
Internet Engineering Task Force Ethan Blanton
INTERNET DRAFT Ohio University
File: draft-allman-tcp-sack-06.txt Mark Allman
 BBN/NASA GRC
 July, 2001
 Expires: January, 2002

A Conservative SACK-based Loss Recovery Algorithm for TCP

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC2026].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document presents a conservative loss recovery algorithm for
 TCP that is based on the use of the selective acknowledgment TCP
 option. The algorithm presented in this document conforms to the
 spirit of the current congestion control specification, but allows
 TCP senders to recover more effectively when multiple segments are
 lost from a single flight of data.

Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1 Introduction

 This document presents a conservative loss recovery algorithm for
 TCP that is based on the use of the selective acknowledgment TCP
 option. While the TCP selective acknowledgment (SACK) option
 [RFC2018] is being steadily deployed in the Internet [All00] there

https://datatracker.ietf.org/doc/html/draft-allman-tcp-sack-06.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2018

 is evidence that hosts are not using the SACK information when
 making retransmission and congestion control decisions [PF00]. The

Expires: January 2002 [Page 1]

draft-allman-tcp-sack-06.txt July 2001

 goal of this document is to outline one straightforward method for
 TCP implementations to use SACK information to increase performance.

 [RFC2581] allows advanced loss recovery algorithms to be used by TCP
 [RFC793] provided that they follow the spirit of TCP's congestion
 control algorithms [RFC2581,RFC2914]. [RFC2582] outlines one such
 advanced recovery algorithm called NewReno. This document outlines
 a loss recovery algorithm that uses the selective acknowledgment
 (SACK) [RFC2018] TCP option to enhance TCP's loss recovery. The
 algorithm outlined in this document, heavily based on the algorithm
 detailed in [FF96], is a conservative replacement of the fast
 recovery algorithm [Jac90,RFC2581]. The algorithm specified in this
 document is a straightforward SACK-based loss recovery strategy that
 follows the guidelines set in [RFC2581] and can safely be used in
 TCP implementations. Alternate SACK-based loss recovery methods can
 be used in TCP as implementers see fit (as long as the alternate
 algorithms follow the guidelines provided in [RFC2581]). Please
 note, however, that the SACK-based decisions in this document (such
 as what segments are to be sent at what time) are largely decoupled
 from the congestion control algorithms, and as such can be treated
 as separate issues if so desired.

2 Definitions

 The reader is expected to be familiar with the definitions given in
 [RFC2581].

 For the purposes of explaining the SACK-based loss recovery
 algorithm we define two variables that a TCP sender stores:

 ``HighACK'' is the sequence number of the highest cumulative ACK
 received at a given point.

 ``HighData'' is the highest sequence number transmitted at a
 given point.

 For the purposes of this specification we define a ``duplicate
 acknowledgment'' as an acknowledgment (ACK) whose cumulative ACK
 number is equal to the current value of HighACK, as described in
 [RFC2581].

 We define a variable ``DupThresh'' that holds the number of
 duplicate acknowledgments required to trigger a retransmission. Per
 [RFC2581] this threshold is defined to be 3 duplicate
 acknowledgments. However, implementers should consult any updates
 to [RFC2581] to determine the current value for DupThresh (or method
 for determining its value).

3 Keeping Track of SACK Information

https://datatracker.ietf.org/doc/html/draft-allman-tcp-sack-06.txt
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581

 For a TCP sender to implement the algorithm defined in the next
 section it must keep a data structure to store incoming selective
 acknowledgment information on a per connection basis. Such a data
 structure is commonly called the ``scoreboard''. For the purposes

Expires: January 2002 [Page 2]

draft-allman-tcp-sack-06.txt July 2001

 of the algorithm defined in this document the scoreboard MUST
 implement the following functions:

 Update ():

 Each octet that is cumulatively ACKed or SACKed should be marked
 accordingly in the scoreboard data structure, and the total number
 of octets SACKed should be recorded. For each octet that has not
 been either cumulatively acknowledged or SACKed, a ``DupSACK''
 counter is kept and incremented for each SACK block which newly
 SACKs an octet of greater sequence number.

 Note: SACK information is advisory and therefore SACKed data
 MUST NOT be removed from TCP's retransmission buffer until the
 data is cumulatively acknowledged [RFC2018].

 MarkRetran ():

 When a retransmission is sent, the scoreboard MUST be updated
 with this information so that data is not repeatedly
 retransmitted by the SACK-based algorithm outlined in this
 document. Note: If a retransmission is lost it will be repaired
 using TCP's retransmission timer.

 NextSeg ():

 This routine MUST return the sequence number range of the oldest
 segment that has not been cumulatively ACKed or SACKed and has
 not been retransmitted, per the following rules:

 (1) Look for the lowest sequence number that is not ACKed or
 SACKed, but has a DupSACK counter of at least DupThresh. If
 such a sequence number ``S'' exists, this routine MUST return
 a sequence number range starting at octet S.

 (2) If we fail to find a segment per rule 1, but the connection
 has unsent data available to be transmitted, NextSeg () MUST
 return a sequence number range corresponding to one segment of
 this new data.

 (3) If rules 1 and 2 fail, this routine MUST return a segment
 that has not been ACKed or SACKed but may not meet the
 DupThresh requirement in 1.

 (4) Finally, if rules 1-3 fail, NextSeg () MUST indicate this
 and no data will be sent.

 AmountSACKed ():

 This routine MUST return the total number of octets which fall

https://datatracker.ietf.org/doc/html/draft-allman-tcp-sack-06.txt
https://datatracker.ietf.org/doc/html/rfc2018

 between HighACK and HighData that have been selectively
 acknowledged by the receiver.

 LeftNetwork ():

Expires: January 2002 [Page 3]

draft-allman-tcp-sack-06.txt July 2001

 This function MUST return the number of octets in the given
 sequence number range that have left the network. The algorithm
 checks each octet in the given range and separately keeps track
 of the number of retransmitted octets and the number of octets
 that are cumulatively ACKed but were not SACKed whose DupSACK
 counter is less than DupThresh. Note: it is possible to have
 octets that fit both categories. In this case, the octets MUST
 be counted in both categories. After checking the sequence
 number range given, this routine returns the sum of the two
 counters.

 Note: The SACK-based loss recovery algorithm outlined in this
 document requires more computational resources than previous TCP
 loss recovery strategies. However, we believe the scoreboard data
 structure can be implemented in a reasonably efficient manner (both
 in terms of computation complexity and memory usage) in most TCP
 implementations.

4 Algorithm Details

 Upon the receipt of any ACK containing SACK information, the
 scoreboard MUST be updated via the Update () routine.

 Upon the receipt of the first (DupThresh - 1) duplicate ACKs,
 the scoreboard is also to be updated as normal. Note: The first
 and second duplicate ACKs can also be used to trigger the
 transmission of previously unsent segments using the Limited
 Transmit mechanism [RFC3042].

 When a TCP sender receives the duplicate ACK corresponding to
 DupThresh ACKs, the scoreboard MUST be updated with the new SACK
 information (via Update ()) and a loss recovery phase SHOULD be
 initiated, per the fast retransmit algorithm outlined in [RFC2581],
 and the following steps MUST be taken:

 (1) Set a ``pipe'' variable to the number of outstanding octets
 (i.e., octets that have been sent but not yet acknowledged), per
 the following equation:

 pipe = HighData - HighACK - AmountSACKed ()

 This variable represents the amount of data currently ``in the
 pipe''; this is the data which has been sent by the TCP sender
 but not acknowledged by the TCP receiver. This data can be
 assumed to still be traversing the network path.

 (2) Set a ``RecoveryPoint'' variable to HighData. When the TCP
 sender receives a cumulative ACK for this data octet the loss
 recovery phase is terminated.

https://datatracker.ietf.org/doc/html/draft-allman-tcp-sack-06.txt
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc2581

 (3) The congestion window (cwnd) is reduced to half of FlightSize
 per [RFC2581]. The value of the slow start threshold (ssthresh)
 is set to the halved value of cwnd.

Expires: January 2002 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2581

draft-allman-tcp-sack-06.txt July 2001

 (4) Retransmit the first data segment not covered by HighACK. Use
 the MarkRetran () function to mark the sequence number range as
 having been retransmitted in the scoreboard. In order to take
 advantage of potential additional available cwnd, proceed to step
 (D) below.

 Once a TCP is in the loss recovery phase the following procedure
 MUST be used for each arriving ACK:

 (A) An incoming cumulative ACK for a sequence number greater than or
 equal to RecoveryPoint signals the end of loss recovery and the
 loss recovery phase MUST be terminated. The scoreboard SHOULD
 NOT be cleared when leaving the loss recovery phase.

 (B) Upon receipt of a duplicate ACK the following actions MUST be
 taken:

 (B.1) Use Update () to record the new SACK information conveyed
 by the incoming ACK.

 (B.2) The pipe variable is decremented by the number of newly
 SACKed data octets conveyed in the incoming ACK plus the
 number of octets whose DupSACK counter exceeded DupThresh, as
 that is the amount of new data presumed to have left the
 network.

 (C) When a ``partial ACK'' (an ACK that increases the HighACK point,
 but does not terminate loss recovery) arrives, the following
 actions MUST be performed:

 (C.1) Before updating HighACK based on the received cumulative
 ACK, save HighACK as OldHighACK.

 (C.2) The scoreboard MUST be updated based on the cumulative ACK
 and any new SACK information that is included in the ACK via
 the Update () routine.

 (C.3) The value of pipe MUST be decremented by the number of
 octets returned by the LeftNetwork () routine when given the
 sequence number range OldHighACK-HighACK.

 (D) While pipe is less than cwnd and the receiver's advertised window
 permits, the TCP sender SHOULD transmit one or more segments
 as follows:

 (D.1) The scoreboard MUST be queried via NextSeg () for the
 sequence number range of the next segment to transmit, and
 the given segment is sent.

https://datatracker.ietf.org/doc/html/draft-allman-tcp-sack-06.txt

 (D.2) The pipe variable MUST be incremented by the number of
 data octets sent in (D.1).

 (D.3) If any of the data octets sent in (D.1) are below HighData,

Expires: January 2002 [Page 5]

draft-allman-tcp-sack-06.txt July 2001

 they MUST be marked as retransmitted via Update ().

 (D.4) If cwnd - pipe is greater than 1 SMSS, return to (D.1)

4.1 Retransmission Timeouts

 Keeping track of SACK information depends on the TCP sender having
 an accurate measure of the current state of the network, the
 conditions of this connection, and the state of the receiver's
 buffer. Due to these limitations, [RFC2018] suggests that a TCP
 sender SHOULD expunge the SACK information gathered from a receiver
 upon a retransmission timeout ``since the timeout might indicate
 that the data receiver has reneged.'' Additionally, a TCP sender
 MUST ``ignore prior SACK information in determining which data to
 retransmit.'' However, a SACK TCP sender SHOULD still use all SACK
 information made available during the slow start phase of loss
 recovery following an RTO.

 As described in Sections 3 and 4, Update () and MarkRetran () SHOULD
 continue to be used appropriately upon receipt of ACKs and
 retransmissions, respectively. This will allow the slow start
 recovery period to benefit from all available information provided
 by the receiver, despite the fact that SACK information was expunged
 due to the RTO.

 If there are segments missing from the receiver's buffer following
 processing of the retransmitted segment, the corresponding ACK will
 contain SACK information. In this case, a TCP sender SHOULD use
 this SACK information by using the NextSeg () routine to determine
 what data should be sent in each segment of the slow start.

5 Research

 The algorithm specified in this document is analyzed in [FF96],
 which shows that the above algorithm is effective in reducing
 transfer time over standard TCP Reno [RFC2581] when multiple
 segments are dropped from a window of data (especially as the number
 of drops increases). [AHKO97] shows that the algorithm defined in
 this document can greatly improve throughput in connections
 traversing satellite channels.

6 Security Considerations

 The algorithm presented in this paper shares security considerations
 with [RFC2581]. A key difference is that an algorithm based on
 SACKs is more robust against attackers forging duplicate ACKs to
 force the TCP sender to reduce cwnd. With SACKs, TCP senders have an
 additional check on whether or not a particular ACK is legitimate.
 While not fool-proof, SACK does provide some amount of protection in
 this area.

https://datatracker.ietf.org/doc/html/draft-allman-tcp-sack-06.txt
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581

Acknowledgments

 The authors wish to thank Sally Floyd for encouraging this document

Expires: January 2002 [Page 6]

draft-allman-tcp-sack-06.txt July 2001

 and commenting on an early draft. The algorithm described in this
 document is largely based on an algorithm outlined by Kevin Fall and
 Sally Floyd in [FF96], although the authors of this document assume
 responsibility for any mistakes in the above text. Murali Bashyam,
 Jamshid Mahdavi, Matt Mathis, Vern Paxson, Venkat Venkatsubra,
 Reiner Ludwig and Shawn Ostermann provided valuable feedback on
 earlier versions of this document. Finally, we thank Matt Mathis
 and Jamshid Mahdavi for implementing the scoreboard in ns and hence
 guiding our thinking in keeping track of SACK state.

References

 [AHKO97] Mark Allman, Chris Hayes, Hans Kruse, Shawn Ostermann. TCP
 Performance Over Satellite Links. Proceedings of the Fifth
 International Conference on Telecommunications Systems,
 Nashville, TN, March, 1997.

 [All00] Mark Allman. A Web Server's View of the Transport Layer. ACM
 Computer Communication Review, 30(5), October 2000.

 [FF96] Kevin Fall and Sally Floyd. Simulation-based Comparisons of
 Tahoe, Reno and SACK TCP. Computer Communication Review, July
 1996.

 [Jac90] Van Jacobson. Modified TCP Congestion Avoidance Algorithm.
 Technical Report, LBL, April 1990.

 [PF00] Jitendra Padhye, Sally Floyd. TBIT, the TCP Behavior
 Inference Tool, October 2000. http://www.aciri.org/tbit/.

 [RFC793] Jon Postel, Transmission Control Protocol, STD 7, RFC 793,
 September 1981.

 [RFC2018] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow. TCP Selective
 Acknowledgment Options. RFC 2018, October 1996

 [RFC2026] Scott Bradner. The Internet Standards Process -- Revision
 3, RFC 2026, October 1996

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2581] Mark Allman, Vern Paxson, W. Richard Stevens, TCP
 Congestion Control, RFC 2581, April 1999.

 [RFC2582] Sally Floyd and Tom Henderson. The NewReno Modification
 to TCP's Fast Recovery Algorithm, RFC 2582, April 1999.

 [RFC2914] Sally Floyd. Congestion Control Principles, RFC 2914,
 September 2000.

https://datatracker.ietf.org/doc/html/draft-allman-tcp-sack-06.txt
http://www.aciri.org/tbit/
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2582
https://datatracker.ietf.org/doc/html/rfc2914

 [RFC3042] Mark Allman, Hari Balkrishnan, Sally Floyd. Enhancing
 TCP's Loss Recovery Using Limited Transmit. RFC 3042,
 January 2001

Expires: January 2002 [Page 7]

https://datatracker.ietf.org/doc/html/rfc3042

draft-allman-tcp-sack-06.txt July 2001

Author's Addresses:

 Ethan Blanton
 Ohio University Internetworking Research Lab
 Stocker Center
 Athens, OH 45701
 eblanton@irg.cs.ohiou.edu

 Mark Allman
 BBN Technologies/NASA Glenn Research Center
 Lewis Field
 21000 Brookpark Rd. MS 54-5
 Cleveland, OH 44135
 Phone: 216-433-6586
 Fax: 216-433-8705
 mallman@bbn.com

http://roland.grc.nasa.gov/~mallman

https://datatracker.ietf.org/doc/html/draft-allman-tcp-sack-06.txt
http://roland.grc.nasa.gov/~mallman

Expires: January 2002 [Page 8]

