
Internet Engineering Task Force S. Amante
Internet-Draft Level 3 Communications, Inc.
Intended status: Informational J. Medved
Expires: April 5, 2013 Cisco Systems, Inc.
 T. Nadeau
 Juniper Networks
 October 2, 2012

Topology API Use Cases
draft-amante-irs-topology-use-cases-00

Abstract

 This document describes use cases for gathering routing, forwarding
 and policy information, (hereafter referred to as topology
 information), about the network and reflecting changes to the
 topology back into the network and related systems. It describes
 several applications that need to view or change the topology of the
 underlying physical or logical network. This document further
 demonstrates a need for a "Topology Manager" and related functions
 that collects topology data from network elements and other data
 sources, coalesces the collected data into a coherent view of the
 overall network topology, and normalizes the network topology view
 for use by clients -- namely, applications that consume or want to
 change topology information.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 5, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Amante, et al. Expires April 5, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Topology API Use Cases October 2012

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Statistics Collection 5
1.2. Inventory Collection 5
1.3. Requirements Language 6

2. Terminology . 6
3. Orchestration, Collection & Presentation Framework 7
3.1. Overview . 7
3.2. Topology Manager . 8
3.3. Policy Manager . 10
3.4. Orchestration Manager 11

4. Use Cases . 12
4.1. Virtualized Views of the Network 12
4.1.1. Capacity Planning and Traffic Engineering 12
4.1.2. Services Provisioning 15
4.1.3. Rapid IP Renumbering, AS Migration 15
4.1.4. Troubleshooting & Monitoring 17

4.2. Path Computation Element (PCE) 17
4.3. ALTO Server . 18

5. Acknowledgements . 19
6. IANA Considerations . 19
7. Security Considerations 19
8. References . 20
8.1. Normative References 20
8.2. Informative References 20

 Authors' Addresses . 20

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Amante, et al. Expires April 5, 2013 [Page 2]

Internet-Draft Topology API Use Cases October 2012

1. Introduction

 In today's networks, a variety of applications, such as Traffic
 Engineering, Capacity Planning, Security Auditing or Services
 Provisioning (for example, Virtual Private Networks), have a common
 need to acquire and consume network topology information.
 Unfortunately, all of these applications are (typically) vertically
 integrated: each uses its own proprietary normalized view of the
 network and proprietary data collectors, interpreters and adapters,
 which speak a variety of protocols, (SNMP, CLI, SQL, etc.) directly
 to network elements and to back-office systems. While some of the
 topological information can be distributed using routing protocols,
 unfortunately it is not desirable for some of these applications to
 understand or participate in routing protocols.

 This approach is incredibly inefficient for several reasons. First,
 developers must write duplicate 'network discovery' functions, which
 then become challenging to maintain over time, particularly as/when
 new equipment are first introduced to the network. Second, since
 there is no common "vocabulary" to describe various components in the
 network, such as physical links, logical links, or IP prefixes, each
 application has its own data model. To solve this, some solutions
 have distributed this information in the normalized form of routing
 distribution. However, this information still does not contain
 "inactive" topological information, thus not containing information
 considered to be part of a network's inventory.

 These limitations lead to applications being unable to easily
 exchange information with each other. For example, applications
 cannot share changes with each other that are (to be) applied to the
 physical and/or logical network, such as installation of new physical
 links, or deployment of security ACL's. Each application must
 frequently poll network elements and other data sources to ensure
 that it has a consistent representation of the network so that it can
 carry out its particular domain-specific tasks. In other cases,
 applications that cannot speak routing protocols must use proprietary
 CLI or other management interfaces which represent the topological
 information in non-standard formats or worse, semantic models.

 Overall, the software architecture described above at best results in
 incredibly inefficient use of both software developer resources and
 network resources, and at worst, it results in some applications
 simply not having access to this information.

 Figure 1 is an illustration of how individual applications collect
 data from the underlying network. Applications retrieve inventory,
 network topology, state and statistics information by communicating
 directly with underlying Network Elements as well as with

Amante, et al. Expires April 5, 2013 [Page 3]

Internet-Draft Topology API Use Cases October 2012

 intermediary proxies of the information. In addition, applications
 transmit changes required of a Network Element's configuration and/or
 state directly to individual Network Elements, (most commonly using
 CLI or Netconf). It is important to note that the "data models" or
 semantics of this information contained within Network Elements are
 largely proprietary with respect to most configuration and state
 information, hence why a proprietary CLI is often the only choice to
 reflect changes in a NE's configuration or state. This remains the
 case even when standards-based mechanisms such as Netconf are used
 which provide a standard syntax model, but still often lack due to
 the proprietary semantics associated with the internal representation
 of the information.

 +---------------+
 +----------------+ |
 | Applications |-+
 +----------------+
 ^ ^ ^
 SQL, RPC, ReST # | * SQL, RPC, ReST ...
 ######################## | ************************
 # | *
 +------------+ | +------------+
 | Statistics | | | Inventory |
 | Collection | | | Collection |
 +------------+ | +------------+
 ^ | NETCONF, SNMP, ^
 | | CLI, TL1, ... |
 +-------------------------+-------------------------+
 | | |
 V V V
 +----------------+ +----------------+ +----------------+
Network Element		Network Element		Network Element						
+------------+	<-LLDP->	+------------+	<-LMP->	+------------+						
	Data Model				Data Model				Data Model	
+------------+		+------------+		+------------+						
 +----------------+ +----------------+ +----------------+

 Figure 1: Applications getting topology data

 Figure 1 shows how current management interfaces such as NETCONF,
 SNMP, CLI, etc. are used to transmit or receive information to/from
 various Network Elements. The figure also shows that protocols such
 as LLDP and LMP participate in topology discovery, specifically to
 discover adjacent network elements.

 The following sections describe the "Statistics Collection" and
 "Inventory Collection" functions.

Amante, et al. Expires April 5, 2013 [Page 4]

Internet-Draft Topology API Use Cases October 2012

1.1. Statistics Collection

 In Figure 1, "Statistics Collection" is a dedicated infrastructure
 that collects statistics from Network Elements. It periodically
 polls Network Elements (for example, every 5-minutes) for octets
 transferred per interface, per LSP, etc. Collected statistics are
 stored and collated, (for example, to provide hourly, daily, weekly
 95th-percentile figures), within the statistics data warehouse.
 Applications typically query the statistics data warehouse rather
 than poll Network Elements directly to get the appropriate set of
 link utilization figures for their analysis.

1.2. Inventory Collection

 "Inventory Collection" is a network function responsible for
 collecting network element component and state (i.e.: interface up/
 down, SFP/XFP optics inserted into physical port, etc.) information
 directly from network elements, as well as storing inventory
 information about physical network assets that are not retrievable
 from network elements, (hereafter referred to as a inventory asset
 database). Inventory Collection from network elements commonly use
 SNMP and CLI to acquire inventory information. The information
 housed in the Inventory Manager is retrieved by applications using a
 variety of protocols: SQL, RPC, etc. Inventory information,
 retrieved from Network Elements, is updated in the Inventory
 Collection system on a periodic basis to reflect changes in the
 physical and/or logical network assets. The polling interval to
 retrieve updated information is varied depending on scaling
 constraints of the Inventory Collection systems and expected
 intervals at which changes to the physical and/or logical assets are
 expected to occur.

 Examples of changes in network inventory that need be learned by the
 Inventory Collection function are as follows:

 o Discovery of new Network Elements. These elements may or may not
 be actively used in the network (i.e.: provisioned but not yet
 activated).

 o Insertion or removal of line cards or other modules, i.e.: optics
 modules, during service or equipment provisioning.

 o Changes made to a specific Network Element through a management
 interface by a field technician.

 o Indication of an NE's physical location and associated cable run
 list, at the time of installation.

Amante, et al. Expires April 5, 2013 [Page 5]

Internet-Draft Topology API Use Cases October 2012

 o Insertion of removal of cables that result in dynamic discovery of
 a new or lost adjacent neighbor, etc.

1.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119]

2. Terminology

 The following briefly defines some of the terminology used within
 this document.

 Inventory Manager: Describes a function of collecting network
 element inventory and state information directly from network
 elements, and potentially associated offline inventory databases,
 via standards-based data models. Components contained in this
 super set might be visible or invisible to a specific network
 layer, i.e.: a physical link is visible within the IGP, however
 the Layer-2 switch through which the physical link traverses is
 unknown to the Layer-3 IGP. .

 Policy Manager: Describes a function of attaching metadata to
 network components/attributes. Such metadata is likely to include
 security, routing, L2 VLAN ID, IP numbering, etc. policies that
 enable the Topology Manager to: a) assemble a normalized view of
 the network for clients to access; b) allow clients (or, upper-
 layer applications) read-only vs. read-write access to various
 network layers and/or network components, etc. The Policy Manager
 function may be a sub-component of the Topology Manager or it may
 be a standalone. This will be determined as the work with IRS
 evolves.

 Topology Manager: Network components (inventory, etc.) are retrieved
 from the Inventory Manager and synthesized with information from
 the Policy Manager into cohesive, normalized views of network
 layers. The Topology Manager exposes normalized views of the
 network via standards-based data models to Clients, or higher-
 layer applications, to act upon in a read-only and/or read-write
 fashion. The Topology Manager may also push information back into
 the Inventory Manager and/or Network Elements to execute changes
 to the network's behavior, configuration or state.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Amante, et al. Expires April 5, 2013 [Page 6]

Internet-Draft Topology API Use Cases October 2012

 Orchestration Manager: Describes a function of stitching together
 resources (i.e.: compute, storage) and/or services with the
 network or vice-versa. The Orchestration Manager relies on the
 capabilities provided by the other "Managers" listed above in
 order to realize a complete service.

 Normalized Topology Data Model: A data model that is constructed and
 represented using an open, standards-based model that is
 consistent between implementations.

 Data Model Abstraction: The notion that one is able to represent the
 same set of elements in a data model at different levels of
 "focus" in order to limit the amount of information exchanged in
 order to convey this information.

 Multi-Layer Topology: Topology is commonly referred to using the OSI
 protocol layering model. For example, Layer 3 represents routed
 topologies that typically use IPv4 or IPv6 addresses. It is
 envisioned that, eventually, multiple layers of the network may be
 represented in a single, normalized view of the network to certain
 applications, (i.e.: Capacity Planning, Traffic Engineering, etc.)

 Network Element (NE): refers to a network device that typically is
 addressable (but not always), and hosts. It is sometimes referred
 to as Nodes.

 Links: Every NE contains at least 1 link. These are used to connect
 the NE to other NEs in the network. Links may be in a variety of
 states including up, down, administratively down, internally
 testing, or dormant. Links are often synonymous with network
 ports on NEs.

3. Orchestration, Collection & Presentation Framework

3.1. Overview

Section 1 demonstrates the need for a network function that would
 provide a common, standard-based topology view to applications. Such
 topology collection/management/presentation function would be a part
 wider framework, that would also include policy management and
 orchestration. The framework is shown in Figure 2.

Amante, et al. Expires April 5, 2013 [Page 7]

Internet-Draft Topology API Use Cases October 2012

 +---------------+
 +----------------+ |
 | Applications |-+
 +----------------+
 Websockets, ReST, XMPP, ... ^ Websockets, ReST, XMPP, ...
 +-------------------------+-------------------------+
 | | |
 +------------+ +-------------------------+ +-------------+
 | Policy |<----| Topology Manager |---->|Orchestration|
 | Manager | | +---------------------+ | | Manager |
 +------------+ | | Topology Data Model | | +-------------+
 | +---------------------+ |
 +-------------------------+
 ^ ^ ^
 Websockets, ReST, XMPP # | * Websockets, ReST, XMPP
 ######################## | ************************
 # | *
 +------------+ | +------------+
 | Statistics | | | Inventory |
 | Collection | | | Collection |
 +------------+ | +------------+
 ^ | IRS, NETCONF, SNMP, ^
 | | TL1 ... |
 +-------------------------+-------------------------+
 | | |
 V V V
 +----------------+ +----------------+ +----------------+
Network Element		Network Element		Network Element						
+------------+	<-LLDP->	+------------+	<-LMP->	+------------+						
	Data Model				Data Model				Data Model	
+------------+		+------------+		+------------+						
 +----------------+ +----------------+ +----------------+

 Figure 2: Topology Manager

 The following sections describe in detail the Topology Manager,
 Policy Manager and Orchestration Manager functions.

3.2. Topology Manager

 The Topology Manager is responsible for retrieving topological
 information from the network via a variety of sources. The first
 most obvious source is the "live" IGP or an equivalent mechanism.
 "Live" IGP provides information about links that are components of
 the active topology, in other words links that are present in the
 Link State Database (LSDB) and are eligible for forwarding. The
 second source of topology information is the Inventory Collection
 system, which provides information for network components not visible

Amante, et al. Expires April 5, 2013 [Page 8]

Internet-Draft Topology API Use Cases October 2012

 within the IGP's LSDB, (i.e.: links or nodes, or properties of those
 links or nodes, at lower layers of the network).

 The Topology Manager would synthesize retrieved information into
 cohesive, abstracted views of the network using a standards-based,
 normalized topology data model. The Topology Manager can then expose
 these data models to Clients, or higher-layer applications using a
 northbound interface, which would be a protocol/API commonly used by
 higher-layer applications to retrieve and update information.
 Examples of such protocols are ReST, Websockets, or XMPP. Topology
 Manager's clients would be able to act upon the information in a
 read-only and/or read-write fashion, (based on policies defined
 within the Policy Manager).

 Clients may request changes to the network topology by publishing
 changes within data models and sending those to the Topology Manager.
 The Topology Manager internally validates the requested changes
 against various constraints and, if the changes are permitted, the
 Topology Manager updates associated Managers (Policy or Inventory
 Managers), communicates those changes to the individual network
 elements and, finally, verifies that those configurations were
 properly received and executed by the network elements.

 It is envisioned that the Topology Manager will ultimately contain
 topology information for multiple layers of the network: Transport,
 Ethernet and IP/MPLS as well as multiple (IGP) areas and/or multiple
 Autonomous Systems (ASes). This allows the Topology Manager to
 stitch together a holistic view of several layers of the network,
 which is an important requirement, particularly for upper-layer
 Traffic Engineering, Capacity Planning and Provisioning Clients
 (applications) used to design, augment and optimize IP/MPLS networks
 that require knowledge of underlying Shared Risk Link Groups (SRLG)
 within the Transport and/or Ethernet layers of the network.

 The Topology Manager must have the ability to discover and
 communicate with network elements who are not only active and visible
 within the Link State Database (LSDB) of an active IGP, but also
 network elements who are active, but invisible to a LSDB (e.g.: L2
 Ethernet switches, ROADM's, etc.) that are part of the underlying
 Transport network. This requirement will influence the choice of
 protocols needed by the Topology Manager to communicate to/from
 network elements at the various network layers.

 It is also important to recognize that the Topology Manager will be
 gleaning not only (relatively) static inventory information from the
 Inventory Manager, i.e.: what linecards, interface types, etc. are
 actively inserted into network elements, but also dynamic inventory
 information, as well. With respect to the latter, network elements

Amante, et al. Expires April 5, 2013 [Page 9]

Internet-Draft Topology API Use Cases October 2012

 are expected to rely on various Link Layer Discovery Protocols (i.e.:
 LLDP, LMP, etc.) that will aid in automatically identifying an
 adjacent node, port, etc. at the far-side of a link. This
 information is then pushed to or pulled by the Topology Manager in
 order for it to have an accurate representation of the physical
 topology of the network.

3.3. Policy Manager

 The Policy Manager is the function used to enforce and program
 policies applicable to network component/attribute data. Policy
 enforcement is a network-wide function that can be consumed by
 various network elements and services including the Inventory
 Manager, Topology Manager or other network elements. Such policies
 are likely to encompass the following.

 o Logical Identifier Numbering Policies

 * Correlation of IP prefix to link based on type of link (P-P,
 P-PE, PE-CE, etc.)

 * Correlation of IP Prefix to IGP Area

 * Layer-2 VLAN ID assignments, etc.

 o Routing Configuration Policies

 * OSPF Area or IS-IS Net-ID to Node (Type) Correlation

 * BGP routing policies, i.e.: nodes designated for injection of
 aggregate routes, max-prefix policies, AFI/SAFI to node
 correlation, etc.

 o Security Policies

 * Access Control Lists

 * Rate-limiting

 o Network Component/Attribute Data Access Policies. Client's
 (upper-layer application) read-only or read-write access to
 Network Components/Attributes contained in the "Inventory Manager"
 as well as Policies contained within the "Policy Manager" itself.

 The Policy Manager function may be a sub-component of the Topology or
 Orchestration Manager or it may be a standalone. This will be
 determined as the work with IRS evolves.

Amante, et al. Expires April 5, 2013 [Page 10]

Internet-Draft Topology API Use Cases October 2012

3.4. Orchestration Manager

 The Orchestration Manager provides the ability to stitch together
 resources (i.e.: compute, storage) and/or services with the network
 or vice-versa. Examples of 'generic' services may include the
 following:

 o Application-specific Load Balancing

 o Application-specific Network (Bandwidth) Optimization

 o Application or End-User specific Class-of-Service

 o Application or End-User specific Network Access Control

 The above services could then enable coupling of resources with the
 network to realize the following:

 o Network Optimization: Creation and Migration of Virtual Machines
 (VM's) so they are adjacent to storage in the same DataCenter.

 o Network Access Control: Coupling of available (generic) compute
 nodes within the appropriate point of the data-path to perform
 firewall, NAT, etc. functions on data traffic.

 The Orchestration Manager is expected to exchange data models with
 the Topology Manager, Policy Manager and Inventory Manager functions.
 In addition, the Orchestration Manager is expected to support publish
 and subscribe capabilities to those functions, as well as to Clients,
 to enable scalability with respect to event notifications.

 The Orchestration Manager may receive requests from Clients
 (applications) for immediate access to specific network resources.
 However, Clients may request to schedule future appointments to
 reserve appropriate network resources when, for example, a special
 event is scheduled to start and end.

 Finally, the Orchestration Manager should have the flexibility to
 determine what network layer(s) may be able to satisfy a given
 Client's request, based on constraints received from the Client as
 well as those constraints learned from the Policy and/or Topology
 Manager functions. This could allow the Orchestration Manager to,
 for example, satisfy a given service request for a given Client using
 the optical network (via OTN service) if there is insufficient IP/
 MPLS capacity at the specific moment the Client's request is
 received.

 The operational model is shown in the following figure.

Amante, et al. Expires April 5, 2013 [Page 11]

Internet-Draft Topology API Use Cases October 2012

 TBD.

 Figure 3: Overall Reference Model

4. Use Cases

4.1. Virtualized Views of the Network

4.1.1. Capacity Planning and Traffic Engineering

 When performing Traffic Engineering and/or Capacity Planning of an
 IP/MPLS network, it is important to account for SRLG's that exist
 within the underlying physical, optical and Ethernet networks.
 Currently, it's quite common to create and/or take "snapshots", at
 infrequent intervals, that comprise the inventory data of the
 underlying physical and optical layer networks. This inventory data
 then needs to be massaged or normalized to conform to the data import
 requirements of sometimes separate Traffic Engineering and/or
 Capacity Planning tools. This process is error-prone and
 inefficient, particularly as the underlying network inventory
 information changes due to introduction of, for example, new network
 element makes or models, linecards, capabilities, etc. at the optical
 and/or Ethernet layers of the underlying network.

 This is inefficient with respect to the time and expense consumed by
 software developer, Capacity Planning and Traffic Engineering
 resources to normalize and sanity check underlying network inventory
 information, before it can be consumed by IP/MPLS Capacity Planning
 and Traffic Engineering applications. Due to this inefficiency, the
 underlying physical network inventory information, (containing SRLG
 and corresponding critical network asset information), used by the
 IP/MPLS Capacity Planning and TE applications is not updated
 frequently, thus exposing the network to, at minimum, inefficient
 utilization and, at worst, critical impairments.

 An Inventory Manager function is required that will, first, extract
 inventory information from network elements -- and potentially
 associated offline inventory databases to acquire physical cross-
 connects and other information that is not available directly from
 network elements -- at the physical, optical, Ethernet and IP/MPLS
 layers of the network via standards-based data models. Data models
 and associated vocabulary will be required to represent not only
 components inside or directly connected to network elements, but also
 to represent components of a physical layer path (i.e.: cross-connect
 panels, etc.) The aforementioned inventory will comprise the
 complete set of inactive and active network components.

Amante, et al. Expires April 5, 2013 [Page 12]

Internet-Draft Topology API Use Cases October 2012

 A Statistics Collection Function is also required. As stated above,
 it will collect utilization statistics from Network Elements, archive
 and aggregate them in a statistics data warehouse. Summaries of
 these figures then need to be exposed in normalized data models to
 the Topology Manager so it can easily acquire historical link and LSP
 utilization figures that can be used to, for example, build trended
 utilization models to forecast expected changes to the physical
 and/or logical network components to accommodate network growth.

 The Topology Manager function may then augment the Inventory Manager
 information by communicating directly with Network Elements to reveal
 the IGP-based view of the active topology of the network. This will
 allow the Topology Manager to include dynamic information from the
 IGP, such as Available Bandwidth, Reserved Bandwidth, etc. Traffic
 Engineering (TE) attributes associated with links, contained with the
 Traffic Engineering Database (TED) on Network Elements.

 It is important to recognize that extracting topology information
 from the network solely via an IGP, (such as IS-IS TE or OSPF TE), is
 inadequate for this use case. First, IGP's only expose the active
 components (e.g. vertices of the SPF tree) of the IP network;
 unfortunately, they are not aware of "hidden" or inactive interfaces
 within IP/MPLS network elements, (e.g.: unused linecards or unused
 ports), or components that reside at a lower layer than IP/MPLS, e.g.
 Ethernet switches, Optical transport systems, etc. This occurs
 frequently during the course of maintenance, augment and optimization
 activities on the network. Second, IGP's only convey SRLG
 information that have been first applied within the router's
 configurations, either manually or programatically. As mentioned
 previously, this SRLG information in the IP/MPLS network is subject
 to being infrequently updated and, as a result, may inadequately
 account for critical, underlying network fate sharing properties that
 are necessary to properly design resilient circuits and/or paths
 through the network.

 In this use case, the Inventory Manager will need to be capable of
 using a variety of existing protocols such as: NETCONF, CLI, SNMP,
 TL1, etc. depending on the capabilities of the network elements. The
 Topology Manager will need to be capable of communicating via an IGP
 from a (set of) Network Elements. It is important to consider that
 to acquire topology information from Network Elements will require
 read-only access to the IGP. However, the end result of the
 computations performed by the Capacity Planning Client may require
 changes to various IGP attributes, (e.g.: IGP metrics, TE link-
 colors, etc.) These may be applied directly by devising a new
 capability to either: a) inject information into the IGP that
 overrides the same information injected by the originating Network
 Element; or, b) allowing the Topology and/or Inventory Manager the

Amante, et al. Expires April 5, 2013 [Page 13]

Internet-Draft Topology API Use Cases October 2012

 ability to write changes to the Network Element's configuration in
 order to have it adjust the appropriate IGP attribute(s) and re-flood
 them throughout the IGP. It would be desirable to have a single
 mechanism (data model or protocol) that allows the Topology Manager
 to read and write IGP attributes.

 Once the Topology Manager function has assembled a normalized view of
 the topology and synthesized associated metadata with each component
 of the topology (link type, link properties, statistics, intra-layer
 relationships, etc.), it can then expose this information via its
 northbound API to Clients. In this use case that means Capacity
 Planning and Traffic Engineering applications, which are not required
 to know innate details of individual network elements, but do require
 generalized information about the node and links that comprise the
 network, e.g.: links used to interconnect nodes, SRLG information
 (from the underlying network), utilization rates of each link over
 some period of time, etc. In this case, it is important that any
 Client that understands both the web services API and the normalized
 data model can communicate with the Topology Manager in order to
 understand the network topology information that was provided by
 network elements from potentially different vendors, all of which
 likely represent that topology information internally using different
 models. If the Client had gone directly to the network elements
 themselves, it would have to translate and then normalize these
 different representations for itself. However, in this case, the
 Topology Manager has done that for it.

 When this information is consumed by the Traffic Engineering
 application, it may run a variety of CSPF algorithms the result of
 which is likely a list of RSVP LSP's that need to be
 (re-)established, or torn down, in the network to globally optimize
 the packing efficiency of physical links throughout the network. The
 end result of the Traffic Engineering application is "pushing" out to
 the Topology Manager, via a standard data model to be defined here, a
 list of RSVP LSP's and their associated characteristics, (i.e.: head
 and tail-end LSR's, bandwidth, priority, preemption, etc.). The
 Topology Manager then would consume this information and carry out
 those instructions by speaking directly to network elements, perhaps
 via PCEP Extensions for Stateful PCE [I-D.ietf-pce-stateful-pce],
 which in turn initiates RSVP signaling through the network to
 establish the LSP's.

 After this information is consumed by the Capacity Planning
 application, it may run a variety of algorithms the result of which
 is a list of new inventory that is required to be purchased (or,
 redeployed) as well as associated work orders for field technicians
 to augment the network for expected growth. It would be ideal if
 this information was also "pushed" back into the Topology and, in

Amante, et al. Expires April 5, 2013 [Page 14]

Internet-Draft Topology API Use Cases October 2012

 turn, Inventory Manager as "inactive" links and/or nodes, so that as
 new equipment is installed it can be automatically correlated with
 original design and work order packages associated with that augment.

4.1.2. Services Provisioning

 Beyond Capacity Planning and Traffic Engineering applications, having
 a normalized view of just the IP/MPLS layer of the network is still
 very important for other mission critical applications such as
 Security Auditing and IP/MPLS Services Provisioning, (e.g.: L2VPN,
 L3VPN, etc.). With respect to the latter, these types of
 applications should not need a detailed understanding of, for
 example, SRLG information, assuming that the underlying MPLS Tunnel
 LSP's are known to account for the resiliency requirements of all
 services that ride over them. Nonetheless, for both types of
 applications it is critical that they have a common and up-to-date
 normalized view of the IP/MPLS network in order to easily instantiate
 new services at the appropriate places in the network, in the case of
 VPN services, or validate that ACL's are configured properly to
 protect associated routing, signaling and management protocols on the
 network, with respect to Security Auditing.

 For this use case, what is most commonly needed by a VPN Service
 Provisioning application is as follows. First, Service PE's need to
 be identified in all markets/cities where the customer has identified
 they want service. Next, does their exist one, or more, Servies PE's
 in each city with connectivity to the access network(s), e.g.: SONET/
 TDM, used to deliver the PE-CE tail circuits to the Service's PE.
 Finally, does the Services PE have available capacity on both the
 PE-CE access interface and its uplinks to terminate the tail circuit?
 If this were to be generalized, this would be considered an Resource
 Selection function. Namely, the VPN Provisioning application would
 iteratively query the Topology Manager to narrow down the scope of
 resources to the set of Services PE's with the appropriate uplink
 bandwidth and access circuit capability plus capacity to realize the
 requested VPN service. Once the VPN Provisioning application has a
 candidate list of resources it then requests the Topology Manager to
 go about configuring the Services PE's and associated access circuits
 to realize the customer's VPN service.

4.1.3. Rapid IP Renumbering, AS Migration

 A variety of reasons exist for the "rapid renumbering" of IPv4/IPv6
 prefixes and ASN's in an IP/MPLS network. Perhaps the most common
 reason is as a result of mergers, acquisitions or divestitures of
 companies, organizations or divisions.

 Inside the network of an Enterprise or Service Provider, there

Amante, et al. Expires April 5, 2013 [Page 15]

Internet-Draft Topology API Use Cases October 2012

 already exist protocols such as DHCP or SLAAC to support rapid
 renumbering of hosts, (i.e.: servers, laptops, tablets, etc.). These
 are outside the scope of this document. However, there still exists
 a critical need to quickly renumber network infrastructure, namely:
 router interfaces, management interfaces, etc. in order to: a) avoid
 overlapping RFC 1918 addresses in previously separate domains; b)
 allow for (better) aggregation of IP prefixes within areas/domains of
 an IGP; c) allow for more efficient utilization of globally unique
 IPv4 addresses, which are in limited supply; d) realize business
 synergies of combining two different AS'es into one, etc.

 The set of IPv4 and IPv6 prefixes that have been configured on point-
 to-point, LAN, Loopback, Tunnel, Management, PE-CE and other
 interfaces would be gathered from all network elements by the
 Inventory Manager function. Similarly, the set of ASN's that have
 been configured on individual NE's, as the global BGP Autonomous
 System Number, and the PE-CE interfaces is also acquired from the
 Inventory Manager. Afterward, an "inventory" report of the total
 number, based on type, of IPv4/IPv6 prefixes could be quickly
 assembled to understand how much address space is required to
 accommodate the existing network, but also future growth plans.
 Next, a new IP prefix and ASN would be assigned to the overall
 network. An operator may then decide to manually carve up the IP
 prefix into sub-prefixes that are assigned to various functions or
 interface types in the network, i.e.: all Loopback interface
 addresses are assigned from a specific GUA IPv4/IPv6 prefix. Other
 rules may be crafted by the operator so that, for example, GUA IPv4/
 IPv6 prefixes for interfaces within each IGP area are assigned out of
 contiguous address space so that they may be (easily) summarized
 within the IGP configuration. Finally, the set of ASN's, IP
 prefixes, rules and/or policies governing how their are to be
 assigned are encoded in a data model/schema an sent to a Topology
 Manager (TM). The Topology Manager is then responsible for
 communicating changes to the Inventory Manager and/or Network
 Elements in a proper sequence, or order of operations, so as to not
 lose network connectivity from the Topology Manager to the network
 elements.

 This function could be extended further whereby the Orchestration
 Manager would be used in order to automatically create a list of IP
 addresses and their associated DNS names, which would then be
 "pushed" to Authoritative DNS servers so that interface names would
 get updated in DNS automatically. In addition, the Orchestration
 Manager function could notify a "Infrastructure Security" application
 that IP prefixes on the network has changed so that it then updates
 ACL's used to, for example, protect IP/MPLS routing and signaling
 protocols used on the network.

https://datatracker.ietf.org/doc/html/rfc1918

Amante, et al. Expires April 5, 2013 [Page 16]

Internet-Draft Topology API Use Cases October 2012

4.1.4. Troubleshooting & Monitoring

 Once the Topology Manager has a normalized view of several layers of
 the network, it's then possible to more easily expose a richer set of
 data to network operators when performing diagnosis, troubleshooting
 and repairs on the network. Specifically, there is a need to
 (rapidly) assemble a current, accurate and comprehensive network
 diagram of a L2VPN or L3VPN service for a particular customer when
 either: a) attempting to diagnose a service fault/error; or, b)
 attempting to augment the customer's existing service. Information
 that may be assembled into a comprehensive picture could include
 physical and logical components related specifically to that
 customer's service, i.e.: VLAN's or channels used by the PE-CE access
 circuits, CoS policies, historical PE-CE circuit utilization, etc.
 The Topology Manager would assemble this information, on behalf of
 each of the network elements and other data sources in and associated
 with the network, and could present this information in a vendor-
 independent data model to applications to be displayed allowing the
 operator (or, potentially, the customer through a SP's Web portal) to
 visualize the information.

4.2. Path Computation Element (PCE)

 As described in [RFC4655] a PCE can be used to compute MPLS-TE paths
 within a "domain" (such as an IGP area) or across multiple domains
 (such as a multi-area AS, or multiple ASes).

 o Within a single area, the PCE offers enhanced computational power
 that may not be available on individual routers, sophisticated
 policy control and algorithms, and coordination of computation
 across the whole area.

 o If a router wants to compute a MPLS-TE path across IGP areas its
 own TED lacks visibility of the complete topology. That means
 that the router cannot determine the end-to-end path, and cannot
 even select the right exit router (Area Border Router - ABR) for
 an optimal path. This is an issue for large-scale networks that
 need to segment their core networks into distinct areas, but which
 still want to take advantage of MPLS-TE.

 The PCE presents a computation server that may have visibility into
 more than one IGP area or AS, or may cooperate with other PCEs to
 perform distributed path computation. The PCE needs access to the
 topology and the Traffic Engineering Database (TED) for the area(s)
 it serves, but [RFC4655] does not describe how this is achieved.
 Many implementations make the PCE a passive participant in the IGP so
 that it can learn the latest state of the network, but this may be
 sub-optimal when the network is subject to a high degree of churn, or

https://datatracker.ietf.org/doc/html/rfc4655
https://datatracker.ietf.org/doc/html/rfc4655

Amante, et al. Expires April 5, 2013 [Page 17]

Internet-Draft Topology API Use Cases October 2012

 when the PCE is responsible for multiple areas.

 The following figure shows how a PCE can get its TED information
 using a Topology Server.

 +----------+
 | ----- | TED synchronization via Topology API
 | | TED |<-+----------------------------------+
 | ----- | | | |
 | | | |
 | | | |
 | v | |
 | ----- | |
 | | PCE | | |
 | ----- | |
 +----------+ |
 ^ |
 | Request/ |
 | Response |
 v |
 Service +----------+ Signaling +----------+ +----------+
 Request | Head-End | Protocol | Adjacent | | Topology |
 -------->| Node |<------------>| Node | | Manager |
 +----------+ +----------+ +----------+

 Figure 4: Topology use case: Path Computation Element

4.3. ALTO Server

 An ALTO Server [RFC5693] is an entity that generates an abstracted
 network topology and provides it to network-aware applications over a
 web service based API. Example applications are p2p clients or
 trackers, or CDNs. The abstracted network topology comes in the form
 of two maps: a Network Map that specifies allocation of prefixes to
 PIDs, and a Cost Map that specifies the cost between PIDs listed in
 the Network Map. For more details, see [I-D.ietf-alto-protocol].

 ALTO abstract network topologies can be auto-generated from the
 physical topology of the underlying network. The generation would
 typically be based on policies and rules set by the operator. Both
 prefix and TE data are required: prefix data is required to generate
 ALTO Network Maps, TE (topology) data is required to generate ALTO
 Cost Maps. Prefix data is carried and originated in BGP, TE data is
 originated and carried in an IGP. The mechanism defined in this
 document provides a single interface through which an ALTO Server can
 retrieve all the necessary prefix and network topology data from the
 underlying network. Note an ALTO Server can use other mechanisms to
 get network data, for example, peering with multiple IGP and BGP

https://datatracker.ietf.org/doc/html/rfc5693

Amante, et al. Expires April 5, 2013 [Page 18]

Internet-Draft Topology API Use Cases October 2012

 Speakers.

 The following figure shows how an ALTO Server can get network
 topology information from the underlying network using the Topology
 API.

 +--------+
 | Client |<--+
 +--------+ |
 | ALTO +--------+ +----------+
 +--------+ | Protocol | ALTO | Network Topology | Topology |
 | Client |<--+------------| Server |<-----------------| Manager |
 +--------+ | | | | |
 | +--------+ +----------+
 +--------+ |
 | Client |<--+
 +--------+

 Figure 5: Topology use case: ALTO Server

5. Acknowledgements

 The authors wish to thank Alia Atlas, Dave Ward, Hannes Gredler,
 Stafano Previdi for their valuable contributions and feedback to this
 draft.

6. IANA Considerations

 This memo includes no request to IANA.

7. Security Considerations

 At the moment, the Use Cases covered in this document apply
 specifically to a single Service Provider or Enterprise network.
 Therefore, network administrations should take appropriate
 precautions to ensure appropriate access controls exist so that only
 internal applications and end-users have physical or logical access
 to the Topology Manager. This should be similar to precautions that
 are already taken by Network Administrators to secure their existing
 Network Management, OSS and BSS systems.

 As this work evolves, it will be important to determine the
 appropriate granularity of access controls in terms of what
 individuals or groups may have read and/or write access to various
 types of information contained with the Topology Manager. It would

Amante, et al. Expires April 5, 2013 [Page 19]

Internet-Draft Topology API Use Cases October 2012

 be ideal, if these access control mechanisms were centralized within
 the Topology Manager itself.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

8.2. Informative References

 [I-D.atlas-irs-problem-statement]
 Atlas, A., Nadeau, T., and D. Ward, "Interface to the
 Routing System Problem Statement",

draft-atlas-irs-problem-statement-00 (work in progress),
 July 2012.

 [I-D.ietf-alto-protocol]
 Alimi, R., Penno, R., and Y. Yang, "ALTO Protocol",

draft-ietf-alto-protocol-13 (work in progress),
 September 2012.

 [I-D.ietf-pce-stateful-pce]
 Crabbe, E., Medved, J., Varga, R., and I. Minei, "PCEP
 Extensions for Stateful PCE",

draft-ietf-pce-stateful-pce-01 (work in progress),
 July 2012.

 [I-D.ward-irs-framework]
 Atlas, A., Nadeau, T., and D. Ward, "Interface to the
 Routing System Framework", draft-ward-irs-framework-00
 (work in progress), July 2012.

 [RFC4655] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
 Element (PCE)-Based Architecture", RFC 4655, August 2006.

 [RFC5693] Seedorf, J. and E. Burger, "Application-Layer Traffic
 Optimization (ALTO) Problem Statement", RFC 5693,
 October 2009.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-atlas-irs-problem-statement-00
https://datatracker.ietf.org/doc/html/draft-ietf-alto-protocol-13
https://datatracker.ietf.org/doc/html/draft-ietf-pce-stateful-pce-01
https://datatracker.ietf.org/doc/html/draft-ward-irs-framework-00
https://datatracker.ietf.org/doc/html/rfc4655
https://datatracker.ietf.org/doc/html/rfc5693

Amante, et al. Expires April 5, 2013 [Page 20]

Internet-Draft Topology API Use Cases October 2012

Authors' Addresses

 Shane Amante
 Level 3 Communications, Inc.
 1025 Eldorado Blvd
 Broomfield, CO 80021
 USA

 Email: shane@level3.net

 Jan Medved
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134
 USA

 Email: jmedved@cisco.com

 Thomas D. Nadeau
 Juniper Networks
 1194 N. Mathilda Ave.
 Sunnyvale, CA 94089
 USA

 Email: tnadeau@juniper.net

Amante, et al. Expires April 5, 2013 [Page 21]

