
Internet Engineering Task Force Mark Allman
INTERNET DRAFT NASA GRC/BBN
File: draft-allman-tcp-lossrec-00.txt Hari Balakrishnan
 MIT
 Sally Floyd
 ACIRI
 June, 2000
 Expires: December, 2000

Enhancing TCP's Loss Recovery Using
Early Duplicate Acknowledgment Response

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet- Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document proposes two new TCP mechanisms that can be used to
 more effectively recover lost segments when a connection's
 congestion window is small, or when a large number of segments are
 lost in a single transmission window. The first of these
 mechanisms, ``Limited Transmit'', calls for sending a new data
 segment in response to each of the first two duplicate
 acknowledgments that arrive at the sender. The second mechanism is
 to reduce, in certain special circumstances, the number of duplicate
 acknowledgments required to trigger a fast retransmission.

1 Introduction

 A number of researchers have pointed out that TCP's loss recovery
 strategies do not work well when the congestion window at a TCP
 sender is small. This can happen, for instance, because there is

https://datatracker.ietf.org/doc/html/draft-allman-tcp-lossrec-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 only a limited amount of data to send, or because of the limit
 imposed by the receiver-advertised window, or because of the
 constraints imposed by end-to-end congestion control over a

Expires: December, 2000 [Page 1]

draft-allman-tcp-lossrec-00.txt June 2000

 connection with a small bandwidth-delay product
 [Mor97,BPS+98,Bal98,LK98,DMKM00]. When it detects a missing
 segment, TCP enters a loss recovery phase using one of two methods.
 First, if an acknowledgment (ACK) for a given segment is not
 received in a certain amount of time a retransmission timeout occurs
 and the segment is resent [PA00]. Second, the ``Fast Retransmit''
 algorithm resends a segment when three duplicate ACKs arrive at the
 sender [Jac88,RFC2581]. However, because duplicate ACKs from the
 receiver are also triggered by packet reordering in the Internet,
 the TCP sender waits for three duplicate ACKs in an attempt to
 disambiguate segment loss from packet reordering. Once in a loss
 recovery phase, a number of techniques can be used to retransmit
 lost segments, including slow start based recovery or Fast Recovery
 [RFC2581], NewReno [RFC2582], and loss recovery based on selective
 acknowledgments (SACKs) [RFC2018,FF96].

 TCP's retransmission timeout (RTO) is based on measured round-trip
 times (RTT) between the sender and receiver, as specified in [PA00].
 To prevent spurious retransmissions of segments that are only
 delayed and not lost, the minimum RTO is conservatively chosen to be
 1 second. Therefore, it behooves TCP senders to detect and recover
 from as many losses as possible without incurring a lengthy timeout
 when the connection remains idle. However, if not enough duplicate
 ACKs arrive from the receiver, the Fast Retransmit algorithm is
 never triggered---this situation occurs when the congestion window
 is small or if a large number of segments in a window are lost. For
 instance, consider a congestion window (cwnd) of three segments. If
 one segment is dropped by the network, then at most two duplicate
 ACKs will arrive at the sender, assuming no ACK loss. Since three
 duplicate ACKs are required to trigger Fast Retransmit, a timeout
 will be required to resend the dropped packet.

 [BPS+98] shows that roughly 56% of retransmissions sent by a busy
 web server are sent after the RTO expires, while only 44% are
 handled by Fast Retransmit. In addition, only 4% of the RTO-based
 retransmissions could have been avoided with SACK, which of course
 has to continue to disambiguate reordering from genuine loss. In
 contrast, using the techniques outlined in this document and in
 [Bal98], 25% of the RTO-based retransmissions in that dataset would
 have likely been avoided. In addition, [All00] shows that for one
 particular web server the median transfer size is less than four
 segments, indicating that more than half of the connections will be
 forced to rely on the RTO to recover from any losses that occur.

 The next two sections of this document outline small changes to TCP
 senders that will decrease the reliance on the retransmission timer,
 and thereby improve TCP performance when Fast Retransmit is not
 triggered. These changes do not adversely affect the performance of
 TCP nor interact adversely with other connections, in other

https://datatracker.ietf.org/doc/html/draft-allman-tcp-lossrec-00.txt
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2018

 circumstances.

2 Modified Response to Duplicate ACKs

Expires: December, 2000 [Page 2]

draft-allman-tcp-lossrec-00.txt June 2000

 When a TCP sender has previously unsent data queued for
 transmission, new segments SHOULD use the Limited Transmit
 algorithm, which calls for a TCP sender to transmit new data upon
 the arrival of a duplicate ACK when the following conditions are
 satisfied:

 * The receiver's advertised window allows the transmission of the
 segment.

 * The amount of outstanding data would remain less than the
 congestion window plus the duplicate ACK threshold used to
 trigger Fast Retransmit. In other words, the sender can only
 send two segments beyond the congestion window (cwnd).

 The congestion window (cwnd) MUST NOT be changed when these new
 segments are transmitted. Assuming that these new segments and the
 corresponding ACKs are not dropped, this procedure allows the sender
 to infer loss using the standard Fast Retransmit threshold of three
 duplicate ACKs [RFC2581]. This is more robust to reordered packets
 than it would be to retransmit an old packet on the first or second
 duplicate ACK.

 Note: If the connection is using selective acknowledgments
 [RFC2018], the data sender MUST NOT send new segments in response to
 duplicate ACKs that contain no new SACK information, as a
 misbehaving receiver can generate such ACKs to trigger inappropriate
 transmission of data segments. See [SCWA99] for a discussion of
 attacks by misbehaving receivers.

 Using Limited Transmit follows the ``conservation of packets''
 congestion control principle [Jac88]. Each of the first two
 duplicate ACKs indicate that a segment has left the network.
 Furthermore, the sender has not yet decided that a segment has been
 dropped and therefore has no reason to assume the current congestion
 control state is not accurate. Therefore, transmitting segments
 does not deviate from the spirit of TCP's congestion control
 principles.

 [BPS99] shows that packet reordering is not a rare network event.
 [RFC2581] does not provide for sending of data on the first two
 duplicate ACKs that arrive at the sender. This causes a burst of
 segments to be sent when an ACK for new data does arrive. Using
 Limited Transmit, data packets will be clocked out by incoming ACKs
 and therefore transmission will not be as bursty.

 Note: Limited Transmit is implemented in the ns simulator.
 Researchers wishing to investigate this mechanism further can do so
 by enabling ``singledup_'' for the given TCP connection.

https://datatracker.ietf.org/doc/html/draft-allman-tcp-lossrec-00.txt
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2581

3 Reduction of the Retransmission Threshold

Expires: December, 2000 [Page 3]

draft-allman-tcp-lossrec-00.txt June 2000

 In some cases the TCP sender may not have new data queued and ready
 to be transmitted when the first two duplicate ACKs arrive. In this
 case, the Limited Transmit algorithm outlined in section 2 cannot be
 utilized. If there is a large amount of outstanding data in the
 network, not being able to transmit new segments when the first two
 duplicate ACKs arrive is not a problem, as Fast Retransmit will be
 triggered naturally. However, when the amount of outstanding data
 is small the sender will have to rely on the RTO to repair any lost
 segments.

 As an example, consider the case when cwnd is three segments and one
 of these segments is dropped by the network. If the other two
 segments arrive at the receiver and the corresponding ACKs are not
 dropped by the network, the sender will receive two duplicate ACKs,
 which is not enough to trigger the Fast Retransmit algorithm. The
 loss can therefore be repaired only after an RTO. However, the
 sender has enough information to infer that it cannot expect three
 duplicate ACKs when one segment is dropped.

 The first mitigation of the above problem involves lowering the
 duplicate ACK threshold, when cwnd is small and when no unsent data
 segments are enqueued. In particular, if cwnd is less than 4
 segments and there are no unsent segments at the sender, the
 duplicate ACK threshold used to trigger Fast Retransmit is reduced
 to cwnd-1 duplicate ACKs (where cwnd is in terms of segments). In
 other words, when cwnd is small enough that losing one segment would
 not trigger Fast Retransmit, we reduce the duplicate ACK threshold
 to the number of duplicate ACKs expected if one segment is lost.
 This mitigation is clearly less robust in the face of reordered
 segments than the standard Fast Retransmit threshold of three
 duplicate ACKs. Research shows that a general reduction in the
 number of duplicate ACKs required to trigger fast retransmission of
 a segment to two (rather than three) leads to a reduction in the
 ratio of good to bad retransmits by a factor of three [Pax97].
 However, this analysis did not include the additional conditioning
 on the event that the cwnd was smaller than 4 segments.

 Note that persistent reordering of segments, coupled with an
 application that does not constantly send data, can result in large
 numbers of retransmissions. For instance, consider an application
 that sends data two segments at a time, followed by an idle period
 when no data is queued for delivery by TCP. If the network
 consistently reorders the two segments, the TCP sender will
 needlessly retransmit one out of every two unique segments
 transmitted when using the above algorithm. However, this would
 only be a problem for long-lived connections from applications that
 transmit in spurts.

https://datatracker.ietf.org/doc/html/draft-allman-tcp-lossrec-00.txt

 To combat this problem, a TCP connection SHOULD only send one
 retransmission using a duplicate ACK threshold of less than three.
 This allows for enhanced recovery for short connections and protects
 the network from longer connections that could possibly use this
 algorithm to send many needless retransmissions. We note that

Expires: December, 2000 [Page 4]

draft-allman-tcp-lossrec-00.txt June 2000

 future research may allow this restriction to be relaxed, and refer
 the reader to Appendix A for a discussion of some alternate
 mechanisms. While not explicitly recommended by this document, we
 believe that these may prove useful depending on the results of
 further research.

4 Related Work

 Deployment of Explicit Congestion Notification (ECN) [Flo94,RFC2481]
 may benefit connections with small congestion window sizes [SA00].
 ECN provides a method for indicating congestion to the end-host
 without dropping segments. While some segment drops may still
 occur, ECN may allow TCP to perform better with small cwnd sizes
 because the sender will be required to detect less segment loss
 [SA00].

5 Security Considerations

 The security implications of the changes proposed in this document
 are minimal. The potential security issues come from the subversion
 of end-to-end congestion control from "false" duplicate ACKs, where
 a "false" duplicate ACK is a duplicate ACK that does not actually
 acknowledge new data received at the TCP receiver. False duplicate
 ACKs could result from duplicate ACKs that are themselves duplicated
 in the network, or from misbehaving TCP receivers that send false
 duplicate ACKs to subvert end-to-end congestion control
 [SCWA99,RFC2581].

 When the TCP data receiver has agreed to use the SACK option, the
 TCP data sender has fairly strong protection against false duplicate
 ACKs. In particular, with SACK, a duplicate ACK that acknowledges
 new data arriving at the receiver reports the sequence numbers of
 that new data. Thus, with SACK, the TCP sender can verify that an
 arriving duplicate ACK acknowledges data that the TCP sender has
 actually sent, and for which no previous acknowledgment has been
 received, before sending new data as a result of that
 acknowledgment. For further protection, the TCP sender could keep a
 record of packet boundaries for transmitted data packets, and
 recognize at most one valid acknowledgment for each packet (e.g.,
 the first acknowledgment acknowledging the receipt of all of the
 sequence numbers in that packet).

 One could imagine some limited protection against false duplicate
 ACKs for a non-SACK TCP connection, where the TCP sender keeps a
 record of the number of packets transmitted, and recognizes at most
 one acknowledgment per packet to be used for triggering the sending
 of new data. However, this accounting of packets transmitted and
 acknowledged would require additional state and extra complexity at
 the TCP sender, and does not seem necessary.

https://datatracker.ietf.org/doc/html/draft-allman-tcp-lossrec-00.txt
https://datatracker.ietf.org/doc/html/rfc2481
https://datatracker.ietf.org/doc/html/rfc2581

 The most important protection against false duplicate ACKs comes
 from the limited potential of duplicate ACKs in subverting
 end-to-end congestion control. There are two separate cases to
 consider, when the TCP sender receives less than a threshold number

Expires: December, 2000 [Page 5]

draft-allman-tcp-lossrec-00.txt June 2000

 of duplicate ACKs, and when the TCP sender receives at least a
 threshold number of duplicate ACKs.

 First we consider the case when the TCP sender receives less than a
 threshold number of duplicate ACKs. For example, the TCP receiver
 could send two duplicate ACKs after each regular ACK. One might
 imagine that the TCP sender would send at three times its allowed
 sending rate. However, using Limited Transmit as outlined in

section 2 the sender is only allowed to exceed the congestion window
 by less than the duplicate ACK threshold, and thus would not send a
 new packet for each duplicate ACK received.

 We next consider the case when the TCP sender receives at least the
 threshold number of duplicate ACKs. This is an increased
 possibility with the reduction of the duplicate ACK threshold for
 the special case proposed in Section 3. However, in addition to
 retransmitting a packet when a threshold number of duplicate ACKs is
 received, the TCP sender also halves its congestion window, thus
 reinforcing the role of end-to-end congestion control. If the
 retransmitted packet is itself dropped, then it will only be
 retransmitted again after the retransmit timer expires. Thus, the
 potential drawback of a reduced threshold is not one of congestion
 collapse for the network. Instead, the potential drawback would be
 that of a single unnecessary retransmission, and an accompanying
 unnecessary reduction of the congestion window, for the TCP
 connection itself. This is not a security consideration, but a
 performance consideration for the TCP connection itself. We note
 that the reduced threshold would only apply when the TCP sender does
 not have additional data ready to transmit, so the performance
 penalty would be small.

References

 [All00] Mark Allman. A Server-Side View of WWW Characteristics.
 May, 2000. In preparation.

 [AP99] Mark Allman, Vern Paxson. On Estimating End-to-End Network
 Path Properties. ACM SIGCOMM, September 1999.

 [Bal98] Hari Balakrishnan. Challenges to Reliable Data Transport
 over Heterogeneous Wireless Networks. Ph.D. Thesis, University
 of California at Berkeley, August 1998.

 [BPS+98] Hari Balakrishnan, Venkata Padmanabhan, Srinivasan Seshan,
 Mark Stemm, and Randy Katz. TCP Behavior of a Busy Web Server:
 Analysis and Improvements. Proc. IEEE INFOCOM Conf., San
 Francisco, CA, March 1998.

 [BPS99] Jon Bennett, Craig Partridge, Nicholas Shectman. Packet

https://datatracker.ietf.org/doc/html/draft-allman-tcp-lossrec-00.txt

 Reordering is Not Pathological Network Behavior. IEEE/ACM
 Transactions on Networking, December 1999.

 [DMKM00] Spencer Dawkins, Gabriel Montenegro, Markku Kojo, Vincent

Expires: December, 2000 [Page 6]

draft-allman-tcp-lossrec-00.txt June 2000

 Magret. End-to-end Performance Implications of Slow Links,
 Internet-Draft draft-ietf-pilc-slow-03.txt, March 2000 (work in
 progress).

 [FF96] Kevin Fall, Sally Floyd. Simulation-based Comparisons of
 Tahoe, Reno, and SACK TCP. ACM Computer Communication Review,
 July 1996.

 [Flo94] Sally Floyd. TCP and Explicit Congestion Notification. ACM
 Computer Communication Review, October 1994.

 [FMM+99] Sally Floyd, Jamshid Mahdavi, Matt Mathis, Matt Podolsky,
 Allyn Romanow, An Extension to the Selective Acknowledgement
 (SACK) Option for TCP, Internet-Draft draft-floyd-sack-00.txt,
 August 1999.

 [Jac88] Van Jacobson. Congestion Avoidance and Control. ACM
 SIGCOMM 1988.

 [LK98] Dong Lin, H.T. Kung. TCP Fast Recovery Strategies: Analysis
 and Improvements. Proceedings of InfoCom, March 1998.

 [Mor97] Robert Morris. TCP Behavior with Many Flows. Proceedings
 of the Fifth IEEE International Conference on Network Protocols.
 October 1997.

 [PA00] Vern Paxson, Mark Allman. Computing TCP's Retransmission
 Timer, April 2000. Internet-Draft draft-paxson-tcp-rto-01.txt
 (work in progress).

 [Pax97] Vern Paxson. End-to-End Internet Packet Dynamics. ACM
 SIGCOMM, September 1997.

 [SA00] Jamal Hadi Salim and Uvaiz Ahmed, Performance Evaluation of
 Explicit Congestion Notification (ECN) in IP Networks,

draft-hadi-jhsua-ecnperf-01.txt, March 2000 (work in progress).

 [SCWA99] Stefan Savage, Neal Cardwell, David Wetherall, Tom
 Anderson. TCP Congestion Control with a Misbehaving Receiver.
 ACM Computer Communications Review, October 1999.

 [RFC2018] Matt Mathis, Jamshid Mahdavi, Sally Floyd, Allyn Romanow.
 TCP Selective Acknowledgement Options. RFC 2018, October 1996.

 [RFC2481] K. K. Ramakrishnan, Sally Floyd. A Proposal to Add
 Explicit Congestion Notification (ECN) to IP. RFC 2481, January
 1999.

 [RFC2581] Mark Allman, Vern Paxson, W. Richard Stevens. TCP
 Congestion Control. RFC 2581, April 1999.

https://datatracker.ietf.org/doc/html/draft-allman-tcp-lossrec-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-pilc-slow-03.txt
https://datatracker.ietf.org/doc/html/draft-floyd-sack-00.txt
https://datatracker.ietf.org/doc/html/draft-paxson-tcp-rto-01.txt
https://datatracker.ietf.org/doc/html/draft-hadi-jhsua-ecnperf-01.txt
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2481
https://datatracker.ietf.org/doc/html/rfc2581

 [RFC2582] Sally Floyd, Tom Henderson. The NewReno Modification to
 TCP's Fast Recovery Algorithm. RFC 2582, April 1999.

Expires: December, 2000 [Page 7]

https://datatracker.ietf.org/doc/html/rfc2582

draft-allman-tcp-lossrec-00.txt June 2000

Author's Addresses:

 Mark Allman
 NASA Glenn Research Center/BBN Technologies
 Lewis Field
 21000 Brookpark Rd. MS 54-2
 Cleveland, OH 44135
 Phone: 216-433-6586
 Fax: 216-433-8705
 mallman@grc.nasa.gov

http://roland.grc.nasa.gov/~mallman

 Hari Balakrishnan
 Laboratory for Computer Science
 545 Technology Square
 Massachusetts Institute of Technology
 Cambridge, MA 02139
 hari@lcs.mit.edu

http://nms.lcs.mit.edu/~hari/

 Sally Floyd
 AT&T Center for Internet Research at ICSI (ACIRI)
 Phone: +1 (510) 666-2989
 floyd@aciri.org

http://www.aciri.org/floyd/

Appendix A: Research Issues in Adjusting the Duplicate ACK Threshold

 Decreasing the number of duplicate ACKs required to trigger Fast
 Retransmit, as suggested in section 3, has the drawback of making
 Fast Retransmit less robust in the face of minor network reordering.
 As outlined in section 3, this document only allows a TCP to use
 Fast Retransmit one time when the number of duplicate ACKs is less
 than three. This appendix suggests several methods by which this
 restriction may be removed. However, these methods need further
 research before they are suggested for use in shared networks.

 Using information provided by the DSACK option [FMM+99], a TCP
 sender can determine when its Fast Retransmit threshold is too low,
 causing needless retransmissions due to reordering in the network.
 Coupling the information provided by DSACKs with the algorithm
 outlined in section 3 may provide a further enhancement.
 Specifically, the proposed reduction in the duplicate ACK threshold
 would not be taken if the network path is known to be reordering
 segments.

 The next method is to detect needless retransmits based on the time
 between the retransmission and the next ACK received. As outlined
 in [AP99] if this time is less than half of the minimum RTT observed

https://datatracker.ietf.org/doc/html/draft-allman-tcp-lossrec-00.txt
http://roland.grc.nasa.gov/~mallman
http://nms.lcs.mit.edu/~hari/
http://www.aciri.org/floyd/

 thus far the retransmission was likely unnecessary. When using less
 than three duplicate ACKs as the threshold to trigger Fast
 Retransmit, a TCP sender could attempt to determine whether the
 retransmission was needed or not. In the case when it was
 unnecessary, the sender could refrain from further use of Fast

Expires: December, 2000 [Page 8]

draft-allman-tcp-lossrec-00.txt June 2000

 Retransmit with a threshold of less than three duplicate ACKs. This
 method of detecting bad retransmits is not as robust as using
 DSACKs. However, the advantage is that this mechanism only requires
 sender-side implementation changes.

 A TCP sender can take measures to avoid a case where a large
 percentage of the unique segments transmitted are being needlessly
 retransmitted due to the use of a low duplicate ACK threshold (such
 as the one outlined in section 3). Specifically, the sender can
 limit the percentage of retransmits based on a duplicate ACK
 threshold of less than three. This allows the mechanism to be used
 throughout a long lived connection, but at the same time protecting
 the network from potentially wasteful needless retransmissions.
 However, this solution does not attempt to address the underlying
 problem, but rather just limit the damage the algorithm can cause.

 Finally, [Bal98] outlines another solution to the problem of having
 no new segments to transmit into the network when the first two
 duplicate ACKs arrive. In response to these duplicate ACKs, a TCP
 sender transmits zero-byte segments to induce additional duplicate
 ACKs [Bal98]. This method preserves the robustness of the standard
 Fast Retransmit algorithm at the cost of injecting segments into the
 network that do not deliver any data (and, therefore are potentially
 wasting network resources).

https://datatracker.ietf.org/doc/html/draft-allman-tcp-lossrec-00.txt

Expires: December, 2000 [Page 9]

