
Workgroup: CoRE

Internet-Draft:

draft-amsuess-core-coap-kitchensink-05

Published: 4 March 2024

Intended Status: Informational

Expires: 5 September 2024

Authors: C. Amsüss

Everything over CoAP

Abstract

The Constrained Application Protocol (CoAP) has become the base of

applications both inside of the constrained devices space it

originally aimed for and outside. This document gives an overview of

applications that are, can, may, and would better not be implemented

on top of CoAP.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Constrained RESTful

Environments Working Group mailing list (core@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/core/.

Source for this draft and an issue tracker can be found at https://

gitlab.com/chrysn/coap-kitchensink.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/core/
https://gitlab.com/chrysn/coap-kitchensink
https://gitlab.com/chrysn/coap-kitchensink
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Applications

2.1. Publish-Subscribe services

2.2. Remote configuration

2.2.1. Network status monitoring

2.2.2. Runtime configuration

2.3. Software updates

2.4. Network file system

2.5. Network address resolution

2.6. Time service

2.7. Terminal access

2.8. Chat services

2.9. Web browsing

2.10. E-Mail

2.11. Video streaming

2.12. Tunneling

3. References

3.1. Normative References

3.2. Informative References

Appendix A. CoAP File Service

Appendix B. Change log

Author's Address

1. Introduction

[See abstract for now]

2. Applications

2.1. Publish-Subscribe services

Publish-subscribe services (pubsub) are a widespread tool for the

some of the fundamental use cases of Internet of Things (IoT)

protocols: acquiring sensor data and controlling actuators.

A pubsub implementation has been in development since shorlty after

the original CoAP publication and is as of now still in draft

status, as [I-D.ietf-core-coap-pubsub].

¶

¶

¶

¶

https://trustee.ietf.org/license-info

Competing with

Strong points

Weak points

Competing with

Strong points

Weak points

MQTT

Once a topic is set up, data can be sent and received

by CoAP clients that are not even aware of pubsub, as long as

they can PUT or GET (possibly with observation) data to and from

configured URIs.

To implement a pubsub broker that supports arbitrarily

many topics, some (potentially difficult-to-implement)

compromises have to be made.

2.2. Remote configuration

The OMA LwM2M protocol (which caters for several applications at the

granularity of this document) includes provisions for configuring

and monitoring devices over the network, setting properties such as

a time server and reading properties such as a network interface's

packet count.

In parallel, the NETCONF protocol and its YANG modelling language

have been ported to the constrained ecosystem as CORECONF

[I-D.ietf-core-comi]. By using numeric identifiers with good

compression properties, it can efficiently express data both from

shared and from bespoke models in single requests.

SNMP [?], Puppet [?]

2.2.1. Network status monitoring

Related to remote configuration, CoAP is used as the signalling

channel of DOTS ([RFC132]).

CoAP over UDP/DTLS provides operational signalling on

links under attack, on which a TCP/TLS based connection would

fail.

CoAP's consistency across transports makes it easy to adjust to

situations in which UDP is uanvailable, sacrificing some

properties but leaving the high-level protocol unmodified.

CoAP's default parameters for flow control (such as

PROBING_RATE) are unsuitable for this application and need to be

customized.

2.2.2. Runtime configuration

Related to remote network configuration, but used without human

intervention, CoAP is used negotiate cryptographic keys and other

short-lived network configuration, eg. in [CoJP],

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Strong points

Competing with

Strong points

Weak points

Strong points

[ace-key-groupcomm-oscore], and [OpenThread_Multicast]. This is

comparable to how [DHCP] or [IGMP] exchanges configuration.

When the exchanged communication is essential to

joining the network in the first place, CoAP traffic exchanged

over a temporary link can easily be proxied into the actual

network, even when routing is not an option yet.

2.3. Software updates

The SUIT manifest format [I-D.ietf-suit-manifest] can be used to

describe firmware updates that can be performed over CoAP or any

other protocol that is expressible in terms of URIs.

The OMA LwM2M protocol also contains provisions for firmware updates

over CoAP.

2.4. Network file system

Using CoAP as a backend for a no-frills file service is a simple

composition and is provided as a demo by the aiocoap library and a

module in the RIOT operating system.

It has never been specified and described; that gap is closed in

Appendix A.

WebDAV, NFS, FTP

CoAP protocol already provides random read access

(through the Block2 option), optimistic locking and cache

(through the ETag and If-Match options) and change notification

(through the Observe option).

Files can be used in other CoAP protocols without the client's

awareness (e.g. for SUIT)

Transfer of large files is inefficient due to the

repetition of file names in block-wise requests (mitigated when

using CoAP-over-TCP and BERT).

Advanced file system functionality (file metadata, server-to-

server copies, renaming, locking) would need additional

specifications.

2.5. Network address resolution

The Domain Name System (DNS) can be utilized from CoAP using the

mechanisms described in [I-D.draft-lenders-dns-over-coap].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Weak points

Competing with

Strong points

Weak points

Savings in firmware complexity by using infrastructure shared

with other applications.

Potential for traffic (and thus energy) reduction by using

request-response binding.

Not deployed in existing networks.

2.6. Time service

A primitive time service can be assembled by creating a CoAP

resource that returns the server's current time, e.g., in a UNIX

time stamp represented in decimal ASCII, or in CBOR using any of

timestamp tags (0, 1 or 1001).

Such services have been in use since at least 2013, and are easy to

operate and scale.

There is a (currently long expired) document describing a

lightweight authenticated time synchronization protocol that is

embedded into the ACE framework [RFC9200] in

[I-D.navas-ace-secure-time-synchronization] and typically used with

CoAP.

SNTP, NTP

Savings in firmware complexity by using

infrastructure shared with other applications.

Compact messages.

Reuse of existing security associations.

None of the advanced features of (S)NTP, such as

distinction between receive and transmit timestamps. Not even

leap seconds are advertised (but that can be mitigated by using a

time scale that is not affected by them, such as TAI).

Generally only suitable for the last hop in time synchronization.

2.7. Terminal access

Virtual terminal access was one of the first network applications

described in an RFC ([RFC15]), and popular to date.

There is no full specification yet as to how to express the data

streams of character based user input and character based text

responses in CoAP. Necessary components, as well as optional future

extensions, have been sketched and implemented for the RIOT

operating system at https://forum.riot-os.org/t/coap-remote-shell/

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://forum.riot-os.org/t/coap-remote-shell/3340/5

Competing with

Strong points

Weak points

Competing with

3340/5. Unlike SSH, that sketch assumes the presence of a single

virtual terminal (as opposed to one created per connection). On

platforms with dynamic resources and per-process output capture, an

SSH-like muliplexing can be created based on the resource collection

pattern described in [I-D.ietf-core-interfaces].

SSH

The head-of-line blocking that occasionally plagues

TCP based connections is eliminiated in favor of on-demand

recovery (i.e., observing the last output will produce the latest

chunk of output, and the terminal may recover skipped data later

if it is still in the device's back-scroll buffer).

The default retransmission characteristics of CoAP make

operations painfully slow when encountering packet loss. Tuning

of parameters or the implementation of advanced flow control as

described in [I-D.ietf-core-fasor] are necessary for smooth

operation.

On-demand recovery is incompatible with regular terminals, and

requires either fully managed terminals (where the full output is

reprinted when lost fragments are recovered) or accepting the

loss of data where printed exceeding the network speed. (Data is

still lost gracefully, as the loss is detected and can be

indicated visually).

2.8. Chat services

The CoMatrix project https://comatrix.eu/ has demonstrated that the

Matrix chat protocol can be simplified to the point where it becomes

usable transparently with constrained devices.

2.9. Web browsing

HTTP [RFC9110] over its various transports; Gemini

([gemini]).

By virtue of cross proxying to HTTP, CoAP is generally capable of

transporting web pages the same way as HTTP, albeit at a reduced

feature set (in particular, most HTTP headers can not be expressed

in CoAP).

CoAP offers only niche benefits over HTTP when combined with HTML,

the predominant markup language on the web: Any benefits of a more

compact transport or implementation are dwarved by the typical size

of pages and the complexity of the HTML ecosystem.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://forum.riot-os.org/t/coap-remote-shell/3340/5
https://comatrix.eu/

[RFC7252]

CoAP might be a suitable transport for Small Web environments such

as Gemini [gemini], which can be rendered even by constrained

devices.

2.10. E-Mail

While E-Mail was part of the considerations that led to the

definition of the Proxy-Uri option (which would technically allow a

cross-proxy to accept POST requests to, say,

mailto:office@example.com?subject=Sensor%20failure), no attempts are

known to send or receive E-Mail over CoAP.

2.11. Video streaming

The use of CoAP for real time video streaming and telemetry from

Unmanned Aerial Vehicles (UAVs) has been explored in

[I-D.bhattacharyya-core-a-realist].

It is unclear whether CoAP could actually outperform unconstrained

streaming protocols such as WebRTC, or whether devices that produce

and consume video benefit from the constraints of CoAP.

2.12. Tunneling

Unlike HTTP, CoAP does neither provide a dedicated method for

encapsulating streaming or packet based network connections (HTTP

has a CONNECT method for streaming, Section 9.3.6 of [RFC9110]) nor

has a means of encapsulating network traffic been specified (HTTP

has BOSH [XEP-0124] for streaming connections; VPNs such as OpenVPN

can be operated over HTTP proxies [OpenVPNproxy]). Early versions

(up to -10) of [I-D.ietf-anima-constrained-join-proxy-10] sketched a

means of transporting UDP in a CoAP-like way.

However, CoAP can aggregate exchanges with multiple peers inside a

single CoAP hop. This can serve to protect the user's privacy (by

using (D)TLS or [I-D.tiloca-core-oscore-capable-proxies] on the hop

to the proxy, hiding which servers a client is communicating with

from its local network) and for efficiency reasons (by using a

single outgoing TCP connection from a device in a cellular network,

or even a more power optimized hop such as [CoAP-over-NB-IoT] to

keep observations active on multiple unrelated services). This bears

similarity with the approach of [OHAI], but leverages CoAP's

proxying mechanisms instead of using a gateway or relay resource.

3. References

3.1. Normative References

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-9.3.6

[gemini]

[CoJP]

[ace-key-groupcomm-oscore]

[OpenThread_Multicast]

[DHCP]

[IGMP]

[OpenVPNproxy]

[XEP-0124]

[CoAP-over-NB-IoT]

RFC7252, June 2014, <https://www.rfc-editor.org/rfc/

rfc7252>.

3.2. Informative References

solderpunk, "Project Gemini, speculative specification,

v0.16.1", 30 January 2022, <https://

gemini.circumlunar.space/docs/specification.html>.

Vučinić, M., Ed., Simon, J., Pister, K., and M.

Richardson, "Constrained Join Protocol (CoJP) for

6TiSCH", RFC 9031, DOI 10.17487/RFC9031, May 2021,

<https://www.rfc-editor.org/rfc/rfc9031>.

Tiloca, M., Park, J., and F. Palombini,

"Key Management for OSCORE Groups in ACE", Work in

Progress, Internet-Draft, draft-ietf-ace-key-groupcomm-

oscore-16, 6 March 2023, <https://datatracker.ietf.org/

doc/html/draft-ietf-ace-key-groupcomm-oscore-16>.

Simon Lin, "Thread Border Router – Thread 1.2

Multicast", 15 March 2022, <https://openthread.io/

codelabs/openthread-border-router-ipv6-multicast#0>.

Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A.,

Richardson, M., Jiang, S., Lemon, T., and T. Winters,

"Dynamic Host Configuration Protocol for IPv6 (DHCPv6)",

RFC 8415, DOI 10.17487/RFC8415, November 2018, <https://

www.rfc-editor.org/rfc/rfc8415>.

Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.

Thyagarajan, "Internet Group Management Protocol, Version

3", RFC 3376, DOI 10.17487/RFC3376, October 2002,

<https://www.rfc-editor.org/rfc/rfc3376>.

"Connecting to an OpenVPN server via an HTTP proxy",

n.d., <https://openvpn.net/community-resources/

connecting-to-an-openvpn-server-via-an-http-proxy/>.

Ian Paterson, Dave Smith, Peter Saint-Andre, Jack

Moffitt, Lance Stout, and Winfried Tilanus,

"Bidirectional-streams Over Synchronous HTTP (BOSH)",

n.d., <https://xmpp.org/extensions/xep-0124.html>.

Open Mobile Alliance, "Lightweight Machine to

Machine Technical Specification: Transport Layer", n.d.,

<http://openmobilealliance.org/RELEASE/LightweightM2M/

V1_1-20180612-C/OMA-TS-LightweightM2M_Transport-

V1_1-20180612-C.pdf>.

https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc7252
https://gemini.circumlunar.space/docs/specification.html
https://gemini.circumlunar.space/docs/specification.html
https://www.rfc-editor.org/rfc/rfc9031
https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-16
https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-16
https://openthread.io/codelabs/openthread-border-router-ipv6-multicast#0
https://openthread.io/codelabs/openthread-border-router-ipv6-multicast#0
https://www.rfc-editor.org/rfc/rfc8415
https://www.rfc-editor.org/rfc/rfc8415
https://www.rfc-editor.org/rfc/rfc3376
https://openvpn.net/community-resources/connecting-to-an-openvpn-server-via-an-http-proxy/
https://openvpn.net/community-resources/connecting-to-an-openvpn-server-via-an-http-proxy/
https://xmpp.org/extensions/xep-0124.html
http://openmobilealliance.org/RELEASE/LightweightM2M/V1_1-20180612-C/OMA-TS-LightweightM2M_Transport-V1_1-20180612-C.pdf
http://openmobilealliance.org/RELEASE/LightweightM2M/V1_1-20180612-C/OMA-TS-LightweightM2M_Transport-V1_1-20180612-C.pdf
http://openmobilealliance.org/RELEASE/LightweightM2M/V1_1-20180612-C/OMA-TS-LightweightM2M_Transport-V1_1-20180612-C.pdf

[OHAI]

[I-D.ietf-core-coap-pubsub]

[I-D.ietf-core-comi]

[RFC132]

[I-D.ietf-suit-manifest]

[I-D.draft-lenders-dns-over-coap]

[RFC9200]

[I-D.navas-ace-secure-time-synchronization]

Thomson, M. and C. A. Wood, "Oblivious HTTP", RFC 9458,

DOI 10.17487/RFC9458, January 2024, <https://www.rfc-

editor.org/rfc/rfc9458>.

Jimenez, J., Koster, M., and A. Keränen,

"A publish-subscribe architecture for the Constrained

Application Protocol (CoAP)", Work in Progress, Internet-

Draft, draft-ietf-core-coap-pubsub-13, 20 October 2023,

<https://datatracker.ietf.org/doc/html/draft-ietf-core-

coap-pubsub-13>.

Veillette, M., Van der Stok, P., Pelov, A.,

Bierman, A., and C. Bormann, "CoAP Management Interface

(CORECONF)", Work in Progress, Internet-Draft, draft-

ietf-core-comi-16, 4 September 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-core-comi-16>.

White, J., "Typographical Error in RFC 107", RFC 132, DOI

10.17487/RFC0132, April 1971, <https://www.rfc-

editor.org/rfc/rfc132>.

Moran, B., Tschofenig, H., Birkholz, H.,

Zandberg, K., and O. Rønningstad, "A Concise Binary

Object Representation (CBOR)-based Serialization Format

for the Software Updates for Internet of Things (SUIT)

Manifest", Work in Progress, Internet-Draft, draft-ietf-

suit-manifest-25, 5 February 2024, <https://

datatracker.ietf.org/doc/html/draft-ietf-suit-

manifest-25>.

Lenders, M. S., Amsüss, C., Gündoğan, C., Schmidt, T. C.,

and M. Wählisch, "DNS over CoAP (DoC)", Work in Progress,

Internet-Draft, draft-lenders-dns-over-coap-04, 11 July

2022, <https://datatracker.ietf.org/doc/html/draft-

lenders-dns-over-coap-04>.

Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S.,

and H. Tschofenig, "Authentication and Authorization for

Constrained Environments Using the OAuth 2.0 Framework

(ACE-OAuth)", RFC 9200, DOI 10.17487/RFC9200, August

2022, <https://www.rfc-editor.org/rfc/rfc9200>.

Navas, R., Selander, G.,

and L. Seitz, "Lightweight Authenticated Time (LATe)

Synchronization Protocol", Work in Progress, Internet-

Draft, draft-navas-ace-secure-time-synchronization-00, 31

October 2016, <https://datatracker.ietf.org/doc/html/

draft-navas-ace-secure-time-synchronization-00>.

https://www.rfc-editor.org/rfc/rfc9458
https://www.rfc-editor.org/rfc/rfc9458
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-13
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-13
https://datatracker.ietf.org/doc/html/draft-ietf-core-comi-16
https://datatracker.ietf.org/doc/html/draft-ietf-core-comi-16
https://www.rfc-editor.org/rfc/rfc132
https://www.rfc-editor.org/rfc/rfc132
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-25
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-25
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-25
https://datatracker.ietf.org/doc/html/draft-lenders-dns-over-coap-04
https://datatracker.ietf.org/doc/html/draft-lenders-dns-over-coap-04
https://www.rfc-editor.org/rfc/rfc9200
https://datatracker.ietf.org/doc/html/draft-navas-ace-secure-time-synchronization-00
https://datatracker.ietf.org/doc/html/draft-navas-ace-secure-time-synchronization-00

[RFC15]

[I-D.ietf-core-interfaces]

[I-D.ietf-core-fasor]

[RFC9110]

[I-D.bhattacharyya-core-a-realist]

[I-D.ietf-anima-constrained-join-proxy-10]

[I-D.tiloca-core-oscore-capable-proxies]

Carr, C., "Network subsystem for time sharing hosts", RFC

15, DOI 10.17487/RFC0015, September 1969, <https://

www.rfc-editor.org/rfc/rfc15>.

Shelby, Z., Koster, M., Groves, C., Zhu,

J., and B. Silverajan, "Reusable Interface Definitions

for Constrained RESTful Environments", Work in Progress,

Internet-Draft, draft-ietf-core-interfaces-14, 11 March

2019, <https://datatracker.ietf.org/doc/html/draft-ietf-

core-interfaces-14>.

Järvinen, I., Kojo, M., Raitahila, I., and Z.

Cao, "Fast-Slow Retransmission Timeout and Congestion

Control Algorithm for CoAP", Work in Progress, Internet-

Draft, draft-ietf-core-fasor-02, 13 March 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-core-fasor-02>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Bhattacharyya, A., Agrawal, S., Rath, H. K., Pal, A.,

and B. Purushothaman, "Adaptive RESTful Real-time Live

Streaming for Things (A-REaLiST)", Work in Progress,

Internet-Draft, draft-bhattacharyya-core-a-realist-02, 5

February 2019, <https://datatracker.ietf.org/doc/html/

draft-bhattacharyya-core-a-realist-02>.

Richardson, M., Van der

Stok, P., and P. Kampanakis, "Constrained Join Proxy for

Bootstrapping Protocols", Work in Progress, Internet-

Draft, draft-ietf-anima-constrained-join-proxy-10, 14

April 2022, <https://datatracker.ietf.org/doc/html/draft-

ietf-anima-constrained-join-proxy-10>.

Tiloca, M. and R. Höglund,

"OSCORE-capable Proxies", Work in Progress, Internet-

Draft, draft-tiloca-core-oscore-capable-proxies-07, 10

July 2023, <https://datatracker.ietf.org/doc/html/draft-

tiloca-core-oscore-capable-proxies-07>.

Appendix A. CoAP File Service

This sketches [TBD: describes] a file transfer protocol / remote

file system built on top of CoAP.¶

https://www.rfc-editor.org/rfc/rfc15
https://www.rfc-editor.org/rfc/rfc15
https://datatracker.ietf.org/doc/html/draft-ietf-core-interfaces-14
https://datatracker.ietf.org/doc/html/draft-ietf-core-interfaces-14
https://datatracker.ietf.org/doc/html/draft-ietf-core-fasor-02
https://datatracker.ietf.org/doc/html/draft-ietf-core-fasor-02
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://datatracker.ietf.org/doc/html/draft-bhattacharyya-core-a-realist-02
https://datatracker.ietf.org/doc/html/draft-bhattacharyya-core-a-realist-02
https://datatracker.ietf.org/doc/html/draft-ietf-anima-constrained-join-proxy-10
https://datatracker.ietf.org/doc/html/draft-ietf-anima-constrained-join-proxy-10
https://datatracker.ietf.org/doc/html/draft-tiloca-core-oscore-capable-proxies-07
https://datatracker.ietf.org/doc/html/draft-tiloca-core-oscore-capable-proxies-07

A file server works similar to a WebDAV server, and follows these

rules (which are sometimes expressed from the point of view of the

server, but apply when a client maps them back into a file system in

such a way that operations can round-trip):

Directories are unconditionally represented by URIs with a

trailing slash; files by those without one.

The GET operation is used to list them (for there is no PROPFIND

operation in CoAP). Different media types migth be used depending

on the capabilities of the parties, with application/link-format

as a base line.

(Note that application/link-format is not particularly efficient

for this purpose, as the directory listing needs to repeat the

requested resource's full path for each entry).

Clients need to be prepared for links that do not follow the

regular pattern of a directory advertising its children, but (as

with all unknown links) may ignore them.

Paths are constructed by placing directory names and either an

empty string (for the trailing slash) or the unescaped file name

in Uri-Path options.

Clients may attempt to treat any URI composed of the file server

entry URI and additional path segments as files on the file

server. Consequently, any additional services the file server may

provide (e.g., as resources specified in extensions) are

necessarily assigned URIs with a query, for these can not be

inadvertedly constructed in an attempt to access a file.

For lack of a HEAD option, file metadata can only be obtained by

performing a GET on the directory containing the file, or a FETCH

for efficiency if suitable media types are defined.

All metadata is provided on a best-effort basis, and the

supported directory formats limit what can be expressed. Typical

supported metadata are the media type (expressed as ct in link

format) and the size (sz).

If write support is available and permissions allow, a client can

create files by performing a PUT operation on a previously

nonexistent resource.

Files can be overwritten by PUTting a new representation. Files

sent with block-wise transfer should be processed atomically by

the server unless explicitly negotiated otherwise. (On POSIX file

systems, this can be implemented without additional state by

storing the blocks in a temporary file whose name contains the

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

original file name and the block key of the request, and renaming

it to the target name when receiving the last block).

Directories can be created with PUT as well (it is clear from

their path that they are directories); these would typically be

empty and not have a content format, but may use a content format

that already describes directory metadata. (It is up to the

client to fall back to plain directory creation, if that is a

viable option for it -- it would be if it's just about

unimportant metadata, but might not if the initial metadata

indicates an ACL).

Files and directories can be removed using the DELETE operation,

subject ot the same conditions as writing to resources.

Deleting directories is recursive; client that desire POSIX

semantics need to check whether the directory is empty and use

the If-Match option with the empty directory's ETag to avoid race

conditions.

Regular CoAP extensions apply if the parties support them, for

example:

Observation can be used to watch files or directories for

changes.

ETags (e.g. derived from the file's stats) can be used to

ensure that large files are assembled correctly by the client,

and to perform file updates with optimistic locking by using

the If-Match option.

Note that ETags are always "strong" in CoAP: They indicate

that a precise representation of a resource has not changed.

If a resource has different representations (eg. a directory

listing may be available in different media types), they may

have different ETags. They may also have identical ETags, but

that means that if one format carries less information, its

ETag needs to change when any representation changes, not just

the selected one.

Consequently, if a client learns of a resource's ETag and

revalidates that that ETag is still valid, it can not know

which properties of the resource have stayed constant. (In the

extreme case, the representation might merely express that the

resource exists). Only when knowing the representation, or at

least relevant metadata of the tagged representation, can the

client be sure that an ETag's validity has any meaning beyond

that the resource still exists.

¶

¶

*

¶

¶

*

¶

-

¶

-

¶

¶

¶

For file services backed by content based naming systems (such

as git), it is tempting to use content identifiers for ETags

-- consequently, a directory will be flagged as changed when

any file below it changes. To allow monitoring directories for

additions and removal of files, it is RECOMMENDED that a

representation is provided that does not contain the contained

files' and directories' ETags, and has a stable ETag that is

distinct from any representation that does include them. There

is no recommendation as to whether the default representation

should contain ETags or not.

Additional features can be specified and advertised separately,

either per resoource or by a named specification that provides

templates for further operations.

For example, a specification might say that when a file system is

advertised with a given interface (if parameter of link format),

for each file and directory there is an associated resource at ?

acl that describes access control applicable to that file, and

can be used with GET and PUT as per the ACL's policies.

Additional operations can use their custom media types and

methods, and possibly create more resources. For example, a

server-to-server copy (again, advertised by a suitable interface

parameter) could provide a ?copy resource under any directory, to

which a CBOR list containing two CRIs (source and destination)

would be posted. That specification might describe that if copies

are not completed instantly, the response might indicate a new

location using Uri-Path and Uri-Query options (the latter might

be necessary to not conflict with existing files) which tracks

the status of the operation.

File service is compatible with "index.html" style directory

indices provided statically in the file system. It is recommended

to not serve index files of typical directory listing formats

(such as application/link-format) as these might mislead the

client about the file system's content, and prevent clients that

access the server as a file server from even seeing the providing

file's name.

These files still need to be written to or deleted in their file

version (e.g. as "index.html"); the file server may use yet to be

specified link relations to point out which files are being

served as the index files.

Some implementation guidance should be provided around the

interaction between idempotent requests that have no actual effect

and preconditions: If a DELETE with If-Match is transmitted again on

a new token (by a proxy relying on its idempotence), should the

¶

*

¶

¶

¶

*

¶

¶

server respond Deleted rather than Not Found? If a PUT with If-Match

is transmitted again after it has been acted on, should the server

respond Changed rather than Precondition Failed? (Probably "No" to

both, as the former is easily recognizable by the client, and the

latter would delay faulting by long, but still needs further

thought.)

Appendix B. Change log

From -03 to -04:

Add section about tunneling

Extend notes on theuse of ETags on file servers

From -02 to -03:

Added Runtime configuration section

Terminal access now has an implementation

From -01 to -02:

Added "Web browsing" section

From -00 to -01:

Added details to file service

Author's Address

Christian Amsüss

Austria

Email: christian@amsuess.com

¶

¶

* ¶

* ¶

¶

* ¶

* ¶

¶

* ¶

¶

* ¶

mailto:christian@amsuess.com

	Everything over CoAP
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Applications
	2.1. Publish-Subscribe services
	2.2. Remote configuration
	2.2.1. Network status monitoring
	2.2.2. Runtime configuration

	2.3. Software updates
	2.4. Network file system
	2.5. Network address resolution
	2.6. Time service
	2.7. Terminal access
	2.8. Chat services
	2.9. Web browsing
	2.10. E-Mail
	2.11. Video streaming
	2.12. Tunneling

	3. References
	3.1. Normative References
	3.2. Informative References

	Appendix A. CoAP File Service
	Appendix B. Change log
	Author's Address

