
Workgroup: CoRE

Internet-Draft:

draft-amsuess-core-coap-over-gatt-02

Published: 12 July 2022

Intended Status: Standards Track

Expires: 13 January 2023

Authors: C. Amsüss

CoAP over GATT (Bluetooth Low Energy Generic Attributes)

Abstract

Interaction from computers and cell phones to constrained devices is

limited by the different network technologies used, and by the

available APIs. This document describes a transport for the

Constrained Application Protocol (CoAP) that uses Bluetooth GATT

(Generic Attribute Profile) and its use cases.

Note to Readers

Discussion of this document takes place on the CORE Working Group

mailing list (core@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/core/.

Source for this draft and an issue tracker can be found at https://

gitlab.com/chrysn/coap-over-gatt/.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/core/
https://mailarchive.ietf.org/arch/browse/core/
https://gitlab.com/chrysn/coap-over-gatt/-/tree/master
https://gitlab.com/chrysn/coap-over-gatt/-/tree/master
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Application example

1.2. Alternatives

2. Terminology

3. Protocol description

3.1. Requests and responses

3.1.1. Development directions

3.2. Addresses

3.2.1. Scheme-free alternative

3.2.2. Use with persistent addresses

3.3. Compression and reinterpretation of non-CoAP characteristics

4. IANA considerations

4.1. Uniform Resource Identifier (URI) Schemes

5. Security considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Change log

Author's Address

1. Introduction

The Constrained Application Protocol (CoAP) [RFC7252] can be used

with different network and transport technologies, for example UDP

on 6LoWPAN networks.

Not all those network technologies are available at end user devices

in the vicinity of the constrained devices, which inhibits direct

communication and necessitates the use of gateway devices or cloud

services. In particular, 6LoWPAN is not available at all in typical

end user devices, and while 6LoWPAN-over-BLE (IPSP, the Internet

Protocol Support Profile of Bluetooth Low Energy (BLE), [RFC7668])

might be compatible from a radio point of view, many operating

systems or platforms lack support for it, especially in a user-

accessible way.

¶

¶

¶

https://trustee.ietf.org/license-info

As a workaround to access constrained CoAP devices from end user

devices, this document describes a way encapsulate generic CoAP

exchanges in Bluetooth GATT (Generic Attribute Profile). This is

explicitly not designed as means of communication between two

devices in full control of themselves -- those should rather build

an IP based network and transport CoAP as originally specified. It

is intended as a means for an application to escape the limitations

of its environment, with a special focus on web applications that

use the Web Bluetooth [webbluetooth]. In that, it is similar to

CoAP-over-WebSockets [RFC8323]. GATT, which has read and write

semantics, is not a perfect match for CoAP's request/response

semantics; this specification bridges the gap in order to make CoAP

transportable over what is sometimes the only available protocol.

1.1. Application example

Consider a network of home automation light bulbs and switches,

which internally uses CoAP on a 6LoWPAN network and whose basic

pairing configuration can be done without additional electronic

devices.

Without CoAP-over-GATT, an application that offers advanced

configuration requires the use of a dedicated gateway device or a

router that is equipped and configured to forward between the

6LoWPAN and the local network. In practice, this is often delivered

as a wired gateway device and a custom app.

With CoAP-over-GATT, the light bulbs can advertise themselves via

BLE, and the configuration application can run as a web site. The

user navigates to that web site, and it asks permission to contact

the light bulbs using Web Bluetooth. The web application can then

exchange CoAP messages directly with the light bulb, and have it

proxy requests to other devices connected in the 6LoWPAN network.

For browsers that do not support Web Bluetooth, the same web

application can be packaged into an native application consisting of

a proxy process that forwards requests received via CoAP-over-

WebSockets on the loopback interface to CoAP-over-GATT, and a

browser view that runs the original web application in a

configuration to use WebSockets rather than CoAP-over-GATT.

That connection is no replacement when remote control of the system

is desired (in which case, again, a router is required that

translates 6LoWPAN to the rest of the network), but suffices for

many commissioning tasks.

¶

¶

¶

¶

¶

¶

1.2. Alternatives

Several approaches were considered, but considered unsuitable for

the intended use cases:

CoAP over 6LoWPAN over BLE: While this is the natural choice for

transporting CoAP over BLE, it is unavailable on typical end user

devices. There is no clear path toward how that would be

integrated in platforms like Android or iOS, and even if it were,

creating a network connection to a nearby device from within an

application might not be possible (if how WLAN networks are

managed is any indication).

GoldenGate [goldengate]: This introduces significant network

overhead, and burdens the end user device application with

shipping a full network stack that is executed in a position

where it can not integrate fully with the operating system's

network stack.

Moreover, this places a retransmission layer on top of a reliable

transport (GATT), duplicating effort and possibly aggravating

congestion situations.

CoAP over UDP over SLIP over GATT UART [nefzger]: This is similar

to the GoldenGate approach, but built on the GATT UART provided

with Nordic Semiconductor's libraries.

This shares the network stack duplication and retransmission

concerns of GoldenGate.

slipmux [I-D.bormann-t2trg-slipmux] over BLE GATT UART service:

This is similar to the previous item; the stack duplication

concern is addressed, but retransmissions are still active atop

of a service that already provides reliability.

2. Terminology

3. Protocol description

3.1. Requests and responses

[This section is not thought through or implemented yet, and could

probably end up very different.]

CoAP-over-GATT uses individual GATT Characteristics to model a

reliable request-response mechanism. Therefore, it has no message

types or message IDs (in which it resembles CoAP-over-TCP

[RFC8323]), and no tokens. In the place of tokens, different

Bluetooth characteristics (comparable to open ports in IP based

¶

*

¶

*

¶

¶

*

¶

¶

*

¶

¶

networks) can be used. All messages use GATT to ensure reliable

transmission.

A GATT server announces service of UUID 8df804b7-3300-496d-9dfa-

f8fb40a236bc (abbreviated US in this document), with one or more

characteristics of UUID 2a58fc3f-3c62-4ecc-8167-d66d4d9410c2

(abbreviated UC).

[Right now, this only supports requests from the GATT client to the

GATT server; role reversal might be added later.]

A client can start a CoAP request by writing to the UC

characteristic a sequence composed of a single code byte, any

options encoded in the option format of [RFC7252] Section 3.1,

optionally followed by a payload marker and the request payload.

After the successful write, the client can read the response back

from the server on the same characteristic. The client may need to

attempt reading the characteristic several times until the response

is ready, and may subscribe to indications to get notifiied when the

response is ready.

The server does needs to keep the response readable after it has

been read, for the server can not know whether the read was

completed by the client.

If the request and initial response establish an observation, the

client may keep reading; the server may keep the latest notification

available indefinitely (especially if it turns out that "has been

read successfully" is hard to determine) or make it readable only

once for each new state.

Once the client writes a new request to a UC characteristic, any

later reads pertain to that request, and any observation previously

established is cancelled implicitly.

Attribute values are limited to 512 Bytes ([bluetooth52] Part F

Section 3.2.9), practically limiting blockwise operation ([RFC7959])

to size exponents to 4 (resulting in a block size of 256 byte). Even

smaller messages might enhance the transfer efficiency when they

avoid fragmentation at the L2CAP level.

If a server provides multiple OC typed characteristics, parallel

requests or observations are possible; otherwise, this transport is

limited to a single pending request.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.1.1. Development directions

Three major concerns may need addressing in future iterations of

this protocol:

Role reversal.

This may be implemented by adding a GATT server to the central,

or by multiplexing requests and responses onto a single read and

write channel.

Response reliability.

When multiple responses are sent to a request (e.g. when using

[I-D.tiloca-core-groupcomm-proxy], or more generally [I-

D.bormann-core-responses]) of which all need to be delivered, or

if role reversal is implemented by multiplexing, the GATT server

needs to know when a message has been read; the GATT mechanisms

do not provide that information.

Previously, this was not deemed relevant, as for the original

non-traditional responses, observation notifications [RFC7641],

only eventual consistency is relevant.

One option is to replace reads with write-with-response

operations, and to introduce a flag that marks previously read

messages as received. This is essentially building a 1-bit

message ID mechanism. (No longer IDs are necessary, because

messages on GATT are not reordered on the network).

Fragmentation. If the current approach of requiring devices to

support large MTU sizes turns out to be impractical, or if GATT

level fragmentation vastly outperforms CoAP fragmentation, it may

be necessary to use composite reads and writes on GATT.

Care has to be taken to use only operations supported by

[webbluetooth]: that API does not expose reads with offsets.

Offset based fragmentation may also be incompatible with the

write-with-response approach suggested for reliability.

Concurrent requests. If a multiplexing approach is chosen for

role reversal, the current setup of multiple characteristics for

multiple requests may become obsolete.

A possible solution is to re-introduce tokens, in a message

format similar to that of CoAP-over-WebSockets [RFC8323].

¶

* ¶

¶

* ¶

¶

¶

¶

*

¶

¶

¶

*

¶

¶

3.2. Addresses

The URI scheme associated with CoAP over GATT is "coap+gatt". The

default value of Uri-Host is the MAC address of the CoAP server, in

hexadecimal encoding, with the dash character ("-") separating the

bytes. [Some bikeshedding is expected on these details.]

User information and port are always absent with this scheme.

Assembling the URI of a request for the discovery resource of a BLE

device with the MAC address 00:11:22:33:44:55 would thus be

assembled, under the rules of Section 6.4 of [RFC7252], to

coap+gatt://00-11-22-33-44-55/.well-known/core.

Locally defined host or service name registries may be used to

create names that are more suitable for human interaction. For DNS,

which is widely used for this purpose, no record types are

registered that map to Bluetooth MAC addresses at the time of

writing.

Note that on some platforms (e.g. Web Bluetooth [webbluetooth]), the

peer's or the own address may not be known application. They may

come up with an application-internal registered name component (e.

g. coap+gatt://id-SomeInternalIdentifier/.well-known/core), but must

be aware that those can not be expressed towards anything outside

the local stack -- the same way they would avoid using IPv6 zone

identifiers or URIs whose host name is localhost.

3.2.1. Scheme-free alternative

As an alternative to the abovementioned scheme, a zone in .arpa

could be registered to use addresses like

where the .ble.arpa address do not resolve to any IP addresses.

[Accepting this will require a .arpa registering IANA consideration

to replace the URI one.]

3.2.2. Use with persistent addresses

When services are meant to provide long-lived and universally usable

URIs, addresses based on MAC addresses can be impractical, because

they fluctuate on hardware changes. (Moreover, privacy mechanisms on

the device or the platform can render them unusable even before

hardware changes).

In the absence of a usable host or service name registry,

implementers may opt for non-GATT addresses right away. [I-D.ietf-

¶

¶

¶

¶

¶

¶

coap://001122334455.ble.arpa/.well-known/core¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7252#section-6.4

core-transport-indication] provides the means to advertise a

different canonical address, and to announce availability of that

advertised service on the present transport, CoAP-over-GATT. If the

device is not generally reachable, the canonical address might also

be unreachable (see [I-D.ietf-core-transport-indication] section

"Unreachable canonical origin address").

When long-lived addresses circumvent privacy preserving measures,

considerations concering the tracking of devices [are TBD along the

lines of "don't make it discoverable to unauthorized sources, and in

case of doubt let the peer show its credentials first"].

3.3. Compression and reinterpretation of non-CoAP characteristics

The use of SCHC is being evaluated in combination with CoAP-over-

GATT; the device can use the characteristic UUID to announce the

static context used.

Together with non-traditional response forms ([I-D.bormann-core-

responses] and contexts that expand, say, a numeric value 0x1234 to

a message like

2.05 Content Response-For: GET /temperature Content-Format:

application/senml+cbor Payload (in JSON-ish equivalent): [{1 /*

unit */: "K", 2 /* value */: 0x1234}]

This enables a different use case than dealing with limited

environments: Accessing BLE devices via CoAP without application

specific gateways. Any required information about the application

can be expressed in the SCHC context.

4. IANA considerations

4.1. Uniform Resource Identifier (URI) Schemes

IANA is asked to enter a new scheme into the "Uniform Resource

Identifier (URI) Schemes" registry set up in [RFC7595]:

URI Scheme: "coap+gatt"

Description: CoAP over Bluetooth GATT (sharing the footnote of

coap+tcp)

Well-Known URI Support: yes, analogous to [RFC7252]

5. Security considerations

All data received over GATT is considered untrusted; secure

communication can be achieved using OSCORE [RFC8613].

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

* ¶

¶

[RFC7252]

[RFC7595]

[RFC7668]

[webbluetooth]

[goldengate]

[nefzger]

[RFC8323]

[RFC8613]

[RFC7959]

Physical proximity can not be inferred from this means of

communication.

6. References

6.1. Normative References

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines

and Registration Procedures for URI Schemes", BCP 35, RFC

7595, DOI 10.17487/RFC7595, June 2015, <https://www.rfc-

editor.org/info/rfc7595>.

6.2. Informative References

Nieminen, J., Savolainen, T., Isomaki, M., Patil, B.,

Shelby, Z., and C. Gomez, "IPv6 over BLUETOOTH(R) Low

Energy", RFC 7668, DOI 10.17487/RFC7668, October 2015,

<https://www.rfc-editor.org/info/rfc7668>.

Grant, R. and O. Ruiz-Henríquez, "Web Bluetooth", 24

February 2020, <https://webbluetoothcg.github.io/web-

bluetooth/>.

Fitbit, Inc, "Golden Gate", 2020, <https://

fitbit.github.io/golden-gate/>.

Matthias Nefzger, "Talk CoAP to me – IoT over Bluetooth

Low Energy", 1 March 2021, <https://www.maibornwolff.de/

en/blog/talk-coap-me-iot-over-bluetooth-low-energy>.

Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,

Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained

Application Protocol) over TCP, TLS, and WebSockets", RFC

8323, DOI 10.17487/RFC8323, February 2018, <https://

www.rfc-editor.org/info/rfc8323>.

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in

the Constrained Application Protocol (CoAP)", RFC 7959,

DOI 10.17487/RFC7959, August 2016, <https://www.rfc-

editor.org/info/rfc7959>.

¶

https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7595
https://www.rfc-editor.org/info/rfc7595
https://www.rfc-editor.org/info/rfc7668
https://webbluetoothcg.github.io/web-bluetooth/
https://webbluetoothcg.github.io/web-bluetooth/
https://fitbit.github.io/golden-gate/
https://fitbit.github.io/golden-gate/
https://www.maibornwolff.de/en/blog/talk-coap-me-iot-over-bluetooth-low-energy
https://www.maibornwolff.de/en/blog/talk-coap-me-iot-over-bluetooth-low-energy
https://www.rfc-editor.org/info/rfc8323
https://www.rfc-editor.org/info/rfc8323
https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc7959

[bluetooth52]

[I-D.bormann-t2trg-slipmux]

[I-D.tiloca-core-groupcomm-proxy]

[I-D.bormann-core-responses]

[RFC7641]

[I-D.ietf-core-transport-indication]

"Bluetooth Core Specification v5.2", 31 December 2019,

<https://www.bluetooth.org/docman/handlers/

downloaddoc.ashx?doc_id=478726>.

Bormann, C. and T. Kaupat, "Slipmux:

Using an UART interface for diagnostics, configuration,

and packet transfer", Work in Progress, Internet-Draft,

draft-bormann-t2trg-slipmux-03, 4 November 2019,

<https://www.ietf.org/archive/id/draft-bormann-t2trg-

slipmux-03.txt>.

Tiloca, M. and E. Dijk, "Proxy

Operations for CoAP Group Communication", Work in

Progress, Internet-Draft, draft-tiloca-core-groupcomm-

proxy-06, 7 March 2022, <https://www.ietf.org/archive/id/

draft-tiloca-core-groupcomm-proxy-06.txt>.

Bormann, C. and C. Amsüss, "CoAP: Non-

traditional response forms", Work in Progress, Internet-

Draft, draft-bormann-core-responses-01, 3 February 2022,

<https://www.ietf.org/archive/id/draft-bormann-core-

responses-01.txt>.

Hartke, K., "Observing Resources in the Constrained

Application Protocol (CoAP)", RFC 7641, DOI 10.17487/

RFC7641, September 2015, <https://www.rfc-editor.org/

info/rfc7641>.

Amsüss, C., "CoAP Protocol Indication", Work in Progress,

Internet-Draft, draft-ietf-core-transport-indication-01,

11 July 2022, <https://www.ietf.org/archive/id/draft-

ietf-core-transport-indication-01.txt>.

Appendix A. Change log

Since -01:

Point out (possibly conflicting) development directions.

Describe URI scheme more completely, including persistent

addresses.

Aim for standards track.

Describe rejeced alternative approaches.

¶

* ¶

*

¶

* ¶

* ¶

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726
https://www.ietf.org/archive/id/draft-bormann-t2trg-slipmux-03.txt
https://www.ietf.org/archive/id/draft-bormann-t2trg-slipmux-03.txt
https://www.ietf.org/archive/id/draft-tiloca-core-groupcomm-proxy-06.txt
https://www.ietf.org/archive/id/draft-tiloca-core-groupcomm-proxy-06.txt
https://www.ietf.org/archive/id/draft-bormann-core-responses-01.txt
https://www.ietf.org/archive/id/draft-bormann-core-responses-01.txt
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.ietf.org/archive/id/draft-ietf-core-transport-indication-01.txt
https://www.ietf.org/archive/id/draft-ietf-core-transport-indication-01.txt

Since -00:

Add note on SCHC possibilities.

Author's Address

Christian Amsüss

Austria

Email: christian@amsuess.com

¶

* ¶

mailto:christian@amsuess.com

	CoAP over GATT (Bluetooth Low Energy Generic Attributes)
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Application example
	1.2. Alternatives

	2. Terminology
	3. Protocol description
	3.1. Requests and responses
	3.1.1. Development directions

	3.2. Addresses
	3.2.1. Scheme-free alternative
	3.2.2. Use with persistent addresses

	3.3. Compression and reinterpretation of non-CoAP characteristics

	4. IANA considerations
	4.1. Uniform Resource Identifier (URI) Schemes

	5. Security considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Change log
	Author's Address

