early-rexmt-00.txt February 2003

 sender-side implementation changes.

 A TCP sender can take measures to avoid the case where a large
 percentage of the unique segments transmitted are being needlessly
 retransmitted due to the use of a low duplicate ACK threshold (such
 as the one outlined in section 2). Specifically, the sender can
 limit the percentage of retransmits based on a duplicate ACK
 threshold of less than three. This allows the mechanism to be used
 throughout a long lived connection, but at the same time protecting
 the network from potentially wasteful needless retransmissions.
 However, this solution does not attempt to address the underlying
 problem, but rather limits the damage the algorithm can cause.

 Finally, [Bal98] outlines another solution to the problem of having
 no new segments to transmit into the network when the first two
 duplicate ACKs arrive. In response to these duplicate ACKs, a TCP
 sender transmits zero-byte segments to induce additional duplicate
 ACKs [Bal98]. This method preserves the robustness of the standard
 Fast Retransmit algorithm at the cost of injecting segments into the
 network that do not deliver any data (and, therefore are potentially
 wasting network resources).

 Even with the introduction of the Early Retransmit mechanism, the
 loss of the last segment of a transfer will lead to a timeout. To
 overcome this TCP can send an extra segment at the end of the
 session containing no data. One may expect this would introduce
 less aditional load than the proposal of [Bal98], but requires more
 research before such a mechanism can be recommended.

https://datatracker.ietf.org/doc/html/draft-allman-tcp-early-rexmt-00.txt

Expires: August 2003 [Page 8]

