
Internet Engineering Task Force                                  A. Jain
INTERNET-DRAFT                                               F5 Networks
draft-amit-quick-start-04.txt                                   S. Floyd
Expires: August 2005                                           M. Allman
                                                                    ICIR
                                                            P. Sarolahti
                                                  Nokia / Univ. Helsinki
                                                        20 February 2005

Quick-Start for TCP and IP

Status of this Memo

    By submitting this Internet-Draft, we certify that any applicable
    patent or other IPR claims of which we are aware have been
    disclosed, or will be disclosed, and any of which we become aware
    will be disclosed, in accordance with RFC 3668 (BCP 79).

    By submitting this Internet-Draft, we accept the provisions of
Section 3 of RFC 3667 (BCP 78).

    Internet-Drafts are working documents of the Internet Engineering
    Task Force (IETF), its areas, and its working groups. Note that
    other groups may also distribute working documents as Internet-
    Drafts.

    Internet-Drafts are draft documents valid for a maximum of six
    months and may be updated, replaced, or obsoleted by other documents
    at any time. It is inappropriate to use Internet- Drafts as
    reference material or to cite them other than as "work in progress."

    The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

    The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

    This draft specifies an optional Quick-Start mechanism for transport
    protocols, in cooperation with routers, to determine an allowed
    sending rate at the start and at times in the middle of a data

Jain/Floyd/Allman/Sarolahti                                     [Page 1]

https://datatracker.ietf.org/doc/html/draft-amit-quick-start-04.txt
https://datatracker.ietf.org/doc/html/rfc3668
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/doc/html/rfc3667#section-3
https://datatracker.ietf.org/doc/html/bcp78
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html


INTERNET-DRAFT            Expires: August 2005             February 2005

    transfer.  While Quick-Start is designed to be used by a range of
    transport protocols, in this document we describe its use with TCP.
    By using Quick-Start, a TCP host, say, host A, would indicate its
    desired sending rate in bytes per second, using a Quick Start
    Request option in the IP header of a TCP packet.  A Quick-Start
    request for a higher sending rate would be sent in a TCP packet.
    Each router along the path could, in turn, either approve the
    requested rate, reduce the requested rate, or indicate that the
    Quick-Start request is not approved.  If the Quick-Start request is
    not approved, then the sender would use the default congestion
    control mechanisms.  The Quick-Start mechanism can determine if
    there are routers along the path that do not understand the Quick-
    Start Request option, or have not agreed to the Quick-Start rate
    request.  TCP host B communicates the final rate request to TCP host
    A in a transport-level Quick-Start Response in an answering TCP
    packet.  Quick-Start is designed to allow connections to use higher
    sending rates when there is significant unused bandwidth along the
    path, and all of the routers along the path support the Quick-Start
    Request.



Jain/Floyd/Allman/Sarolahti                                     [Page 2]



INTERNET-DRAFT            Expires: August 2005             February 2005

    TO BE DELETED BY THE RFC EDITOR UPON PUBLICATION:
     Changes from draft-amit-quick-start-03.txt:
     * Added a citation to the paper on "Evaluating Quick-Start for
       TCP", and added pointers to the work in that paper.
       This work includes:
       - Discussions of router algorithms.
       - Discussions of sizing Quick-Start requests.
     * Added sections on "Misbehaving Middleboxes", and on "Attacks on
       Quick-Start".

     Changes from draft-amit-quick-start-02.txt:
     * Added a discussion on Using Quick-Start in the Middle of a
       Connection.  The request would be on the total rate,
       not on the additional rate.
     * Changed name "Initial Rate" to "Rate Request", and changed
       the units from packets per second to bytes per second.
     * The following sections are new:
       - The Quick-Start Request Option for IPv6
       - Quick-Start in IP Tunnels
       - When to Use Quick-Start
       - TCP: Responding to a Loss of a Quick-Start Packet
       - TCP: A Quick-Start Request for a Larger Initial Window
       - TCP: A Quick-Start Request after an Idle Period
       - The Quick-Start Mechanisms in DCCP and other Transport
         Protocols
       - Quick-Start with DCCP
       - Implementation and Deployment Issues
       - Design Decisions
     * Added a discussion of Kunniyur's Anti-ECN proposal.
     * Added a section on simulations, with a brief discussion of the
       simulations by Srikanth Sundarrajan.

     Changes from draft-amit-quick-start-01.txt:
     * Added a discussion in the related work section about the
       possibility of optimistically sending a large initial window,
       without explicit permission of routers.
     * Added a discussion in the related work section about the
       tradeoffs of XCP vs. Quick-Start.
     * Added a section on "The Quick-Start Request: Packets or Bytes?"

     Changes from draft-amit-quick-start-00.txt:
     * The addition of a citation to [KHR02].
     * The addition of a Related Work section.
     * Deleted the QS Nonce, in favor of a random initial value for the
       QS TTL.

https://datatracker.ietf.org/doc/html/draft-amit-quick-start-03.txt
https://datatracker.ietf.org/doc/html/draft-amit-quick-start-02.txt
https://datatracker.ietf.org/doc/html/draft-amit-quick-start-01.txt
https://datatracker.ietf.org/doc/html/draft-amit-quick-start-00.txt


Jain/Floyd/Allman/Sarolahti                                     [Page 3]



INTERNET-DRAFT            Expires: August 2005             February 2005

                             Table of Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . .   6
2. Assumptions and General Principles. . . . . . . . . . . . . .   7

2.1. Overview of Quick-Start. . . . . . . . . . . . . . . . .   8
3. The Quick-Start Request in IP . . . . . . . . . . . . . . . .  11

3.1. The Quick-Start Request Option for IPv4. . . . . . . . .  11
3.2. The Quick-Start Request Option for IPv6. . . . . . . . .  13

       3.3. Processing the Quick-Start Request at
       Routers . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
       3.4. Deciding the Permitted Rate Request at a
       Router. . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

3.5. Quick-Start in IP Tunnels. . . . . . . . . . . . . . . .  15
4. The Quick-Start Mechanisms in TCP . . . . . . . . . . . . . .  17

4.1. When to Use Quick-Start. . . . . . . . . . . . . . . . .  18
       4.2. The Quick-Start Response Option in the TCP
       header. . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

4.3. TCP: Sending the Quick-Start Response. . . . . . . . . .  20
       4.4. TCP: Receiving and Using the Quick-Start
       Response Packet . . . . . . . . . . . . . . . . . . . . . . .  21
       4.5. TCP: Responding to a Loss of a Quick-Start
       Packet. . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
       4.6. TCP: A Quick-Start Request for a Larger Ini-
       tial Window . . . . . . . . . . . . . . . . . . . . . . . . .  22
       4.7. TCP: A Quick-Start Request after an Idle
       Period. . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

4.8. An Example Quick-Start Scenario with TCP . . . . . . . .  25
    5. The Quick-Start Mechanism in other Transport Pro-
    tocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

5.1. Quick-Start with DCCP. . . . . . . . . . . . . . . . . .  27
6. Evaluation of Quick-Start . . . . . . . . . . . . . . . . . .  28

6.1. Benefits of Quick-Start. . . . . . . . . . . . . . . . .  29
6.2. Costs of Quick-Start . . . . . . . . . . . . . . . . . .  29
6.3. Protection against Misbehaving Nodes . . . . . . . . . .  31
6.4. Quick-Start with QoS-enabled Traffic . . . . . . . . . .  33
6.5. Limitations of Quick-Start . . . . . . . . . . . . . . .  34
6.6. Attacks on Quick-Start . . . . . . . . . . . . . . . . .  34
6.7. Simulations with Quick-Start . . . . . . . . . . . . . .  34

7. Related Work. . . . . . . . . . . . . . . . . . . . . . . . .  35
       7.1. Fast Start-ups without Explicit Information
       from Routers. . . . . . . . . . . . . . . . . . . . . . . . .  35
       7.2. Optimistic Sending without Explicit Informa-
       tion from Routers . . . . . . . . . . . . . . . . . . . . . .  36
       7.3. Fast Start-ups with other Information from
       Routers . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
       7.4. Fast Start-ups with more Fine-Grained Feed-
       back from Routers . . . . . . . . . . . . . . . . . . . . . .  38

8. Implementation and Deployment Issues. . . . . . . . . . . . .  38



Jain/Floyd/Allman/Sarolahti                                     [Page 4]



INTERNET-DRAFT            Expires: August 2005             February 2005

       8.1. Implementation Issues for Sending Quick-
       Start Requests. . . . . . . . . . . . . . . . . . . . . . . .  39
       8.2. Implementation Issues for Processing Quick-
       Start Requests. . . . . . . . . . . . . . . . . . . . . . . .  39

8.3. Possible Deployment Scenarios. . . . . . . . . . . . . .  40
       8.4. Would QuickStart packets take the slow path
       in routers? . . . . . . . . . . . . . . . . . . . . . . . . .  41
       8.5. A Comparison with the Deployment Problems of
       ECN . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

9. Security Considerations . . . . . . . . . . . . . . . . . . .  41
10. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . .  41
11. Acknowledgements . . . . . . . . . . . . . . . . . . . . . .  42
A. Design Decisions. . . . . . . . . . . . . . . . . . . . . . .  42

       A.1. Alternate Mechanisms for the Quick-Start
       Request: ICMP and RSVP. . . . . . . . . . . . . . . . . . . .  42

A.1.1. ICMP. . . . . . . . . . . . . . . . . . . . . . . .  42
A.1.2. RSVP. . . . . . . . . . . . . . . . . . . . . . . .  43

A.2. Alternate Encoding Functions . . . . . . . . . . . . . .  44
A.3. The Quick-Start Request: Packets or Bytes? . . . . . . .  45

       A.4. Quick-Start Semantics: Total Rate or Addi-
       tional Rate?. . . . . . . . . . . . . . . . . . . . . . . . .  47
       A.5. Alternate Responses to the Loss of a Quick-
       Start Packet. . . . . . . . . . . . . . . . . . . . . . . . .  47

A.6. Why Not Include More Functionality?. . . . . . . . . . .  48
A.7. A QuickStart Nonce?. . . . . . . . . . . . . . . . . . .  51

    Normative References . . . . . . . . . . . . . . . . . . . . . .  51
    Informative References . . . . . . . . . . . . . . . . . . . . .  52
    IANA Considerations. . . . . . . . . . . . . . . . . . . . . . .  55
    AUTHORS' ADDRESSES . . . . . . . . . . . . . . . . . . . . . . .  55
    Full Copyright Statement . . . . . . . . . . . . . . . . . . . .  55
    Intellectual Property. . . . . . . . . . . . . . . . . . . . . .  55



Jain/Floyd/Allman/Sarolahti                                     [Page 5]



INTERNET-DRAFT            Expires: August 2005             February 2005

1.  Introduction

    Each TCP connection begins with a question: "What is the appropriate
    sending rate for the current network path?"  The question is not
    answered explicitly for TCP, but each TCP connection determines the
    sending rate by probing the network path and altering the congestion
    window (cwnd) based on perceived congestion.  Each connection starts
    with a pre-configured initial congestion window (ICW).  Currently,
    TCP allows an initial window of between one and four MSS-sized
    segments [RFC2581,RFC3390].  The TCP connection then probes the
    network for available bandwidth using the slow-start procedure
    [Jac88,RFC2581], doubling cwnd during each congestion-free round-
    trip time (RTT).

    The slow-start algorithm can be time-consuming --- especially over
    networks with large bandwidth or long delays.  It may take a number
    of RTTs in slow-start before the TCP connection begins to fully use
    the available bandwidth of the network.  For instance, it takes
    log_2(N) - 2 round-trip times to build cwnd up to N segments,
    assuming an initial congestion window of 4 segments.  This time in
    slow-start is not a problem for large file transfers, where the
    slow-start stage is only a fraction of the total transfer time.
    However, in the case of moderate-sized web transfers the connection
    might carry out its entire transfer in the slow-start phase, taking
    many round-trip times, where one or two RTTs might have been
    sufficient.

    A fair amount of work has already been done to address the issue of
    choosing the initial congestion window for TCP, with RFC 3390
    allowing an initial window of up to four segments based on the MSS
    used by the connection [RFC3390].  Our underlying premise is that
    explicit feedback from all of the routers along the path would be
    required, in the current architecture, for best-effort connections
    to use initial windows significantly larger than those allowed by
    [RFC3390], in the absence of other information about the path.

    The Congestion Manager [RFC3124] and TCP control block sharing
    [RFC2140] both propose sharing congestion information among multiple
    TCP connections with the same endpoints.  With the Congestion
    Manager, a new TCP connection could start with a high initial cwnd
    if it was sharing the path and the cwnd with a pre-existing TCP
    connection to the same destination that had already obtained a high
    congestion window.  RFC 2140 discusses ensemble sharing, where an
    established connection's congestion window could be `divided up' to
    be shared with a new connection to the same host.  However, neither
    of these approaches addresses the case of a connection to a new
    destination, with no existing or recent connection (and therefore

https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2140


Jain/Floyd/Allman/Sarolahti                         Section 1.  [Page 6]



INTERNET-DRAFT            Expires: August 2005             February 2005

    congestion control state) to that destination.

    Quick-Start would not be the first mechanism for explicit
    communication from routers to transport protocols about sending
    rates.  Explicit Congestion Notification (ECN) gives explicit
    congestion control feedback from routers to transport protocols,
    based on the router detecting congestion before buffer overflow
    [RFC3168].  In contrast, routers do not use Quick-Start to get
    congestion information, but instead use Quick-Start as an optional
    mechanism to give permission to transport protocols to use higher
    sending rates, based on the ability of all the routers along the
    path to determine if their respective output links are significantly
    underutilized.

2.  Assumptions and General Principles

    This section describes the assumptions and general principles behind
    the design of the Quick-Start mechanism.

    Assumptions:

    * The data transfer in the two directions of a connection traverses
    different queues, and possibly even different routers.  Thus, any
    mechanism for determining the allowed sending rate would have to be
    used independently for each direction.

    * The path between the two endpoints is relatively stable, such that
    the path used by the Quick-Start request is generally the same path
    used by the Quick-Start packets one round-trip time later.

    * Any new mechanism must be incrementally deployable, and might not
    be supported by all of the routers and/or end-hosts.  Thus, any new
    mechanism must be able to accommodate non-supporting routers or end-
    hosts without disturbing the current Internet semantics.

    General Principles:

    * Our underlying premise is that explicit feedback from all of the
    routers along the path would be required, in the current
    architecture, for best-effort connections to use initial windows
    significantly larger than those allowed by [RFC3390], in the absence
    of other information about the path.

    * A router should only approve a request for a higher sending rate
    if the output link is underutilized.  Any other approach will result
    in either per-flow state at the router, or the possibility of a
    (possibly transient) queue at the router.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3390


Jain/Floyd/Allman/Sarolahti                         Section 2.  [Page 7]



INTERNET-DRAFT            Expires: August 2005             February 2005

    * No per-flow state should be required at the router.

    There are also a number of questions regarding the Quick-Start
    mechanism that are discussed later in this document.

    Open Questions:

    * Would the benefits of the Quick-Start mechanism be worth the added
    complexity?

    The benefits and drawbacks of Quick-Start are discussed in more
    detail in Section 6 on "Evaluation of Quick-Start".

    * A practical consideration is that packets with known and unknown
    IP options are often dropped in the current Internet [MAF04].

    This does not preclude using Quick-Start in Intranets.  Further,
    [MAF04] also shows that over time the blocking of packets
    negotiating ECN has dropped, and therefore an incremental deployment
    story for Quick-Start based on IP Options is not out of the
    question.  Appendix A.1 on "Alternate Mechanisms for the Quick-Start
    Request" discusses the possibility of using RSVP or ICMP instead of
    IP Options for carrying Quick-Start Requests to routers.

    * Apart from the merits and shortcomings of the Quick-Start
    mechanism, is there likely to be a compelling need to add explicit
    congestion-related feedback from routers over and above the one-bit
    feedback from ECN?

    If the answer to the question above is yes, should we be considering
    mechanisms that, while more complex, are also sufficiently more
    powerful than Quick-Start?  This is discussed further in Appendix

A.6 on "Why Not Include More Functionality".

2.1.  Overview of Quick-Start

    In this section we give an overview of the use of Quick-Start with
    TCP, used to request a higher congestion window.  The description in
    this section is non-normative; the normative description of Quick-
    Start with IP and TCP follows in Sections 3 and 4. Quick-Start can
    be used in the middle of a connection, e.g., after an idle or
    underutilized period, as well as for the initial sending rate; these
    uses of Quick-Start are discussed later in the document.

    Quick-Start requires end-points and routers to work together, with
    end-points requesting a higher sending rate in the Quick-Start
    Request (QSR) option in IP, and routers along the path approving,



Jain/Floyd/Allman/Sarolahti                       Section 2.1.  [Page 8]



INTERNET-DRAFT            Expires: August 2005             February 2005

    modifying, discarding or ignoring (and therefore disallowing) the
    Quick-Start Request.  The receiver uses reliable, transport-level
    mechanisms to inform the sender of the status of the Quick-Start
    Request.  In addition, Quick-Start assumes a unicast, congestion-
    controlled transport protocol; we do not consider the use of Quick-
    Start for multicast traffic.

    The Quick-Start Request Option includes a request for a sending rate
    in bytes per second, and a Quick-Start TTL (QS TTL) to be
    decremented by every router along the path that understands the
    option and approves the request.  The Quick-Start TTL is initialized
    by the sender to a random value.  The transport receiver returns the
    rate and information about the TTL to the sender using transport-
    level mechanisms.  In particular, the receiver computes the
    difference between the Quick-Start TTL and the TTL in the IP header
    of the Quick-Start request packet, and returns this in the Quick-
    Start response.  The sender uses this information to determine if
    all of the routers along the path decremented the Quick-Start TTL,
    approving the Quick-Start Request.

    If the request is approved by all of the routers along the path,
    then the TCP sender combines this allowed rate with the measurement
    of the round-trip time, and ends up with an allowed TCP window.
    This window is sent rate-paced over the round-trip time, or until an
    ACK packet is received.

    Figure 1 shows a successful use of Quick-Start, with both routers
    along the path approving the Quick-Start Request.  In this example,
    Quick-Start is used by TCP to establish the initial congestion
    window.



Jain/Floyd/Allman/Sarolahti                       Section 2.1.  [Page 9]



INTERNET-DRAFT            Expires: August 2005             February 2005

            Sender        Router 1       Router 2          Receiver
            ------        --------       --------          --------
          | Quick-Start Request
          | in SYN or SYN/ACK -->
          |
          |               Decrement
          |               QS TTL
          |               to approve
          |               request -->
          |
          |                              Decrement
          |                              QS TTL
          |                              to approve
          |                              request -->
          |
          |                                           Return Quick-Start
          |                                            info to sender in
          |                                          <-- TCP ACK packet.
          |
          | Quick-Start approved,
          | translate to cwnd.
          V Send cwnd paced over one RTT. -->

                    Figure 1: A successful Quick-Start Request.

    Figure 2 shows an unsuccessful use of Quick-Start, with one of the
    routers along the path not approving the Quick-Start Request.  If
    the Quick-Start Request is not approved, then the sender uses the
    default congestion control mechanisms for that transport protocol,
    including the default initial congestion window, response to idle
    periods, etc.



Jain/Floyd/Allman/Sarolahti                      Section 2.1.  [Page 10]



INTERNET-DRAFT            Expires: August 2005             February 2005

            Sender        Router 1       Router 2          Receiver
            ------        --------       --------          --------
          | Quick-Start Request
          | in SYN or SYN/ACK -->
          |
          |               Decrement
          |               QS TTL
          |               to approve
          |               request -->
          |
          |                              Forward packet
          |                              without modifying
          |                              Quick-Start Option. -->
          |
          |                                           Return Quick-Start
          |                                            info to sender in
          |                                          <-- TCP ACK packet.
          |
          | Quick-Start not approved.
          V Use default initial cwnd. -->

                    Figure 2: An unsuccessful Quick-Start Request.

3.  The Quick-Start Request in IP

3.1.  The Quick-Start Request Option for IPv4

    The Quick-Start Request for IPv4 is defined as follows:

            0          1          2          3
       +----------+----------+----------+----------+
       | Option   | Length=4 |  QS TTL  | Rate     |
       |          |          |          | Request  |
       +----------+----------+----------+----------+

       Figure 1.  The Quick-Start Request Option for IPv4.

    The first byte contains the option field, which includes the one-bit
    copy flag, the 2-bit class field, and the 5-bit option number (to be
    assigned by IANA).

    The second byte contains the length field, indicating an option
    length of four bytes.



Jain/Floyd/Allman/Sarolahti                      Section 3.1.  [Page 11]



INTERNET-DRAFT            Expires: August 2005             February 2005

    The third byte contains the Quick-Start TTL (QS TTL) field.  The
    sender sets the QS TTL field to a random value.  Routers that
    approve the Quick-Start Request decrement the QS TTL (mod 256).  The
    QS TTL is used by the sender to detect if all of the routers along
    the path understood and approved the Quick-Start option.

    The transport sender also calculates and remembers the TTL Diff, the
    difference between the IP TTL value and the QS TTL value in the
    Quick-Start request packet, as follows:

    TTL Diff = ( IP TTL - QS TTL ) mod 256.                         (1)

    The fourth byte is the Rate Request field.  The sender initializes
    the Rate Request to the desired sending rate, including an estimate
    of the transport and IP header overhead.

    Our current proposal for an encoding function uses only the first
    four bits of the fourth byte, leaving the other four bits reserved
    for future use.  The encoding function sets the request rate to
    K*2^N bps, for N the value in the Rate Request field, and for K set
    to 40,000.  For N=0, the rate request would be set to zero,
    regardless of the encoding function.  This is illustrated in the
    table below.  For a four-bit Rate Request field, the request range
    would be from 80 Kbps to 1.3 Gbps.  Alternate encodings for the Rate
    Request are given in Appendix A.2.

          N     Rate Request (in Kbps)
         ---    -------------------
          0            0
          1           80
          2          160
          3          320
          4          640
          5        1,280
          6        2,560
          7        5,120
          8       10,240
          9       20,480
         10       40,960
         11       81,920
         12      163,840
         13      327,680
         14      655,360
         15    1,310,720

         Mapping from the Rate Request field to the rate request in Kbps.



Jain/Floyd/Allman/Sarolahti                      Section 3.1.  [Page 12]



INTERNET-DRAFT            Expires: August 2005             February 2005

    Routers can approve the Quick-Start Request for a lower rate by
    decreasing the Rate Request in the Quick-Start Request.

    We note that unlike a Quick-Start Request sent at the beginning of a
    connection, when a Quick-Start Request is sent in the middle of a
    connection, the connection could already have an established
    congestion window or sending rate.  The Rate Request is the
    requested total rate for the connection, including the current rate
    of the connection; the Rate Request is *not* a request for an
    additional sending rate over and above the current sending rate.  If
    the Rate Request is denied, or lowered to a value below the
    connection's current sending rate, then the sender can ignore the
    request, and revert to the default congestion control mechanisms of
    the transport protocol.

    In IPv4, a change in IP options at routers requires recalculating
    the IP header checksum.

3.2.  The Quick-Start Request Option for IPv6

    The Quick-Start Request Option for IPv6 is placed in the Hop-by-Hop
    Options extension header that is processed at every network node
    along the communication path [RFC 2460]. The option format following
    the generic Hop-by-Hop Options header is similar to the IPv4 format
    with the exception that the Length field should exclude the common
    type and length fields in the option format and be set to 2.

            0          1          2          3
       +----------+----------+----------+----------+
       | Option   | Length=2 |  QS TTL  | Rate     |
       |          |          |          | Request  |
       +----------+----------+----------+----------+

       Figure 2.  The Quick-Start Request Option for IPv6.

    The transport receiver compares the Quick-Start TTL with the IPv6
    Hop Limit field in order to calculate the TTL Diff.  (The Hop Limit
    in IPv6 is the equivalent of the TTL in IPv6.)  That is, TTL Diff is
    calculated as follows:

    TTL Diff = ( IPv6 Hop Limit - QS TTL ) mod 256.
    (1)

    Unlike IPv4, modifying or deleting the Quick-Start Request IPv6
    Option does not require checksum re-calculation, because the IPv6
    header does not have a checksum field, and modifying the Quick-Start
    Request in the IPv6 Hop-by-Hop options header does not affect the

https://datatracker.ietf.org/doc/html/rfc2460


Jain/Floyd/Allman/Sarolahti                      Section 3.2.  [Page 13]



INTERNET-DRAFT            Expires: August 2005             February 2005

    IPv6 pseudo-header checksum used in upper-layer checksum
    calculations.

    Note that [RFC2460] specifies that when a specific flow label has
    been assigned to packets, the contents of the Hop-by-Hop options,
    excluding the next header field, must originate with the same
    contents throughout the IP flow lifetime.  This requirement would
    have to be modified to implement Quick-Start on an IPv6
    implementation that uses flow labels, because the Quick-Start
    Request option would be included in only a small fraction of the
    packets during a flow lifetime.

3.3.  Processing the Quick-Start Request at Routers

    Each participating router can either terminate or forward the Quick-
    Start Request.  The router terminates the Quick-Start Request if the
    router is not underutilized, and therefore has decided not to grant
    the Quick-Start Request.

    The preferable method for a router to terminate the Quick-Start
    Request is to delete the Quick-Start Request from the IP header.  A
    less preferable but possibly more efficient method is to simply
    forward the packet with the Quick-Start Request unchanged, or with
    the Rate Request set to zero.

    If the participating router has decided to approve the Quick-Start
    Request, it does the following:

    * It decrements the QS TTL by one.

    * If the router is only willing to approve an Rate Request less than
    that in the Quick-Start Request, then the router puts the smaller
    Rate Request in that field of the Quick-Start Request.  The router
    MUST NOT increase the Rate Request in the Quick-Start Request.

    * In IPv4, it updates the IP header checksum.

    A non-participating router forwards the Quick-Start Request
    unchanged, without decrementing the QS TTL.  Of course, the non-
    participating router still decrements the TTL field in the IP
    header, as is required for all routers [RFC1812].  As a result, the
    TCP sender will be able to detect that the Quick-Start Request had
    not been understood or approved by all of the routers along the
    path.

    A router that modifies or deletes the Quick-Start Request in the
    IPv4 header also has to update the IPv4 Header checksum.  For IPv6,

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1812


Jain/Floyd/Allman/Sarolahti                      Section 3.3.  [Page 14]



INTERNET-DRAFT            Expires: August 2005             February 2005

    no checksum updates are needed.

3.4.  Deciding the Permitted Rate Request at a Router

    In this section we briefly outline how a router might decide whether
    or not to approve a Quick-Start Request.  As an example, the router
    could ask the following questions:

    * Has the router's output link been underutilized for some time
    (e.g., several seconds).

    * Would the output link remain underutilized if the arrival rate was
    to increase by the aggregate rate requests that the router has
    approved over the last fraction of a second?

    Answering this question requires that the router have some knowledge
    of the available bandwidth on the output link for that output queue.
    It also requires that the router keep two counters, one indicating
    the total aggregate Rate Requests that have been approved over the
    recent interval of time, and one for the total aggregate Rate
    Requests approved over the previous interval of time.  Thus, if an
    underutilized router experiences a SYN flood, then the router would
    begin to deny Rate Request requests, even if the router remains
    underutilized.

    * If the router's output link has been underutilized and the
    aggregate Quick Start Request Rate options granted is low enough to
    prevent a near-term bandwidth shortage, then the router could
    approve the Quick-Start Request.

Section 8.2 discusses some of the implementation issues in
    processing Quick-Start requests at routers.  [SAF05] discusses the
    range of possible Quick-Start algorithms at the router for deciding
    whether to approve a Quick-Start request.  In order to explore the
    limits of the possible functionality at routers, [SAF05] also
    discusses Extreme Quick-Start mechanisms at routers, where the
    router would keep per-flow state concerning approved Quick-Start
    requests.

3.5.  Quick-Start in IP Tunnels

    In this section we consider the effect of IP tunnels on Quick-Start.
    In the discussion, we use TTL Diff, defined earlier as the
    difference between the IP TTL and the Quick-Start TTL, mod 256.
    Recall that the sender considers the Quick-Start request approved if
    the value of TTL Diff for the packet entering the network is the



Jain/Floyd/Allman/Sarolahti                      Section 3.5.  [Page 15]



INTERNET-DRAFT            Expires: August 2005             February 2005

    same as the value of TTL Diff for the packet exiting the network.

    There are two legitimate ways for handling the Quick-Start Request
    with IP tunnels:

    (1) The tunnel ingress node does not support Quick-Start, or does
    not approve the Quick-Start request. The node could strip the Quick-
    Start Request option from the IP header before encapsulation.
    Alternately, the ingress node can decrement the IP TTL before
    encapsulation, while leaving the Quick-Start TTL unchanged, changing
    TTL Diff.  This is the assumed behavior of current IP tunnels that
    are not aware of Quick-Start.

    For a tunnel ingress node that does not support Quick-Start,
    problems with a Quick-Start Request could still occur if a tunnel
    discards the outer header at egress and does not decrement the inner
    IP TTL at the ingress.  In this case, if both the inner IP TTL and
    the Quick-Start TTL are decremented after decapsulation at a Quick-
    Start aware egress, or if neither is decremented at the egress, then
    TTL Diff would be the same after egress as it was before ingress, so
    that it would wrongly appear that all the routers in the tunnel had
    approved the Quick-Start request.  Fortunately, we are not aware of
    tunnel technologies that operate this way; to the best of our
    knowledge, all tunnels decrement the IP TTL either at the ingress
    before encapsulation, or at the egress router after decapsulation,
    thus changing TTL Diff.

    Even the extreme case when the tunnel ingress is at the TCP sender
    and the tunnel egress is at the TCP receiver, our assumption is that
    the IP TTL will be decremented either at the tunnel ingress or at
    the tunnel egress, changing TTL Diff and preventing the end-nodes
    from wrongly inferring that the Quick-Start Request was approved by
    all of the routers along the path.  If there are tunnels where the
    IP TTL in not decremented, perhaps for PPP over SSH, then additional
    attention will have to be paid to the robustness of Quick-Start in
    these environments.

    A Quick-Start aware egress must also make sure that the Quick-Start
    Request is not approved if for some reason the inner header includes
    the Quick-Start Request option, but the outer header does not.  In
    this case the egress node should remove the Quick-Start Request
    option from the inner header after decapsulation.  Alternately, the
    egress node could decrement the Rate Request in the Quick-Start
    Request option to zero.

    (2) The tunnel ingress node may choose to support Quick-Start, and
    locally approve the Quick-Start Request.  In this case the IP TTL
    and Quick-Start option must be copied from the inner IP header to



Jain/Floyd/Allman/Sarolahti                      Section 3.5.  [Page 16]



INTERNET-DRAFT            Expires: August 2005             February 2005

    the outer header at the tunnel ingress. Upon decapsulation, the IP
    TTL and the Quick-Start option in the outer IP header must be copied
    back to the inner header.  If the ingress router decrements the IP
    TTL in the inner header before encapsulation, or in the outer header
    after encapsulation, then if the ingress router wishes to approve
    the Quick-Start request, it must decrement the Quick-Start TTL at
    the same time, so as not to change TTL Diff.  Similarly, if the
    egress router wishes to approve the Quick-Start request, then when
    it decrements the IP TTL in the outer header before decapsulation,
    or in the inner header after decapsulation, it must decrement the
    Quick-Start TTL at the same time.

    A tunnel ingress node can support a Quick-Start request without
    explicitly verifying that the tunnel egress also supports Quick-
    Start.  All that the ingress node has to do is to decrement the IP
    TTL, but not the Quick-Start TTL, in the inner header after
    encapsulation.  In this case, if the egress node simply discards the
    outer header at the egress point, TTL Diff will be different after
    the tunnel egress than it was at the tunnel ingress, and the Quick-
    Start will not be considered by the end-nodes as having been
    approved in the network.  Thus, the tunnel ingress node on its own
    can provide protection against egress nodes that might discard the
    outer header at the egress point.

4.  The Quick-Start Mechanisms in TCP

    This section describes how the Quick-Start mechanism would be used
    in TCP.  We first sketch the procedure and then tightly define it in
    the subsequent subsections.

    If a TCP sender, say host A, would like to use Quick-Start, the TCP
    sender puts the requested sending rate in bytes per second,
    appropriately formatted, in the Quick-Start Request option in the IP
    header of the TCP packet, called the Quick-Start request packet.
    (We will be somewhat loose in our use of "packet" vs. "segment" in
    this section.)  For initial start-up, the Quick-Start request packet
    can be either the SYN or SYN/ACK packet, as described above.  The
    requested rate includes an estimate for the transport and IP header
    overhead.  The TCP receiver, say host B, returns the Quick-Start
    Response option in the TCP header in the responding SYN/ACK packet
    or ACK packet, called the Quick-Start response packet, informing
    host A of the results of their request.

    If the acknowledging packet does not contain a Quick-Start Response,
    or contains a Quick-Start Response with the wrong value for the TTL
    Diff, then host A MUST assume that its Quick-Start request failed.
    In this case, host A uses TCP's default congestion control



Jain/Floyd/Allman/Sarolahti                        Section 4.  [Page 17]



INTERNET-DRAFT            Expires: August 2005             February 2005

    procedure.  For initial start-up, host A uses the default initial
    congestion window.

    If the returning packet contains a valid Quick-Start Response, then
    host A uses the information in the response, along with its
    measurement of the round-trip time, to determine the Quick-Start
    congestion window (QS-cwnd).  Quick-Start packets are defined as
    packets sent as the result of a successful Quick-Start request, up
    to the time when the first Quick-Start packet is acknowledged.  In
    order to use Quick-Start, the TCP host is also required to use rate-
    based pacing to pace out Quick-Start packets at the rate indicated
    in the Quick-Start Response.

    The two TCP end-hosts can independently decide whether to request
    Quick-Start.  For example, host A could sent a Quick-Start Request
    in the SYN packet, and host B could also send a Quick-Start Request
    in the SYN/ACK packet.

4.1.  When to Use Quick-Start

    In addition to the use of Quick-Start when a connection is
    established, there are several additional points in a connection
    when a transport protocol may want to issue a Rate Request.  We
    first re-iterate the notion that Quick-Start is a coarse-grained
    mechanism.  That is, Quick-Start's Rate Requests are not meant to be
    used for fine-grained control of the transport's sending rate.
    Rather, the transport can issue a Rate Request when no information
    about the appropriate sending rate is available, and the default
    congestion control mechanisms might be significantly underestimating
    the appropriate sending rate.

    The following are the potential points where Quick-Start may be
    useful:

        (1) At connection initiation when the transport has no idea of
        the capacity of the network, as discussed above.  (A transport
        that uses TCP Control Block sharing, the Congestion Manager, or
        the like may not need Quick-Start to determine an appropriate
        rate.)

        (2) After a lengthy idle period when the transport no longer has
        a validated estimate of the available bandwidth for this flow.



Jain/Floyd/Allman/Sarolahti                      Section 4.1.  [Page 18]



INTERNET-DRAFT            Expires: August 2005             February 2005

        (3) After a host has been explicitly informed that a link in the
        path has gone down and has come back up.  In this case, the
        network has changed in unknown ways and the sender has lost its
        validated assessment of the appropriate sending rate.

        (4) After a host has received explicit indications that one of
        the endpoints has moved its point of network attachment.  This
        can happen due to some underlying mobility mechanism like Mobile
        IP [RFC3344,RFC3775].  Some transports, such as SCTP [RFC2960],
        may associate with multiple IP addresses and can switch
        addresses (and, therefore network paths) in mid-connection.  If
        the transport has concrete knowledge of a changing network path
        then the current sending rate may not be appropriate and the
        transport sender may use Quick-Start to probe the network for
        the appropriate rate at which to send.  (Alternatively,
        traditional slow start should be used in this case when Quick-
        Start is not available.)

        (5) After an application-limited period when the sender has been
        using only a small amount of its appropriate share of the
        network capacity, and has no valid estimate for its fair share.
        In this case, Quick-Start may be an appropriate mechanism to
        assess the available capacity on the network path.

    Of the above, this document recommends that a TCP MAY attempt to use
    Quick-Start in cases (1) and (2).  Cases (3) and (4) require
    external notifications not presently defined for TCP or other
    transport protocols.  Case (5) requires further thought and
    investigation with regard to how the transport protocol could detect
    it was in a situation that would warrant transmitting a Quick-Start
    Rate Request.

Section 4.6 discusses some of the issues of using Quick-Start at
    connection initiation, and Section 4.7 discusses issues that arise
    when Quick-Start is used to request a larger sending rate after an
    idle period.

4.2.  The Quick-Start Response Option in the TCP header

    TCP's Quick-Start Response option is defined as follows:

https://datatracker.ietf.org/doc/html/rfc3775
https://datatracker.ietf.org/doc/html/rfc2960


Jain/Floyd/Allman/Sarolahti                      Section 4.2.  [Page 19]



INTERNET-DRAFT            Expires: August 2005             February 2005

            0          1          2          3
       +----------+----------+----------+----------+
       |  Kind    | Length=4 |  Rate    |   TTL    |
       |          |          | Request  |   Diff   |
       +----------+----------+----------+----------+

       Figure 2.  The Quick-Start Response option in the TCP header.

    The first byte of the Quick-Start Response option contains the
    option kind, identifying the TCP option (to be assigned by IANA).

    The second byte of the Quick-Start Response option contains the
    option length in bytes.  The length field is set to four bytes.

    The third byte of the Quick-Start Response option contains the
    allowed Rate Request, formatted as in the Quick-Start Request
    option.

    The fourth byte of the TCP option contains the TTL Diff.  The TTL
    Diff contains the difference between the IP TTL and QS TTL fields in
    the received Quick-Start request packet, as calculated in equation
    (1).

4.3.  TCP: Sending the Quick-Start Response

    An end host, say host B, that receives a TCP packet containing a
    Quick-Start Request passes the Quick-Start Request, along with the
    value in the IP TTL field, to the receiving TCP layer.

    If the TCP host is willing to permit the Quick-Start Request, then a
    Quick-Start Response option is included in the TCP header of the
    corresponding acknowledgement packet.  The Rate Request in the
    Quick-Start Response option is set to the received value of the Rate
    Request in the Quick-Start Request option, or to a lower value if
    the TCP receiver is only willing to allow a lower Rate Request.  The
    TTL Diff in the Quick-Start Response is set to the difference
    between the IP TTL value and the QS TTL value as given in equation
    (1).

    When the Quick-Start Response is being sent on the SYN/ACK, in
    response to a Quick-Start Request on the SYN, then the Quick-Start
    Response will be resent if the SYN/ACK is retransmitted.  When the
    Quick-Start Response is being sent on an ACK, for example in
    response to the Quick-Start Request on the SYN/ACK, then the Quick-
    Start Response MUST be resent on data packets until that TCP host
    receives an acknowledgement from the other endpoint.



Jain/Floyd/Allman/Sarolahti                      Section 4.3.  [Page 20]



INTERNET-DRAFT            Expires: August 2005             February 2005

4.4.  TCP: Receiving and Using the Quick-Start Response Packet

    A TCP host, say TCP host A, that sent a Quick-Start Request and
    receives an answering Quick-Start Response in the acknowledgement
    first checks that the Quick-Start Response is valid.  The Quick-
    Start Response is valid if it contains the correct value for the TTL
    Diff, and an equal or lesser value for the Rate Request than that
    transmitted in the Quick-Start Request.  If this check is not
    successful, then the Quick-Start request failed, and the TCP host
    MUST use the default TCP congestion window that it would have used
    without Quick-Start.

    If the checks of the TTL Diff and the Rate Request are successful,
    then the TCP host sets its Quick-Start congestion window (in terms
    of MSS-sized segments), QS-cwnd, as follows:

    QS-cwnd = (R * T) / (MSS + H)                                (2)

    where R the Rate Request in bytes per second, T the measured round-
    trip time in seconds, and H the estimated header size in bytes
    (e.g., 40 bytes).  [Derivation: the sender gets R bytes per second
    including packet headers, but only R*MSS/(MSS+H) bytes per second,
    or equivalently R*T*MSS/(MSS+H) bytes per round-trip time, of
    application data.]  The TCP host sets its congestion window cwnd to
    QS-cwnd only if QS-cwnd is greater than cwnd; otherwise QS-cwnd is
    ignored.  If QS-cwnd is used, the TCP host sets a flag that it is in
    Quick-Start mode, and while in Quick-Start mode the TCP sender uses
    rate-based pacing, pacing out Quick-Start packets at the specified
    Rate Request.  Quick-Start mode ends when the TCP host receives an
    ACK for one of the Quick-Start packets.

    Because the Quick-Start request packet might not have used the fast
    path in routers, the round-trip time measurement for the Quick-Start
    request might be unnecessarily large.  If the congestion window has
    not been fully used when the first ack arrives ending the Quick-
    Start mode, then the congestion window is decreased to the amount
    that has actually been used so far.  This should address the problem
    of an overly-large congestion window from an overly-large
    measurement of the round-trip time.

    If the Quick-Start mode ends with all Quick-Start packets being
    successfully acknowledged, the TCP sender returns to using the
    default congestion control mechanisms.  After all the packets are
    acknowledged from a Quick-Start request for an initial window, for
    example, the TCP sender remains in slow-start, if permitted by
    ssthresh, continuing to increase its congestion window rather
    aggressively from one round-trip time to the next.  To add
    robustness, the TCP sender is required to use Limited Slow-Start



Jain/Floyd/Allman/Sarolahti                      Section 4.4.  [Page 21]



INTERNET-DRAFT            Expires: August 2005             February 2005

    along with Quick-Start.  With Limited Slow-Start, the TCP sender
    limits the number of packets by which the congestion window is
    increased for one window of data during slow-start [F04].

4.5.  TCP: Responding to a Loss of a Quick-Start Packet

    For TCP, we have defined a ``Quick-Start packet'' as one of the
    packets sent in the window immediately following a successful Quick-
    Start request.  After detecting the loss of a Quick-Start packet,
    TCP MUST revert to the default congestion control procedures that
    would have been used if the Quick-Start request had not been
    approved.  For example, if Quick-Start is used for setting the
    initial window, and a packet from the initial window is lost, then
    the TCP sender must then slow-start with the default initial window
    that would have been used if Quick-Start had not been used.  In
    addition to reverting to the default congestion control mechanisms,
    the sender must take into account that the Quick-Start congestion
    window was too large.  Thus, the sender should decrease ssthresh to
    at most half the number of Quick-Start packets that were
    successfully transmitted.  Section A.5 discusses possible
    alternatives in responding to the loss of a Quick-Start packet.

4.6.  TCP: A Quick-Start Request for a Larger Initial Window

    Some of the issues of using Quick-Start are related to the specific
    scenario in which Quick-Start is used.  This section discusses the
    following issues that arise when Quick-Start is used by TCP to
    request a larger initial window: (1) determining the rate to
    request; (2) interactions with Path MTU Discovery; and (3) Quick-
    Start request packets that are eaten by middleboxes.

    (1) Determining the rate to request:
    As discussed in [SAF05], the data sender does not necessarily have
    information about the size of the data transfer at connection
    initiation; for example, in request-response protocols such as HTTP,
    the server doesn't know the size or name of the requested object
    during connection initiation.  [SAF05] explores some of the
    performance implications of overly-large Quick-Start requests, and
    discusses heuristics that end-nodes could use to size their requests
    appropriately.

    In the absence of other information, there could be a configured
    value for the Quick-Start Rate Request.  Quick-Start will be more
    effective if Quick-Start requests are not larger than necessary;
    every Quick-Start request that is approved but not used takes away
    from the bandwidth pool available for granting successive Quick-



Jain/Floyd/Allman/Sarolahti                      Section 4.6.  [Page 22]



INTERNET-DRAFT            Expires: August 2005             February 2005

    Start requests.  Therefore, it is recommended that the request for
    the initial sending rate be somewhat conservative, in order to
    improve the chances for more Quick-Start requests to be approved.

    (2) Interactions with Path MTU Discovery:
    A second issue when Quick-Start is used to request a large initial
    window concerns the interactions between the large initial window
    and Path MTU Discovery.  Some of the issues are discussed in RFC

3390:

        "When larger initial windows are implemented along with Path MTU
        Discovery [RFC1191], alternatives are to set the "Don't
        Fragment" (DF) bit in all segments in the initial window, or to
        set the "Don't Fragment" (DF) bit in one of the segments.  It is
        an open question as to which of these two alternatives is best."

    Unfortunately, the sender doesn't necessarily know the Path MTU when
    it sends packets in the initial window.  The sender should be
    conservative in the packet size used.  Sending a large number of
    overly-large packets with the DF bit set is not desirable, but
    sending a large number of packets that are fragmented in the network
    can be equally undesirable.

    One possibility would be for the sender to delay using the approved
    rate request for one round-trip time, while it sends a small number
    of packets to do Path MTU Discovery.  While delaying the use of an
    approved rate request indefinitely is not acceptable, delaying the
    use for one round-trip time is within the bounds of acceptable
    behavior.

    In the future, it might be possible for the TCP SYN packet to do a
    probe about the Path MTU.  For example, [W03] has proposed an IP
    Option that queries routers for their MTU before starting a Path MTU
    Discovery process.

    (3) Quick-Start request packets that are eaten by middleboxes:
    It is always possible for a TCP SYN packet carrying a Quick-Start
    request to be dropped in the network due to congestion, or to be
    blocked due to interactions with middleboxes.  Measurement studies
    of interactions between transport protocols and middleboxes [MAF04]
    show that for 70% of the web servers investigated, no connection is
    established if the TCP SYN packet contains an unknown IP option (and
    for 43% of the web servers, no connection is established if the TCP
    SYN packet contains an IP TimeStamp Option).  In both cases, this is
    presumably due to middleboxes along that path.

    If the TCP sender doesn't receive a response to the SYN or SYN/ACK

https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc1191


Jain/Floyd/Allman/Sarolahti                      Section 4.6.  [Page 23]



INTERNET-DRAFT            Expires: August 2005             February 2005

    packet containing the Quick-Start Request, then the TCP sender
    SHOULD resend the SYN or SYN/ACK packet without the Quick-Start
    Request.  Similarly, if the TCP sender receives a TCP reset in
    response to the SYN or SYN/ACK packet containing the Quick-Start
    Request, then the TCP sender SHOULD resend the SYN or SYN/ACK packet
    without the Quick-Start Request [RFC3360].

    While RFC 1122 and 2988 recommend that the sender should set the
    initial RTO to three seconds, many TCP implementations set the
    initial RTO to one second.  For a TCP SYN packet sent with a Quick-
    Start request, we recommend an RTO of one second, so that the sender
    can retransmit the SYN packet reasonably promptly if the original
    TCP SYN packet is dropped by a middlebox in the network.

    We note that if the TCP SYN packet is using the IP Quick-Start
    Option for a Quick-Start request, and it also using bits in the TCP
    header to negotiate ECN-capability with the TCP host at the other
    end, then the drop of a TCP SYN packet could be due to congestion,
    to a middlebox dropping the packet because of the IP Option, or
    because of a middlebox dropping the packet because of the
    information in the TCP header negotiating ECN.  In this case, the
    sender could resend the dropped packet without either the Quick-
    Start or the ECN requests.  Alternately, the sender could resend the
    dropped packet with only the ECN request in the TCP header,
    resending the TCP SYN packet without either the Quick-Start or the
    ECN requests if the second TCP SYN packet is dropped.  The second
    choice seems reasonable to us, given that a TCP SYN packet today is
    more likely to be blocked due to IP Options than due to an ECN
    request in the TCP header.

4.7.  TCP: A Quick-Start Request after an Idle Period

    This section discusses the following issues that arise when Quick-
    Start is used by TCP to request a larger window after an idle
    period: (1) determining the rate to request; and (2) the response if
    Quick-Start packets are dropped;

    (1) Determining the rate to request:
    After an idle period, an easy rule of thumb would be for the TCP
    sender to determine the largest congestion window that the TCP
    connection achieved since the last packet drop, to translate this
    congestion window to a sending rate, and use this rate in the Quick-
    Start request after the idle period.  If the request is granted,
    then the sender essentially restarts with its old congestion window
    from before the idle period.

    The sender should not use Quick-Start if the idle period has been

https://datatracker.ietf.org/doc/html/rfc3360
https://datatracker.ietf.org/doc/html/rfc1122


Jain/Floyd/Allman/Sarolahti                      Section 4.7.  [Page 24]



INTERNET-DRAFT            Expires: August 2005             February 2005

    less than an RTO, and the congestion window has not decayed down to
    less than half of its value at the start of the idle period.

    (2) Response if Quick-Start packets are dropped:
    If Quick-Start packets are dropped after an idle period, then the
    sender should revert to half of the Quick-Start window, or to the
    congestion window that the sender would have used if the Quick-Start
    request had not been approved, whichever is smaller.

    A technical question is whether a Quick-Start Request sent in the
    middle of a connection could carry a data payload.  For example, for
    TCP, a Quick-Start Request in the middle of a connection could carry
    a data payload, or could be in a TCP acknowledgement packet.  Is
    there any advice in this regard that should be offered to the
    transport protocol?

4.8.  An Example Quick-Start Scenario with TCP

    The following is an example scenario in the case when both hosts
    request Quick-Start for setting their initial windows:

    * The TCP SYN packet from Host A contains a Quick-Start Request in
    the IP header.

    * Routers along the forward path modify the Quick-Start Request as
    appropriate.

    * Host B receives the Quick-Start Request in the SYN packet, and
    calculates the TTL Diff.  If Host B approves the Quick-Start
    Request, then Host B sends a Quick-Start Response in the TCP header
    of the SYN/ACK packet.  Host B also sends a Quick-Start Request in
    the IP header of the SYN/ACK packet.

    * Routers along the reverse path modify the Quick-Start Request as
    appropriate.

    * Host A receives the Quick-Start Response in the SYN/ACK packet,
    and checks the TTL Diff and Rate Request for validity.  If they are
    valid, then Host A sets its initial congestion window appropriately,
    and sets up rate-based pacing to be used with the initial window.
    If the Quick-Start Response is not valid, then Host A uses TCP's
    default initial window.

    Host A also calculates the TTL Diff for the Quick-Start Request in
    the incoming SYN/ACK packet, and sends a Quick-Start Response in the
    TCP header of the ACK packet.



Jain/Floyd/Allman/Sarolahti                      Section 4.8.  [Page 25]



INTERNET-DRAFT            Expires: August 2005             February 2005

    * Host A repeats sending the Quick-Start Response in data packets at
    least once per round-trip time until it receives an acknowledgement
    from Host B for one of those data packets.

    * Host B receives the Quick-Start Response in an ACK packet, and
    checks the TTL Diff and Rate Request for validity.  If the Quick-
    Start Response is valid, then Host B sets its initial congestion
    window appropriately, and sets up rate-based pacing to be used with
    its initial window.  If the Quick-Start Response is not valid, then
    Host B uses TCP's default initial window.

5.  The Quick-Start Mechanism in other Transport Protocols

    The section earlier specified the use of Quick-Start in TCP.  In
    this section, we generalize this to give guidelines for the use of
    Quick-Start with other transport protocols.  We also discuss briefly
    how Quick-Start could be specified for other transport protocols.

    The general guidelines for Quick-Start in transport protocols are as
    follows:

    * Quick-Start is only specified for unicast transport protocols with
    appropriate congestion control mechanisms.

    * A transport-level mechanism is needed for the Quick-Start response
    from the receiver to the sender.  This response contains the Rate
    Request and the TTL Diff.  The Quick-Start response should ideally
    be sent reliably.

    * The sender checks the validity of the Quick-Start response.

    * The sender has an estimate of the round-trip time, and translates
    the Quick-Start response into an allowed window or allowed sending
    rate.  The sender starts sending Quick-Start packets, rate-paced out
    at the approved sending rate.

    * After the sender receives the first acknowledgement packet for a
    Quick-Start packet, no more Quick-Start packets are sent.  The
    sender adjusts its current congestion window or sending rate to be
    consistent with the actual amount of data that was transmitted in
    that round-trip time.

    * When the last Quick-Start packet is acknowledged, the sender
    continues using the standard congestion control mechanisms of that
    protocol.

    * If one of the Quick-Start packets is lost, then the sender reverts



Jain/Floyd/Allman/Sarolahti                        Section 5.  [Page 26]



INTERNET-DRAFT            Expires: August 2005             February 2005

    to the standard congestion control method of that protocol that
    would have been used if the Quick-Start request had not been
    approved.  In addition, the sender takes into account the
    information that the Quick-Start congestion window was too large
    (e.g., by decreasing ssthresh in TCP).

5.1.  Quick-Start with DCCP

    DCCP is a new transport protocol for congestion-controlled,
    unreliable datagrams, intended for applications such as streaming
    media, Internet telephony, and on-line games.  In DCCP, the
    application has a choice of congestion control mechanisms, with the
    currently-specified Congestion Control Identifiers (CCIDs) being
    CCID 2 for TCP-like congestion control, and CCID 3 for TFRC, an
    equation-based form of congestion control. We refer the reader to
    [KHF04] for a more detailed description of DCCP, and of the
    congestion control mechanisms.

    Because CCID 3 uses a rate-based congestion control mechanism, it
    raises some new issues about the use of Quick-Start with transport
    protocols.  In this document we don't attempt to specify the use of
    Quick-Start with DCCP.  However, we do discuss some of the issues
    that might arise.

    In considering the use of Quick-Start with CCID 3 for requesting a
    higher initial sending rate, the following questions arise: (1) how
    does the sender respond if a Quick-Start packet is dropped; and (2)
    when does the sender determine that there has been no feedback from
    the receiver, and reduce the sending rate?

    (1) How does the sender respond if a Quick-Start packet is dropped:
    As in TCP, if an initial Quick-Start packet is dropped, the CCID 3
    sender should revert to the congestion control mechanisms it would
    have used if the Quick-Start request had not been approved.

    (2) When does the sender decide there has been no feedback from the
    receiver:
    Unlike TCP, CCID 3 does not use acknowledgements for every packet,
    or for every other packet.  In contrast, the CCID 3 receiver sends
    feedback to the sender roughly once per round-trip time.  In CCID 3,
    the allowed sending rate is halved if no feedback is received from
    the receiver in at least four round-trip times (when the sender is
    sending at least one packet every two round-trip times).  When a
    Quick-Start request is used, it would seem prudent to use a smaller
    time interval, e.g., to reduce the sending rate if no feedback is
    received from the receiver in at least two round-trip times.



Jain/Floyd/Allman/Sarolahti                      Section 5.1.  [Page 27]



INTERNET-DRAFT            Expires: August 2005             February 2005

    The question also arises of how the sending rate should be reduced
    after a period of no feedback from the receiver.  The default CCID 3
    response of halving the sending rate might not be sufficient; an
    alternative would be to reduce the sending rate to the sending rate
    that would have been used if no Quick-Start request had been
    approved.  That is, if a CCID 3 sender uses a Quick-Start request,
    special rules might be required to handle the sender's response to a
    period of no feedback from the receiver regarding the Quick-Start
    packets.

    Similarly, in considering the use of Quick-Start with CCID 3 for
    requesting a higher sending rate after an idle period, the following
    questions arise: (1) what rate does the sender request; (2) what is
    the response to a loss; and (3) when does the sender determine that
    there has been no feedback from the receiver, and the sending rate
    must be reduced?

    (1) What rate does the sender request:
    As in TCP, there is a straightforward answer to the rate request
    that the CCID 3 sender should use in requesting a higher sending
    rate after an idle period.  The sender knows the current loss event
    rate, either from its own calculations or from feedback from the
    receiver, and can determine the sending rate allowed by that loss
    event rate.  This is the upper bound on the sending rate that should
    be requested by the CCID 3 sender.  A Quick-Start request is useful
    with CCID 3 when the sender is coming out of an idle or
    underutilized period, because in standard operation CCID 3 does not
    allow the sender to send more that twice as fast as the receiver has
    reported received in the most recent feedback message.

    (2) What is the response to loss:
    The response to the loss of Quick-Start packets should be to return
    to the sending rate that would have been used if Quick-Start had not
    been requested.

    (3) When does the sender decide there has been no feedback from the
    receiver:
    As in the case of the initial sending rate, it would seem prudent to
    reduce the sending rate if no feedback is received from the receiver
    in at least two round-trip times.  It seems likely that in this
    case, the sending rate should be reduced to the sending rate that
    would have been used if no Quick-Start request had been approved.

6.  Evaluation of Quick-Start



Jain/Floyd/Allman/Sarolahti                        Section 6.  [Page 28]



INTERNET-DRAFT            Expires: August 2005             February 2005

6.1.  Benefits of Quick-Start

    The main benefit of Quick-Start is the faster start-up for the
    transport connection itself.  For a small TCP transfer of one to
    five packets, Quick-Start is probably of very little benefit;  at
    best, it might shorten the connection lifetime from three to two
    round-trip times (including the round-trip time for connection
    establishment).  Similarly, for a very large transfer, where the
    slow-start phase would have been only a small fraction of the
    connection lifetime, Quick-Start would be of limited benefit.
    Quick-Start would not significantly shorten the connection lifetime,
    but it might eliminate or at least shorten the start-up phase.
    However, for moderate-sized connections in a well-provisioned
    environment, Quick-Start could allow the entire transfer of M
    packets to be completed in one round-trip time (after the initial
    round-trip time for the SYN exchange), instead of the log_2(M)-2
    round-trip times that it would normally for the data transfer, in an
    uncongested environments (assuming an initial window of four
    packets).

6.2.  Costs of Quick-Start

    This section discusses the costs of Quick-Start for the connection
    and for the routers along the path.

    The cost of having a Quick-Start packet dropped:
    For the sender the biggest risk in using Quick-Start lies in the
    possibility of suffering from congestion-related losses of the
    Quick-Start packets.  This should be an unlikely situation because
    routers are expected to approve Quick-Start Requests only when they
    are significantly underutilized. However, a transient increase in
    cross-traffic in one of the routers, a sudden decrease in available
    bandwidth on one of the links, or congestion at a non-IP queue could
    result in packet losses even when the Quick-Start Request was
    approved by all of the routers along the path.  If a Quick-Start
    packet is dropped, then the sender reverts to the congestion control
    mechanisms it would have used if the Quick-Start request has not
    been approved, so the performance cost to the connection of having a
    Quick-Start packet dropped is small, compared to the performance
    without Quick-Start.  (On the other hand, the performance difference
    between Quick-Start with a Quick-Start packet dropped and Quick-
    Start with no Quick-Start packet dropped can be considerable.)

    Added complexity at routers:
    The main cost of Quick-Start at routers concerns the costs of added
    complexity.  The added complexity at the end-points is moderate, and



Jain/Floyd/Allman/Sarolahti                      Section 6.2.  [Page 29]



INTERNET-DRAFT            Expires: August 2005             February 2005

    might easily be outweighed by the benefit of Quick-Start to the end
    hosts.  The added complexity at the routers is also somewhat
    moderate; it involves estimating the unused bandwidth on the output
    link over the last several seconds, processing the Quick-Start
    request, and keeping a counter of the aggregate Quick-Start rate
    approved over the last fraction of a second.  However, this added
    complexity at routers adds to the development cycle, and could
    prevent the addition of other competing functionality to routers.
    Thus, careful thought would have to be given to the addition of
    Quick-Start to IP.

    The slow path in routers:
    Another drawback of Quick-Start is that packets containing the
    Quick-Start Request message might not take the fast path in routers.
    This would mean extra delay for the end hosts, and extra processing
    burden for the routers.  This extra burden is mitigated somewhat by
    the following factors: only very few packets would carry the Quick-
    Start Request option;  very small flows of, say, one to five packets
    would receive little benefit from Quick-Start, and presumably would
    not use the Quick-Start Request;  flows from end hosts with low-
    bandwidth access links would receive little benefit from Quick-
    Start, and hopefully could be configured not to use the Quick-Start
    Request.  In addition, in typical environments where most of the
    packets belong to large flows, the burden of the Quick-Start Option
    on routers would be considerably reduced.  Nevertheless, it is still
    conceivable, in the worst case, that up to 10% of the packets were
    Quick-Start packets, and this could slow down the processing of
    Quick-Start packets in routers considerably.  In particular, because
    many Quick-Start packets are likely to be TCP SYN or SYN/ACK
    packets, the slow processing of Quick-Start packets would slow down
    the establishment of the corresponding TCP connections.

    Multiple paths:
    One limitation of Quick-Start is that it presumes that the data
    packets of a connection will follow the same path as the Quick-Start
    request packet.  If this is not the case, then the connection could
    be sending the Quick-Start packets, at the approved rate, along a
    path that was already congested, or that became congested as a
    result of this connection.  This is, however, similar to what would
    happen if the connection's path was changed in the middle of the
    connection, when the connection had already established the allowed
    initial rate.

    Non-IP queues:
    A problem of any mechanism for feedback from routers at the IP level
    is that there can be queues and bottlenecks in the end-to-end path
    that are not in IP-level routers.  As an example, these include
    queues in layer-two Ethernet or ATM networks.  One possibility would



Jain/Floyd/Allman/Sarolahti                      Section 6.2.  [Page 30]



INTERNET-DRAFT            Expires: August 2005             February 2005

    be that an IP-level router adjacent to such a non-IP queue or
    bottleneck would be configured to reject Quick-Start requests if
    that was appropriate.

6.3.  Protection against Misbehaving Nodes

    In this section we discuss the protection against receivers lying
    about the Quick-Start Request, and against other possible
    misbehaviors regarding Quick-Start.  First, we note that it is not
    necessarily in the receiver's interest to lie about the Quick-Start
    Request.  If the sender sends at too-high of an initial rate, and
    has a packet dropped, this does not improve the performance of the
    connection, relative to the case when the Quick-Start Request was
    not approved.

    Receivers lying about whether the request was approved:
    The use of the Quick-Start TTL initialized by the sender to a random
    value makes it difficult for the receiver to lie to the sender about
    whether the request has been approved by all of the routers along
    the path.  If a router that understands the Quick-Start Request
    deletes the Request, or zeroes the QS TTL in the request, then the
    chances of a downstream router or misbehaving receiver guessing the
    value of the QS TTL is at most 1/256.

    In particular, if a router deletes the Quick-Start Request, it is
    unlikely that the receiver would be able to send a valid Quick-Start
    Response back to the sender.  Similarly, if there are routers along
    the path that do not understand or approve of the Quick-Start
    Request, and that forward the Quick-Start Request unchanged, it
    would be not be easy for a downstream router or the receiver to
    cheat and modify the QS TTL field so that the request was considered
    valid, because the downstream routers do not know the initial value
    for the QS TTL.

    Receivers lying about the rate request:
    The receiver could lie to the sender about the Rate Request in the
    received Quick-Start Request.  However, the receiver doesn't know
    the Rate Request in the original Quick-Start Request sent by the
    sender, and a higher Rate Request reported by the receiver will only
    be considered valid by the sender if it is no higher than the Rate
    Request originally requested by the sender.  This limits the ability
    of the receiver to cheat.  For example, if the sender sends a Quick-
    Start Request with an Rate Request of X, and the receiver reports
    receiving a Quick-Start Request with an Rate Request of Y > X, then
    the sender knows that either some router along the path
    malfunctioned (increasing the Rate Request inappropriately), or the
    receiver is lying about the Rate Request in the received packet.



Jain/Floyd/Allman/Sarolahti                      Section 6.3.  [Page 31]



INTERNET-DRAFT            Expires: August 2005             February 2005

    However, if the sender sends a Quick-Start Request with an Rate
    Request of Z, the receiver receives the Quick-Start Request with an
    approved Rate Request of X, and reports an Rate Request of Y, for X
    < Y < Z, then the receiver succeeds in lying to the sender about the
    approved rate.

    One protection against such misbehavior from the receiver would be
    for a router decreasing a Rate Request in a Quick-Start Request to
    report the decrease directly to the sender.  However, it is
    hopefully sufficient protection that the receiver does not know the
    Rate Request in the original Quick-Start Request.

    One way to add additional protection would be for senders to use
    some degree of randomization in the requested Rate Request, so that
    it is difficult for receivers to guess the original value for the
    Rate Request.  However, this is more difficult if there is fairly
    coarse granularity in the set of rate requests available to the
    sender.

    Similarly, a router could attempt to cheat and increase the rate
    request, but this would only be effective if there were no
    downstream routers that denied the Rate Request.

    Misbehaving routers:
    In addition to protecting against misbehaving receivers, it is
    necessary also to protect against misbehaving routers.  Consider
    collusion between an ingress router and an egress router belonging
    to the same Intranet.  The ingress router could decrement the Rate
    Request at the ingress, with the egress router increasing it again
    at the egress.  The routers between the ingress and egress that
    approved the decremented rate request might not have been willing to
    approve the larger, original request.

    Another form of collusion would be for the ingress router to inform
    the egress router out-of-band of the IP TTL and QS TTL in the
    request packet at the ingress.  This would enable the egress router
    to modify the QS TTL so that it appeared that all of the routers
    along the path had approved the request.  We would note that in the
    extreme case, there does not appear to be any protection against a
    colluding ingress and egress router.  Even if an intermediate router
    had deleted the Quick-Start Request Option from the packet, the
    ingress router could have sent the Quick-Start Request Option to the
    egress router out-of-band, with the egress router inserting the
    Quick-Start Request Option, with a modified QS TTL field, back in
    the packet.

    However, unlike ECN, there is somewhat less incentive for
    cooperating ingress and egress routers to collude to falsely modify



Jain/Floyd/Allman/Sarolahti                      Section 6.3.  [Page 32]



INTERNET-DRAFT            Expires: August 2005             February 2005

    the Quick-Start Request so that it appears to have been approved by
    all of the routers along the path.  With ECN, a colluding ingress
    router could falsely mark a packet as ECN-capable, with the
    colluding egress router returning the ECN field in the IP header to
    its original non-ECN-capable codepoint, and congested routers along
    the path could have been fooled into not dropping that packet.  This
    collusion would give an unfair competitive advantage to the traffic
    protected by the colluding ingress and egress routers.

    In contrast, with Quick-Start, the ingress and egress routers
    colluding to make it falsely appear that a Quick-Start request was
    approved does not necessarily give an advantage to the traffic
    covered by that collusion.  If some router along the path really
    does not have enough available bandwidth to approve the Quick-Start
    request, then the Quick-Start packets sent as a result of the
    falsely-approved request could be dropped in the network, to the
    resulting disadvantage of the connection.  Thus, while the ingress
    and egress routers could collude to prevent intermediate routers
    from denying a Quick-Start request, it would generally not be to the
    connection's advantage for this to happen.

    Of course, if the congested router was ECN-capable, and the
    colluding ingress and egress routers were lying about ECN-capability
    as well as about Quick-Start, then the result could be that the
    Quick-Start request falsely appears to the sender to have been
    approved, the Quick-Start packets falsely appear to the congested
    router to be ECN-capable, and the colluding routers succeed in
    giving a competitive advantage to the traffic protected by their
    collusion.

    Misbehaving middleboxes:
    A separate possibility is that of traffic normalizers or other
    middleboxes along that path that re-write IP TTLs, in order to foil
    other kinds of attacks in the network.  If such a traffic normalizer
    re-wrote the IP TTL, but did not adjust the Quick-Start TTL by the
    same amount, then the sender's mechanism for determining if the
    request was approved by all routers along the path would no longer
    be reliable.  Re-writing the IP TTL could result in false positives
    (with the sender incorrectly believing that the Quick-Start request
    was approved) as well as false negatives (with the sender
    incorrectly believing that the Quick-Start request was denied).

6.4.  Quick-Start with QoS-enabled Traffic

    The discussion in this paper has largely been of Quick-Start with
    default, best-effort traffic.  However, Quick-Start could also be
    used by traffic using some form of differentiated services, and



Jain/Floyd/Allman/Sarolahti                      Section 6.4.  [Page 33]



INTERNET-DRAFT            Expires: August 2005             February 2005

    routers could take the traffic class into account when deciding
    whether or not to grant the Quick-Start request.  We don't address
    this context further in this paper, since it is orthogonal to the
    specification of Quick-Start.  However, we note that routers should
    be discouraged from granting Quick-Start requests for higher-
    priority traffic when this is likely to result in significant packet
    loss for lower-priority traffic.

6.5.  Limitations of Quick-Start

    The Quick-Start proposal, taken together with the recent proposal
    for HighSpeed TCP [F03], could go a significant way towards
    extending the range of performance for best-effort traffic in the
    Internet.  However, there are many things that the Quick-Start
    proposal would not accomplish.  Quick-Start is not a congestion
    control mechanism, and would not help in making more precise use of
    the available bandwidth, that is, of achieving the goal of very high
    throughput with very low delay and very low packet loss rates.
    Quick-Start would not give routers more control over the decrease
    rates of active connections.  One of the open questions addressed
    later in this document is whether the limited capabilities of Quick-
    Start are sufficient to warrant standardization and deployment, or
    whether more work is needed to explore the space of potential
    mechanisms.

6.6.  Attacks on Quick-Start

    As discussed in [SAF05], Quick-Start is vulnerable to two kinds of
    Quick-Start attacks:  (1) attacks to increase the routers'
    processing and state load; and (2) attacks with bogus Quick-Start
    requests to temporarily tie up available Quick-Start bandwidth,
    preventing routers from approving Quick-Start requests from other
    connections.  Routers can protect against the first kind of attack
    by applying a simple limit on the rate at which Quick-Start requests
    will be considered by the router.  The second kind of attack, which
    is more difficult to defend against, is discussed in more detail in
    [SAF05].

6.7.  Simulations with Quick-Start

    Quick-Start was added to the NS simulator [SH02] by Srikanth
    Sundarrajan, and additional functionality was added by Pasi
    Sarolahti.  The validation test is at `test-all-quickstart' in the
    'tcl/test' directory in NS.  The initial simulation studies from
    [SH02] show a significant performance improvement using Quick-Start



Jain/Floyd/Allman/Sarolahti                      Section 6.7.  [Page 34]



INTERNET-DRAFT            Expires: August 2005             February 2005

    for moderate-sized flows (between 4KB and 128KB) in under-utilized
    environments.  These studies are of file transfers, with the
    improvement measured as the relative increase in the overall
    throughput for the file transfer.  The study shows that potential
    improvement from Quick-Start is proportional to the delay-bandwidth
    product of the path.

    The Quick-Start simulations in [SAF05] explore the following: the
    potential benefit of Quick-Start for the connection; the relative
    benefits of different router-based algorithms for approving Quick-
    Start requests; and the effectiveness of Quick-Start as a function
    of the senders' algorithms for choosing the size of the rate
    request.  [SAF05] also consideres the potential of Extreme Quick-
    Start algorithms at routers, which keep per-flow state at routers
    for Quick-Start connections, in protecting the availability of
    Quick-Start bandwidth in the face of frequent overly-larqe Quick-
    Start requests.

7.  Related Work

    Any evaluation of Quick-Start must include a discussion of the
    relative benefits of approaches that use no explicit information
    from routers, and of approaches that use more fine-grained feedback
    from routers as part of a larger congestion control mechanism.  We
    discuss three classes of proposals (no explicit feedback from
    routers; explicit feedback about the initial rate; and more fine-
    grained feedback from routers) in the sections below.

7.1.  Fast Start-ups without Explicit Information from Routers

    One possibility would be for senders to use information from the
    packet streams to learn about the available bandwidth, without
    explicit information from routers.  These techniques would not allow
    a start-up as fast as that available from Quick-Start, in an
    underutilized environment;  one has to have sent some packets
    already to use the packet stream to learn about available bandwidth.
    However, these techniques could allow a start-up considerably faster
    than the current slow-start.  While it seems clear that approaches
    *without* explicit feedback from the routers will be strictly less
    powerful that is possible *with* explicit feedback, it is also
    possible that approaches that are more aggressive than slow-start
    are possible without explicit feedback from routers.

    Periodic packet streams:
    [JD02] explores the use of periodic packet streams to estimate the
    available bandwidth along a path.  The idea is that the one-way



Jain/Floyd/Allman/Sarolahti                      Section 7.1.  [Page 35]



INTERNET-DRAFT            Expires: August 2005             February 2005

    delays of a periodic packet stream show an increasing trend when the
    stream's rate is higher than the available bandwidth.  While [JD02]
    states that the proposed mechanism does not cause significant
    increases in network utilization, losses, or delays when done by one
    flow at a time, the approach could be problematic if conducted
    concurrently by a number of flows.  [JD02] also gives an overview of
    some of the earlier work on inferring the available bandwidth from
    packet trains.

    Swift-Start:
    The Swift Start proposal from [PRAKS02] combines packet-pair and
    packet-pacing techniques, beginning with a four-segment burst of
    packets to estimate the available bandwidth along the path.

    While continued research on the limits of the ability of TCP and
    other transport protocols to learn of available bandwidth without
    explicit feedback from the router seems useful, we note that there
    are several fundamental advantages of explicit feedback from
    routers.

    (1) Explicit feedback is faster than implicit feedback:
    One advantage of explicit feedback from the routers is that it
    allows the transport sender to reliably learn of available bandwidth
    in one round-trip time.

    (2) Explicit feedback is more reliable than implicit feedback:
    A second advantage of explicit feedback from the routers is that the
    available bandwidth along the path does not necessarily map to the
    allowed sending rate for an individual flow.  As an example, if the
    TCP sender sends four packets back-to-back in the initial window,
    and the TCP receiver reports that the data packets were received
    with roughly the same spacing as they were transmitted, does this
    mean that the flow can infer an underutilized path?  And how fast
    can the flow send in the next round-trip time?  Do the results
    depend on the level of statistical multiplexing at the congested
    link, and on the number of flows attempting a faster start-up at the
    same time?

7.2.  Optimistic Sending without Explicit Information from Routers

    Another possibility that has been suggested [S02] is for the sender
    to start with a large initial window without explicit permission
    from the routers and without bandwidth estimation techniques, and
    for the first packet of the initial window to contain information
    such as the size or sending rate of the initial window.  The
    proposal would be that congested routers would use this information
    in the first data packet to drop or delay many or all of the packets



Jain/Floyd/Allman/Sarolahti                      Section 7.2.  [Page 36]



INTERNET-DRAFT            Expires: August 2005             February 2005

    from that initial window.  In this way a flow's optimistically-large
    initial window would not force the router to drop packets from
    competing flows in the network.  Such an approach would seem to
    require some mechanism for the sender to ensure that the routers
    along the path understood the mechanism for marking the first packet
    of a large initial window.

    Obviously there would be a number of questions to consider about an
    approach of optimistic sending.

    (1) Incremental deployment:
    One question would be the potential complications of incremental
    deployment, where some of the routers along the path might not
    understand the packet information describing the initial window.

    (2) Congestion collapse:
    There could also be concerns about congestion collapse if many flows
    used large initial windows, many packets were dropped from
    optimistic initial windows, and many congested links ended up
    carrying packets that are only going to be dropped downstream.

    (3) Distributed Denial of Service attacks:
    A third key question would be the potential role of optimistic
    sender in amplifying the damage done by a Distributed Denial of
    Service (DDoS) attack.

    (4) Performance hits if a packet is dropped:
    A fourth issue would be to quantify the performance hit to the
    connection when a packet is dropped from one of the initial windows.

7.3.  Fast Start-ups with other Information from Routers

    There have been several proposals somewhat similar to Quick-Start,
    where the transport protocol collects explicit information from the
    routers along the path.

    An IP Option about the free buffer size:
    In related work, Joon-Sang Park and John Heidemann investigated the
    use of a slightly different IP option for TCP connections to
    discover the available bandwidth along the path [P00].  In that
    proposal, the IP option would query the routers along the path about
    the smallest available free buffer size. Also, the IP option would
    have been sent after the initial SYN exchange, when the TCP sender
    already had an estimate of the round-trip time.

    The Performance Transparency Protocol:
    The Performance Transparency Protocol (PTP) includes a proposal for



Jain/Floyd/Allman/Sarolahti                      Section 7.3.  [Page 37]



INTERNET-DRAFT            Expires: August 2005             February 2005

    a single PTP packet that would collect information from routers
    along the path from the sender to the receiver [W00].  For example,
    a single PTP packet could be used to determine the bottleneck
    bandwidth along a path.

    ETEN:
    Additional proposals for end nodes to collect explicit information
    from routers include Explicit Transport Error Notification (ETEN),
    which includes a cumulative mechanism to notify endpoints of
    aggregate congestion statistics along the path [KAPS02].

7.4.  Fast Start-ups with more Fine-Grained Feedback from Routers

    Proposals for more fine-grained congestion-related feedback from
    routers include XCP [KHR02] and AntiECN marking [K03].  Section A.6
    discusses in more detail the relationship between Quick-Start and
    proposals for more fine-grained per-packet feedback from routers.

    XCP:
    Proposals such as XCP for new congestion control mechanisms based on
    more feedback from routers are more powerful than Quick-Start, but
    also are more complex to understand and more difficult to deploy.
    XCP routers maintain no per-flow state, but provide more fine-
    grained feedback to end-nodes than the one-bit congestion feedback
    of ECN.  The per-packet feedback from XCP can be positive or
    negative, and specifies the increase or decrease in the sender's
    congestion window when this packet is acknowledged.

    AntiECN:
    The AntiECN proposal is for a single bit in the packet header that
    routers could set to indicate that they are underutilized.  For each
    TCP ACK arriving at the sender indicating that a packet has been
    received with the Anti-ECN bit set, the sender would be able to
    increase its congestion window by one packet, as it would during
    slow-start.

8.  Implementation and Deployment Issues

    This section discusses some of the implementation issues with Quick-
    Start.   This section also discusses some of the key deployment
    issues, such as the chicken-and-egg deployment problems of
    mechanisms that have to be deployed in both routers and end nodes in
    order to work, and the problems posed by the wide deployment of
    middleboxes today that block the use of known or unknown IP Options.



Jain/Floyd/Allman/Sarolahti                        Section 8.  [Page 38]



INTERNET-DRAFT            Expires: August 2005             February 2005

8.1.  Implementation Issues for Sending Quick-Start Requests

Section 4.6 has discussed some of the issues with deciding the
    initial sending rate to request.  Quick-Start raises additional
    issues about the communication between the transport protocol and
    the application, and about the use of the past history with Quick-
    Start in the end node.

    One possibility is that a protocol implementation could provide an
    API for applications to indicate when they want to request Quick-
    Start, and what rate they would like to request.  In the
    conventional socket API this could be a socket option that is set
    before a connection is established.  Some applications, such those
    that use TCP for bulk transfers, do not have interest in the
    transmission rate, but they might know the amount of data that can
    be sent immediately. Based on this, the sender implementation could
    decide whether Quick-Start would be useful, and what rate should be
    requested.  Datagram-based real-time streaming applications, on the
    other hand, may have a specific preference on the transmission rate
    and they could indicate the required rate explicitly to the
    transport protocol to be used in the Quick-Start Request.

    We note that when Quick-Start is used, the TCP sender is required to
    implement an additional timer for the paced transmission of Quick-
    Start packets.

8.2.  Implementation Issues for Processing Quick-Start Requests

    A router or other network host must be able to determine the
    approximate bandwidth of its outbound network interfaces in order to
    process incoming Quick-Start rate requests, including those that
    originate from the host itself.  One possibility would be for hosts
    to rely on configuration information to determine link bandwidths;
    this has the drawback of not being robust to errors in
    configuration.  Another possibility would be for network device
    drivers to infer the bandwidth for the interface and to communicate
    this to the IP layer.

    Particular issues will arise for wireless links with variable
    bandwidth, where decisions will have to be made about how frequently
    the network host gets updates of the changing bandwidth.  It seems
    appropriate that Quick-Start Requests would be handled particularly
    conservatively for links with variable bandwidth.  to avoid cases
    where Quick-Start Requests are approved, the link bandwidth is
    reduced, and the data packets that are send end up being dropped.



Jain/Floyd/Allman/Sarolahti                      Section 8.2.  [Page 39]



INTERNET-DRAFT            Expires: August 2005             February 2005

8.3.  Possible Deployment Scenarios

    Because of possible problems discussed above concerning using Quick-
    Start over some network paths, the most realistic initial deployment
    of Quick-Start would likely to take place in Intranets and other
    controlled environments.  Quick-Start is most useful on high
    bandwidth-delay paths that are significantly underutilized. The
    primary initial users of Quick-Start would likely be in
    organizations that provide network services to their users and also
    have control over a large portion of the network path.

    Below are a few examples of networking environments where Quick-
    Start would potentially be useful.  These are the environments that
    might consider an initial deployment of Quick-Start in the routers
    and end-nodes, where the incentives for routers to deploy Quick-
    Start might be the most clear.

    * Centrally-administrated organizational Intranets often have large
    network capacity and the networks are underutilized for most of the
    time.   with the network nodes along the path administrated by a
    single organization.  Such Intranets might also include high-
    bandwidth and high-delay paths to remote sites.  In such an
    environment, Quick-Start would be of benefit to users, and there
    would be a clear incentive for the deployment of Quick-Start in
    routers.

    * Quick-Start could also be useful in high-delay environments of
    Cellular Wide-Area Wireless Networks such as the GPRS [BW97] and
    their enhancements and next generations. For example, GPRS EDGE
    (Enhanced Data for GSM Evolution) is expected to provide wireless
    bandwidth of up to 384 Kbps (roughly 32 1500-byte packets per
    second) while the GPRS round-trip times are typically up to one
    second excluding any possible queueing delays in the network
    [GPAR02]. In addition, these networks sometimes have variable
    additional delays due to resource allocation that could be avoided
    by keeping the connection path constantly utilized, starting from
    initial slow start.  Thus, Quick-Start could be of significant
    benefit to users in these environments.

    * Geostationary Orbit (GEO) satellite links have one-way propagation
    delays on the order of 250 ms while the bandwidth is typically
    measured in megabits per second [RFC2488]. Because of the
    considerable bandwidth-delay product on the link, TCP's slow start
    is a major performance limitation in the beginning of the
    connection.  A large initial congestion window would be useful to
    users of such satellite links.

https://datatracker.ietf.org/doc/html/rfc2488


Jain/Floyd/Allman/Sarolahti                      Section 8.3.  [Page 40]



INTERNET-DRAFT            Expires: August 2005             February 2005

8.4.  Would QuickStart packets take the slow path in routers?

    How much delay would the slow path add to the processing time for
    this packet?  Similarly, if QuickStart packets took the slow path,
    how much stress would it add to routers for there to be many more
    packets on the slow path, because of the number of packets using
    QuickStart?  These are both questions to be considered for the
    deployment of Quick-Start in the Internet.

8.5.  A Comparison with the Deployment Problems of ECN

    For ECN, only one router along the path has to understand.  For
    Quick-Start, all of the routers along the path would have to
    understand.  Also, Quick-Start has the complicating factor of using
    IP Options, while ECN uses a field in the IP header itself.

9.  Security Considerations

    One security consideration would be if Quick-Start resulted in the
    sender using an Rate Request that was inappropriately large,
    resulting in congestion along the path.  Such congestion could
    result in an unacceptable level of packet drops along the path.
    Such congestion could also be part of a Denial of Service attack.

    A misbehaving TCP sender could use a non-conformant initial
    congestion window even without the use of Quick-Start, so we
    restrict our attention to problems with Quick-Start with conformant
    TCP senders.  (We also note that if the TCP sender is a busy web
    server, then the TCP sender has some incentive to be conformant in
    this regard.)  Section 6.3 discusses the dangers of receivers or
    routers lying about the Quick-Start rate request, or about whether
    the rate request was approved.

10.  Conclusions

    We are presenting the Quick-Start mechanism as a proposal for a
    simple, understandable, and incrementally-deployable mechanism that
    would be sufficient to allow connections to start up with large
    initial rates, or large initial congestion windows, in
    overprovisioned, high-bandwidth environments.  We expect there will
    be an increasing number of overprovisioned, high-bandwidth
    environments where the Quick-Start mechanism, or another mechanism
    of similar power, could be of significant benefit to a wide range of
    traffic.  We are presenting the Quick-Start mechanism as a request
    for feedback from the Internet community in considering these



Jain/Floyd/Allman/Sarolahti                       Section 10.  [Page 41]



INTERNET-DRAFT            Expires: August 2005             February 2005

    issues.

11.  Acknowledgements

    The authors wish to thank Mark Handley for discussions of these
    issues.  The authors also thank the End-to-End Research Group, the
    Transport Services Working Group, and members of IPAM's program on
    Large Scale Communication Networks for both positive and negative
    feedback on this proposal.  We thank Srikanth Sundarrajan for the
    initial implementation of Quick-Start in the NS simulator, and for
    the initial simulation study.  We also thank Mohammed Ashraf, John
    Border, Tom Dunigan, John Heidemann, Paul Hyder, Dina Katabi, and
    Vern Paxson for feedback.  This draft builds upon the concepts
    described in [RFC3390], [AHO98], [RFC2415], and [RFC3168].

    This is a modification of a draft originally by Amit Jain for
    Initial Window Discovery.

A.  Design Decisions

A.1.  Alternate Mechanisms for the Quick-Start Request: ICMP and RSVP

    This document has proposed using an IP Option for the Quick-Start
    Request from the sender to the receiver, and using transport
    mechanisms for the Quick-Start Response from the receiver back to
    the sender.  In this section we discuss alternate mechanisms, and
    consider whether ICMP [RFC792, RFC2463] or RSVP [RFC2205] protocols
    could be used for delivering the Quick-Start Request.

A.1.1.  ICMP

    Being a control protocol used between Internet nodes, one could
    argue that ICMP is the ideal method for requesting a permission for
    faster startup from routers.  The ICMP header is above the IP
    header.  Quick-Start would be done with ICMP as follows: If the ICMP
    protocol is used to implement Quick-Start, the equivalent of the
    Quick-Start IP option would be carried in the ICMP header of the
    ICMP Quick-Start Request.  The ICMP Quick-Start Request would have
    to pass by the routers on the path to the receiver; for now, we
    don't address the mechanisms that would be needed to accomplish
    this.  A router that approves the Quick-Start Request would take the
    same actions as in the case with the Quick-Start IP Option, and
    forward the packet to the next router along the path.  A router that
    does not approve the Quick-Start Request, even with a decreased

https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc2415
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2463
https://datatracker.ietf.org/doc/html/rfc2205


Jain/Floyd/Allman/Sarolahti                    Section A.1.1.  [Page 42]



INTERNET-DRAFT            Expires: August 2005             February 2005

    value for the Requested Rate, would delete the ICMP Quick-Start
    Request, and send an ICMP Reply to the sender that the request was
    not approved.  If the ICMP Reply was dropped in the network, and did
    not reach the receiver, the sender would still know that the request
    was not approved from the absence of feedback from the receiver.  If
    the ICMP Quick-Start request was dropped in the network due to
    congestion, the sender would assume that the request was not
    approved.  If the ICMP Quick-Start Request reached the receiver, the
    receiver would use transport-level mechanisms to send a response to
    the sender, exactly as with the IP Option.

    One benefit of using ICMP would be that the delivery of the TCP SYN
    packet or other initial packet would not be delayed by IP option
    processing at routers.  A greater advantage is that if middleboxes
    were blocking packets with Quick-Start Requests, using the Quick-
    Start Request in a separate ICMP packet would mean that the
    middlebox behavior would not affect the connection as a whole.  (To
    get this robustness to middleboxes with TCP using an IP Quick-Start
    Option, one would have to have a TCP-level Quick-Start Request
    packet that was sent concurrently but separately from the TCP SYN
    packet.)

    However, there are a number of disadvantages to using ICMP.  Some
    firewalls and middleboxes may not forward the ICMP Quick-Start
    Request packets.  (If the ICMP Reply packet is dropped in the
    network, this is not a problem, as we stated above.) In addition, it
    would be difficult, if not impossible, for a router in the middle of
    an IP tunnel to deliver an ICMP Reply packet to the actual source,
    for example when the inner IP header is encrypted as in IPsec tunnel
    mode [RFC2401].  Again, however, the ICMP Reply packet would not be
    essential to the correct operation of ICMP Quick-Start.

    Unauthenticated out-of-band ICMP messages could enable some types of
    attacks by third-party malicious hosts that are not possible when
    the control information is carried in-band with the IP packets that
    can only be altered by the routers on the connection path. Finally,
    as a minor concern, using ICMP would cause a small amount of
    additional traffic in the network, which is not the case when using
    IP options.

A.1.2.  RSVP

    With some modifications RSVP [RFC2205] could be used as a bearer
    protocol for carrying the Quick-Start Requests. Because routers are
    expected to process RSVP packets more extensively than the normal
    transport protocol IP packets, delivering a Quick-Start rate request
    using an RSVP packet would seem an appealing choice. However, Quick-

https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2205


Jain/Floyd/Allman/Sarolahti                    Section A.1.2.  [Page 43]



INTERNET-DRAFT            Expires: August 2005             February 2005

    Start with RSVP would require a few differences from the
    conventional usage of RSVP. Quick-Start would not require periodical
    refreshing of soft state, because Quick-Start does not require per-
    connection state in routers.  Quick-Start Requests would be
    transmitted downstream from the sender to receiver in the RSVP Path
    messages, which is different from the conventional RSVP model where
    the reservations originate from the receiver. Furthermore, the
    Quick-Start Response would be sent using the transport-level
    mechanisms instead of using the RSVP Resv message.

    If RSVP was used for carrying a Quick-Start Request, a new "Quick-
    Start Request" class object would be included in the RSVP Path
    message that is sent from the sender to receiver. The object would
    contain the rate request field in addition to the common length and
    type fields. The Send_TTL field in the RSVP common header could be
    used as the equivalent of the QS TTL field.  The Quick-Start capable
    routers along the path would inspect the Quick-Start Request object
    in the RSVP Path message, decrement Send_TTL and adjust the rate
    request field if needed. If an RSVP router did not understand the
    Quick-Start Request object, it would reject the entire RSVP message
    and send an RSVP PathErr message back to the sender.  When an RSVP
    message with the Quick-Start Request object reaches the receiver,
    the receiver sends a Quick-Start Reply message in the corresponding
    transport protocol header in the same way as described in the
    context of IP options earlier. If the RSVP message with the Quick-
    Start Request object was dropped along the path, the transport
    sender would simply proceed with the normal congestion control
    procedures.

    Much of the discussion about benefits and drawbacks of using ICMP
    for making the Quick-Start Request also applies to the RSVP case. If
    the Quick-Start Request was transmitted in a separate packet instead
    of as an IP option, the transport protocol packet delivery would not
    be delayed due to IP option processing at the routers, and the
    initial transport packets would reach their destination more
    reliably. The possible disadvantages of using ICMP and RSVP are also
    expected to be similar: middleboxes in the network may not be able
    to forward the Quick-Start Request messages, and the IP tunnels
    might cause problems for processing the Quick-Start Requests.

A.2.  Alternate Encoding Functions

    In this section we look at alternate encoding functions for the Rate
    Request field in the Quick-Start Request.  The main requirements for
    this function is that it should have a sufficiently wide range for
    the requested rate.  There is no need for overly-fine-grained
    precision in the requested rate.  Similarly, while it would be



Jain/Floyd/Allman/Sarolahti                      Section A.2.  [Page 44]



INTERNET-DRAFT            Expires: August 2005             February 2005

    attractive for the encoding function to be easily computable, it is
    also possible for end-nodes and routers to simply store the
    256-entry table giving the mapping between the value N in the Rate
    Request field, and the actual rate request f(N).

    Linear functions:
    The Quick-Start Request contains an 8-bit field for the Rate
    Request.  One possible proposal would be for this field to be
    formatted in bits per second, scaled so that one unit equals 80
    Kbps.  Thus, for the value N in the Rate Request field, the
    requested rate is 80,000*N bps.  This gives a request range between
    80 Kbps and 20.48 Mbps.  For 1500-byte packets, this corresponds to
    a request range between 6 and 1706 packets per second.

    Powers of two:
    If a granularity of factors of two is sufficient for the Rate
    Request, then the encoding function with the most range would be for
    the requested rate to be K*2^N, for N the value in the Rate Request
    field, and for K some constant.  For N=0, the rate request would be
    set to zero, regardless of the encoding function.  For example, for
    K=40,000, the request range would be from 80 Kbps to 40*2^256 Kbps.
    This clearly would be an unnecessarily large request range.

    For a four-bit Rate Request field, the upper limit on the rate
    request is 1.3 Gbps.  It is possible that an upper limit of 1.3 Gbps
    would be fine for the Quick-Start rate request, and that connections
    wishing to start up with a higher initial sending rate should be
    encouraged to use other mechanisms, such as the explicit reservation
    of bandwidth.  If an upper limit of 1.3 Gbps is not acceptable, then
    five bits could be used for the Rate Request field.

    If the granularity of factors of two is too coarse, then the
    encoding function could use a base less than two.  An alternate form
    for the encoding function would be to use a hybrid of linear and
    exponential functions.

    We note that the Rate Request also has to be constrained by the
    abilities of the transport protocol.  For example, for TCP with
    Window Scaling, the maximum window is at most 2**30 bytes.  For a
    TCP connection with a long, 1 second round-trip time, this would
    give a maximum sending rate of 1.07 Gbps.

A.3.  The Quick-Start Request: Packets or Bytes?

    One of the design questions is whether the Rate Request field should
    be in bytes per second or in packets per second.  We will discuss
    this separately from the perspective of the transport, and from the



Jain/Floyd/Allman/Sarolahti                      Section A.3.  [Page 45]



INTERNET-DRAFT            Expires: August 2005             February 2005

    perspective of the router.

    For TCP, the results from the Quick-Start Request are translated
    into a congestion window in bytes, using the measured round-trip
    time and the MSS.  This window applies only to the bytes of data
    payload, and does not include the bytes in the TCP or IP packet
    headers.  Other transport protocols would conceivably use the Quick-
    Start Request directly in packets per second, or could translate the
    Quick-Start Request to a congestion window in packets.

    The assumption of this draft is that the router only approves the
    Quick-Start Request when the output link is significantly
    underutilized.  For this, the router could measure the available
    bandwidth in bytes per second, or could convert between packets and
    bytes by some mechanism.

    If the Quick-Start Request was in bytes per second, and applied only
    to the data payload, then the router would have to convert from
    bytes per second of data payload, to bytes per second of packets on
    the wire.  If the Rate Request field was in bytes per second and the
    sender ended up using very small packets, this could translate to a
    significantly larger number in terms of bytes per second on the
    wire.  Therefore, for a Quick-Start Request in bytes per second, it
    makes most sense for this to include the transport and IP headers as
    well as the data payload.  Of course, this will be at best a rough
    approximation on the part of the sender; the transport-level sender
    might not know the size of the transport and IP headers in bytes,
    and might know nothing at all about the separate headers added in IP
    tunnels downstream.  This rough estimate seems sufficient, however,
    given the overall lack of fine precision in Quick-Start
    functionality.

    It has been suggested that the router could possibly use information
    from the MSS option in the TCP packet header of the SYN packet to
    convert the Quick-Start Request from packets per second to bytes per
    second, or vice versa.  The MSS option is defined as the maximum MSS
    that the TCP sender expects to receive, not the maximum MSS that the
    TCP sender plans to send [RFC793].  However, it is probably often
    the case that this MSS also applies as an upper bound on the MSS
    used by the TCP sender in sending.

    We note that the sender does not necessarily know the Path MTU when
    the Quick-Start Request is sent, or when the initial window of data
    is sent.  Thus, with IPv4, packets from the initial window could end
    up being fragmented in the network if the "Don't Fragment" (DF) bit
    is not set [RFC1191].  A Rate Request in bytes per second is
    reasonably robust to fragmentation.  Clearly a Rate Request in
    packets per second is less robust in the presence of fragmentation.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1191


Jain/Floyd/Allman/Sarolahti                      Section A.3.  [Page 46]



INTERNET-DRAFT            Expires: August 2005             February 2005

    Interactions between larger initial windows and Path MTU Discovery
    are discussed in more detail in RFC 3390 [RFC3390].

    For a Quick-Start Request in bytes per second, the transport senders
    would have the additional complication of estimating the bandwidth
    usage added by the packet headers.

    We have chosen an Rate Request field in bytes per second rather than
    in packets per second because it seems somewhat more robust,
    particularly to routers.

A.4.  Quick-Start Semantics: Total Rate or Additional Rate?

    For a Quick-Start Request sent in the middle of a connection, there
    are two possible semantics for the Rate Request field, as follows:

    (1) Total Rate: The requested Rate Request is the requested total
    rate for the connection, including the current rate; or

    (2) Additional Rate: The requested Rate Request is the requested
    increase in the total rate for that connection, over and above the
    current sending rate.

    In this section we consider briefly the tradeoffs between these two
    options, and explain why we have chosen the `Total Rate' semantics.

    The Total Rate semantics makes it easier for routers to ``allocate''
    the same rate to all connections.  This lends itself to fairness,
    and improves convergence times between old and new connections.

    The Additional Rate semantics lends itself to gaming by the
    connection, with the sender sending frequent Quick-Start Requests in
    the hope of gaining a higher rate.

    For either of these alternatives, there would not be room to report
    the current sending rate in the Quick-Start Option using the current
    minimal format for the Quick-Start Request.  Thus, either the Quick-
    Start Option would have to take more than four bytes to include a
    report of the current sending rate, or the current sending rate
    would not be reported to the routers.

A.5.  Alternate Responses to the Loss of a Quick-Start Packet

Section 4.5 discusses TCP's response to the loss of a Quick-Start
    packet in the initial window.  This section discusses several

https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc3390


Jain/Floyd/Allman/Sarolahti                      Section A.5.  [Page 47]



INTERNET-DRAFT            Expires: August 2005             February 2005

    alternate responses.

    One possible alternative to reverting to the default slow-start
    after the loss of a Quick-Start packet from the initial window would
    have been to halve the congestion window and continue in congestion
    avoidance.  However, we note that this would not have been a
    desirable response for either the connection or for the network as a
    whole.  The packet loss in the initial window indicates that Quick-
    Start failed in finding an appropriate congestion window, meaning
    that the congestion window after halving may easily also be wrong.

    A more moderate alternate would be to continue in congestion
    avoidance from a window of (W-D)/2, where W is the Quick-Start
    congestion window, and D is the number of packets dropped or marked
    from that window.

A.6.  Why Not Include More Functionality?

    As Section 6.5 discussed, this proposal for Quick-Start is a rather
    coarse-grained mechanism that would allow connections to use larger
    initial windows along underutilized paths, but that does not attempt
    to provide a next-generation transport protocol, and does not
    attempt the goal of providing very high throughput with very low
    delay.  As Section 7.4 discusses, there are a number of proposals
    such as XCP and AntiECN for more fine-grained per-packet feedback
    from routers that the current congestion control mechanisms, that do
    attempt these more ambitious goals.

    Compared to proposals such as XCP and AntiECN, Quick-Start offers
    much less control;  Quick-Start does not attempt to provide a new
    congestion control mechanism, but simply to get permission from
    routers for a higher sending rate at start-up, or after an idle
    period.  At the same time, Quick-Start would allow larger initial
    windows that would proposals such as AntiECN, requires less input to
    routers than XCP, and would require less frequent feedback from
    routers than any new congestion control mechanism.  Thus, Quick-
    Start is less powerful in general than proposals for new congestion
    control mechanisms such as XCP and AntiECN, but as powerful or more
    powerful in terms of the specific issue of allowing larger initial
    windows, and (we think) more amenable to incremental deployment in
    the current Internet.

    We do not discuss proposals such as XCP in detail, but simply note
    that there are a number of open questions.  One question concerns
    whether there is a pressing need for more sophisticated congestion
    control mechanisms such as XCP in the Internet.  Quick-Start is
    inherently a rather crude tool that does not deliver assurances



Jain/Floyd/Allman/Sarolahti                      Section A.6.  [Page 48]



INTERNET-DRAFT            Expires: August 2005             February 2005

    about maintaining high link utilization and low queueing delay;
    Quick-Start is designed for use in environments that are
    significantly underutilized, and addresses the single question of
    whether a higher sending rate is allowed.  New congestion control
    mechanisms with more fine-grained feedback from routers could allow
    faster startups even in environments with rather high link
    utilization.  Is this a pressing requirement?  Are the other
    benefits of more fine-grained congestion control feedback from
    routers a pressing requirement?

    We would argue that even if more fine-grained per-packet feedback
    from routers was implemented, it is reasonable to have a separate
    mechanism such as Quick-Start for indicating an allowed initial
    sending rate, or an allowed total sending rate after an idle or
    underutilized period.

    One fundamental difference between Quick-Start and current proposals
    for fine-grained per-packet feedback is that the feedback of Quick-
    Start is per-connection, giving an allowed sending rate for the
    connection as a whole, while the proposals for per-packet feedback
    for congestion control are about the increase or decrease in the
    rate or window per-packet, when a particular data packet is
    acknowledged.

    A second difference is that unlike per-packet feedback, Quick-Start
    lends itself to more than just a few bits of feedback from routers
    to indicate the initial sending rate allowed by the router.  While
    XCP also allocates a byte for per-packet feedback, there has been
    discussion of variants of XCP with less per-packet feedback.  This
    would be more like other proposals such as anti-ECN that use a
    single bit of feedback from routers to indicate that the sender can
    increase as fast as slow-starting, in response to this particular
    packet acknowledgement.  In general, there is probably considerable
    power in fine-grained proposals with only two bits of feedback,
    indicating that the sender should decrease, maintain, or increase
    the sending rate or window when this packet is acknowledged.
    However, the power of Quick-Start would be considerably limited if
    it was restricted to only two bits of feedback; it seems likely that
    determining the initial sending rate fundamentally requires more
    bits of feedback from routers than does the everyday, per-packet
    feedback to increase or decrease the sending rate.

    On a more practical level, one difference between Quick-Start and
    proposals for per-packet feedback is that there are fewer open
    issues with Quick-Start than there would be with a new congestion
    control mechanism.  For example, for a mechanism for requesting a
    initial sending rate, the fairness issues of a general congestion
    control mechanism go away, and there is no need for the end nodes to



Jain/Floyd/Allman/Sarolahti                      Section A.6.  [Page 49]



INTERNET-DRAFT            Expires: August 2005             February 2005

    tell the routers the round-trip time and congestion window, as is
    done in XCP; all that is needed is for the end nodes to report the
    requested sending rate.

                                                     Proposals for
                               Quick-Start           Per-Packet Feedback
         +------------------+----------------------+----------------------+
          Semantics:        | Allowed sending rate | Change in rate/window,
                            |  per connection.     |  per-packet.
         +------------------+----------------------+----------------------+
          Relationship to   | In addition.         | Replacement.
          congestion ctrl:  |                      |
         +------------------+----------------------+----------------------+
          Frequency:        | Start-up, or after   | Every packet.
                            |  an idle period.     |
         +------------------+----------------------+----------------------+
          Limitations:      | Only useful on       | General congestion
                            |  underutilized paths.|  control mechanism.
         +------------------+----------------------+----------------------+
          Input to routers: | Rate request.        | RTT, cwnd, request (XCP).
                            |                      | None (Anti-ECN).
         +------------------+----------------------+----------------------+
          Bits of feedback: | One byte.            | A few bits would
                            |                      |  suffice?
         +------------------+----------------------+----------------------+

           Differences between Quick-Start and Proposals for
             Fine-Grained Per-Packet Feedback.

    A separate question concerns whether mechanisms such as Quick-Start,
    in combination with HighSpeed TCP and other changes in progress,
    would make a significant contribution towards meeting some of these
    needs for new congestion control mechanisms.  This could be viewed
    as a positive step of meeting some of the current needs with a
    simple and reasonably deployable mechanism, or alternately, as a
    negative step of unnecessarily delaying more fundamental changes.
    Without answering this question, we would note that our own approach
    tends to favor the incremental deployment of relatively simple
    mechanisms, as long as the simple mechanisms are not short-term
    hacks but mechanisms that lead the overall architecture in the
    fundamentally correct direction.



Jain/Floyd/Allman/Sarolahti                      Section A.6.  [Page 50]



INTERNET-DRAFT            Expires: August 2005             February 2005

A.7.  A QuickStart Nonce?

    An earlier version of this document included a QuickStart Nonce that
    was initialized by the sender to a non-zero, `random' eight-bit
    number, along with a QS TTL that was initialized to the same value
    as the TTL in the IP header.  The QuickStart Nonce would have been
    returned by the TCP receiver to the TCP sender in the Quick-Start
    Response.  A router could deny the Quick-Start request by failing to
    decrement the QS TTL field, by zeroing the QS Nonce field, or by
    deleting the Quick-Start Request from the packet header.  The QS
    Nonce was included to provide some protection against broken
    downstream routers, or against misbehaving TCP receivers who might
    be inclined to lie about the Rate Request.  This protection is now
    provided by the use of a random initial value for the QS TTL field.

    With the old QuickStart Nonce, along with the QS TTL field set to
    the same value as the TTL field in the IP header, the Quick-Start
    Request mechanism would have been self-terminating; the Quick-Start
    Request would terminate at the first participating router after a
    non-participating router had been encountered on the path.  This
    would have minimized unnecessary overhead incurred by routers
    because of option processing for the Quick-Start Request.  Thus, one
    disadvantage of the new approach with a random initial value for the
    QS TTL field is that intermediate routers can no longer determine
    when some upstream router has not understood the QuickStart option.
    However, a disadvantage of the old approach was that it offered no
    protection against downstream routers or the TCP receiver hiding
    evidence of upstream routers that do not understand the QuickStart
    option.

Normative References

    [RFC793] J. Postel, Transmission Control Protocol, RFC 793,
    September 1981.

    [RFC1191] Mogul, J. and S. Deering, Path MTU Discovery, RFC 1191,
    November 1990.

    [RFC2460] S. Deering and R. Hinden. Internet Protocol, Version 6
    (IPv6) Specification. RFC 2460, December 1998.

    [RFC2581] M. Allman, V. Paxson, and W. Stevens. TCP Congestion
    Control.  RFC 2581. April 1999.

    [RFC3168] Ramakrishnan, K.K., Floyd, S., and Black, D.  The Addition
    of Explicit Congestion Notification (ECN) to IP.  RFC 3168, Proposed
    Standard, September 2001.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3168


Jain/Floyd/Allman/Sarolahti                                    [Page 51]



INTERNET-DRAFT            Expires: August 2005             February 2005

    [RFC3390] M. Allman, S. Floyd, and C. Partridge. Increasing TCP's
    Initial Window. RFC 3390, October 2002.

Informative References

    [RFC792] J. Postel. Internet Control Message Protocol. RFC 792,
    September 1981.

    [RFC1812] F. Baker (ed.). Requirements for IP Version 4 Routers. RFC
1812, June 1995.

    [RFC2140] J. Touch. TCP Control Block Interdependence.  RFC 2140.
    April 1997.

    [RFC2205] R. Braden, et al. Resource ReSerVation Protocol (RSVP) --
    Version 1 Functional Specification. RFC 2205, September 1997.

    [RFC2309] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering,
    D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L.
    Peterson, K.  Ramakrishnan, S. Shenker, J. Wroclawski, L. Zhang,
    Recommendations on Queue Management and Congestion Avoidance in the
    Internet, RFC 2309, April 1998.

    [RFC2401] S. Kent and R. Atkinson. Security Architecture for the
    Internet Protocol. RFC 2401, November 1998.

    [RFC2415] K. Poduri and K. Nichols. Simulation Studies of Increased
    Initial TCP Window Size. RFC 2415. September 1998.

    [RFC2416] T. Shepard and C. Partridge.  When TCP Starts Up With Four
    Packets Into Only Three Buffers.  RFC 2416. September 1998.

    [RFC2463] A. Conta and S. Deering. Internet Control Message Protocol
    (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification.

RFC 2463, December 1998.

    [RFC2488] M. Allman, D. Glover, and L. Sanchez. Enhancing TCP Over
    Satellite Channels using Standard Mechanisms. RFC 2488. January
    1999.

    [RFC2960] R. Stewart, et. al. Stream Control Transmission Protocol.
RFC 2960, October 2000.

    [RFC3124] H. Balakrishnan and S. Seshan. The Congestion Manager. RFC
3124. June 2001.

    [RFC3344] C. Perkins (ed.). IP Mobility Support for IPv4. RFC 3344,

https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2309
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2415
https://datatracker.ietf.org/doc/html/rfc2416
https://datatracker.ietf.org/doc/html/rfc2463
https://datatracker.ietf.org/doc/html/rfc2488
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc3344


Jain/Floyd/Allman/Sarolahti                                    [Page 52]



INTERNET-DRAFT            Expires: August 2005             February 2005

    August 2002.

    [RFC3360] S. Floyd.  Inappropriate TCP Resets Considered Harmful.
RFC 3360, August 2002.

    [RFC3775] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in
    IPv6. RFC 3775, June 2004.

    [AHO98] M. Allman, C. Hayes and S. Ostermann. An evaluation of TCP
    with Larger Initial Windows. ACM Computer Communication Review, July
    1998.

    [BW97] G. Brasche and B. Walke. Concepts, Services and Protocols of
    the new GSM Phase 2+ General Packet Radio Service. IEEE
    Communications Magazine, pages 94--104, August 1997.

    [FF99] Floyd, S., and Fall, K., Promoting the Use of End-to-End
    Congestion Control in the Internet, IEEE/ACM Transactions on
    Networking, August 1999.

    [F03] Floyd, S., HighSpeed TCP for Large Congestion Windows, RFC
3649, December 2003.

    [F04] Floyd, S., Limited Slow-Start for TCP with Large Congestion
    Windows, RFC 3742, Experimental, March 2004.

    [GPAR02] A. Gurtov, M. Passoja, O. Aalto, and M. Raitola. Multi-
    Layer Protocol Tracing in a GPRS Network. In Proceedings of the IEEE
    Vehicular Technology Conference (Fall VTC2002), Vancouver, Canada,
    September 2002.

    [Jac88] V. Jacobson, Congestion Avoidance and Control, ACM SIGCOMM

    [JD02] Manish Jain, Constantinos Dovrolis, End-to-End Available
    Bandwidth: Measurement Methodology, Dynamics, and Relation with TCP
    Throughput, SIGCOMM 2002.

    [KHR02] Dina Katabi, Mark Handley, and Charles Rohrs, Internet
    Congestion Control for Future High Bandwidth-Delay Product
    Environments. ACM Sigcomm 2002, August 2002.  URL
    "http://ana.lcs.mit.edu/dina/XCP/".

    [KHF04] E. Kohler, M. Handley, and S. Floyd, Datagram Congestion
    Control Protocol (DCCP), internet draft draft-ietf-dccp-spec-09.txt,
    work in progress, November 2004.

    [K03] S. Kunniyur, "AntiECN Marking: A Marking Scheme for High
    Bandwidth Delay Connections", Proceedings, IEEE ICC '03, May 2003.

https://datatracker.ietf.org/doc/html/rfc3360
https://datatracker.ietf.org/doc/html/rfc3775
https://datatracker.ietf.org/doc/html/rfc3649
https://datatracker.ietf.org/doc/html/rfc3649
https://datatracker.ietf.org/doc/html/rfc3742
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-spec-09.txt


Jain/Floyd/Allman/Sarolahti                                    [Page 53]



INTERNET-DRAFT            Expires: August 2005             February 2005

    URL "http://www.seas.upenn.edu/~kunniyur/".

    [KAPS02] Rajesh Krishnan, Mark Allman, Craig Partridge, James P.G.
    Sterbenz. Explicit Transport Error Notification (ETEN) for Error-
    Prone Wireless and Satellite Networks. Technical Report No. 8333,
    BBN Technologies, March 2002.  URL
    "http://roland.lerc.nasa.gov/~mallman/papers/".

    [MAF04] Alberto Medina, Mark Allman, and Sally Floyd, Measuring
    Interactions Between Transport Protocols and Middleboxes, Internet
    Measurement Conference 2004, August 2004.  URL
    "http://www.icir.org/tbit/".

    [PK98] Venkata N. Padmanabhan and Randy H. Katz, TCP Fast Start: A
    Technique For Speeding Up Web Transfers, IEEE GLOBECOM '98, November
    1998.

    [P00] Joon-Sang Park, Bandwidth Discovery of a TCP Connection,
    report to John Jeidemann, 2000, private communication.  Citation for
    acknowledgement purposes only.

    [PRAKS02] Craig Partridge, Dennis Rockwell, Mark Allman, Rajesh
    Krishnan, James P.G. Sterbenz. A Swifter Start for TCP. Technical
    Report No. 8339, BBN Technologies, March 2002.  URL
    "http://roland.lerc.nasa.gov/~mallman/papers/".

    [S02] Ion Stoica, private communication, 2002.  Citation for
    acknowledgement purposes only.

    [SAF05] Pasi Sarolahti, Mark Allman, and Sally Floyd.  Evaluating
    Quick-Start for TCP.  Under submission, February 2005.  URL
    "http://www.icir.org/floyd/quickstart.html".

    [SH02] Srikanth Sundarrajan and John Heidemann.  Study of TCP Quick
    Start with NS-2.  Class Project, December 2002.  Not publically
    available; citation for acknowledgement purposes only.

    [W00] Michael Welzl: PTP: Better Feedback for Adaptive Distributed
    Multimedia Applications on the Internet, IPCCC 2000 (19th IEEE
    International Performance, Computing, And Communications
    Conference), Phoenix, Arizona, USA, 20-22 February 2000.  URL
    "http://informatik.uibk.ac.at/users/c70370/research/publications/".

    [W03] Michael Welzl, PMTU-Options: Path MTU Discovery Using Options,
    expired internet-draft draft-welzl-pmtud-options-01.txt, work-in-
    progress.  February 2003.

https://datatracker.ietf.org/doc/html/draft-welzl-pmtud-options-01.txt


Jain/Floyd/Allman/Sarolahti                                    [Page 54]



INTERNET-DRAFT            Expires: August 2005             February 2005

IANA Considerations

    The only IANA Considerations would be the addition of an IP option
    to the list of IP options, and the addition of a TCP option to the
    list of TCP options.

AUTHORS' ADDRESSES

    Amit Jain
    F5 Networks
    Email : a.jain@f5.com

    Sally Floyd
    Phone: +1 (510) 666-2989
    ICIR (ICSI Center for Internet Research)
    Email: floyd@icir.org
    URL: http://www.icir.org/floyd/

    Pasi Sarolahti
    Nokia Research Center
    P.O. Box 407
    FI-00045 NOKIA GROUP
    Finland
    Phone: +358 50 4876607
    Email: pasi.sarolahti@iki.fi

Full Copyright Statement

    Copyright (C) The Internet Society 2004.  This document is subject
    to the rights, licenses and restrictions contained in BCP 78, and
    except as set forth therein, the authors retain all their rights.

    This document and the information contained herein are provided on
    an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
    REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
    INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
    THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
    WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

    The IETF takes no position regarding the validity or scope of any
    Intellectual Property Rights or other rights that might be claimed

http://www.icir.org/floyd/
https://datatracker.ietf.org/doc/html/bcp78


Jain/Floyd/Allman/Sarolahti                                    [Page 55]



INTERNET-DRAFT            Expires: August 2005             February 2005

    to pertain to the implementation or use of the technology described
    in this document or the extent to which any license under such
    rights might or might not be available; nor does it represent that
    it has made any independent effort to identify any such rights.
    Information on the procedures with respect to rights in RFC
    documents can be found in BCP 78 and BCP 79.

    Copies of IPR disclosures made to the IETF Secretariat and any
    assurances of licenses to be made available, or the result of an
    attempt made to obtain a general license or permission for the use
    of such proprietary rights by implementers or users of this
    specification can be obtained from the IETF on-line IPR repository
    at http://www.ietf.org/ipr.

    The IETF invites any interested party to bring to its attention any
    copyrights, patents or patent applications, or other proprietary
    rights that may cover technology that may be required to implement
    this standard.  Please address the information to the IETF at ietf-
    ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr


Jain/Floyd/Allman/Sarolahti                                    [Page 56]


