
CoRE C. Amsuess
Internet-Draft March 11, 2019
Intended status: Informational
Expires: September 12, 2019

Resource Directory Replication
draft-amsuess-core-rd-replication-02

Abstract

 Discovery of endpoints and resources in M2M applications over large
 networks is enabled by Resource Directories, but no special
 consideration has been given to how such directories can scale beyond
 what can be managed by a single device.

 This document explores different ways in which Resource Directories
 can be scaled up from single network to enterprise and global scale.
 It does not attempt to standardize any of those methods, but only to
 demonstrate the feasibility of such extensions and to provide
 terminology and exploratory groundwork for later documents.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Amsuess Expires September 12, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Resource Directory Replication March 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Goals of upscaling . 3
3.1. Large numbers of registrations 3
3.2. Large number of requests 3
3.3. Redundancy . 4

4. Approaches . 4
4.1. Shared authority . 4
4.2. Plain caching . 5
4.3. RD-aware caching . 6
4.3.1. Potential for improvement 7

4.4. Distinct registration points 7
4.4.1. Redundancy and handover 8
4.4.2. Loops between RDs and proxies 8

5. Proposed RD extensions 9
5.1. Provenance . 9
5.2. Lifetime reporting 10

6. Example scenarios . 11
6.1. Redundant and replicated resource lookup (anycast) . . . 11

 6.2. Redundant and replicated resource lookup (distinct
 registration points) 12
 6.2.1. Variation: Large number of registrations, localized
 queries . 15

6.2.2. Variation: Combination with anycast 15
6.3. Anonymous global endpoint lookup 16

7. References . 18
7.1. Informative References 18
7.2. URIs . 19

 Author's Address . 19

1. Introduction

 [See abstract for now.]

 This document is being developed in a git based workflow. Please see
https://github.com/chrysn/resource-directory-replication [1] for more

 details and easy ways to contribute.

https://github.com/chrysn/resource-directory-replication

Amsuess Expires September 12, 2019 [Page 2]

Internet-Draft Resource Directory Replication March 2019

2. Terminology

 This document assumes familiarity with [RFC7252] and
 [I-D.ietf-core-resource-directory] and uses terminology from those
 documents.

 Examples in which URI paths like "/rd" or "/rd-lookup/res" are used
 assume that those URIs have been obtained before by an RD Discovery
 process; these paths are only examples, and no implementation should
 make assumptions based on the literal paths.

3. Goals of upscaling

 The following sections outline different reasons why a Resource
 Directory should be scaled beyond a singe device. Not all of them
 will necessarily apply to all use cases, and not all solution
 approaches might be suitable for all goals.

3.1. Large numbers of registrations

 Even at 1kB of link data per registration, modern server hardware can
 easily keep the data of millions of registrations in RAM
 simultaneously. Thus, the mere size of registration data is not
 expected to be a factor that requires scaling to multiple nodes.

 The traffic produced when millions of nodes with the default 24h
 lifetime amounts to dozens of exchanges per second, which is doable
 with equal ease at central network equipment.

 However, if the directory has additional interaction with its
 registered nodes, for example because it provides proxying to
 registered endpoints, resources like file descriptors can be
 exhausted earlier, and the traffic load on the registration server
 grows with the traffic it is proxying for the endpoint.

3.2. Large number of requests

 Not all approaches to constrained restful communication use the
 Resource Directory only in the setup stage; some are might also
 utilize a Resource Directory in more day-to-day operation.

 [TODO: get some numbers on how many requests a single RD can deal
 with.]

https://datatracker.ietf.org/doc/html/rfc7252

Amsuess Expires September 12, 2019 [Page 3]

Internet-Draft Resource Directory Replication March 2019

3.3. Redundancy

 With the RD as a central part of CoRE infrastructures, outages can
 affect a large number of users.

 A decentralized RD should be able to deal both with scheduled
 downtimes of hosts as well as unexpected outages of hosts or parts of
 the network, especially with network splits between the individual
 parts of the directory.

4. Approaches

 In this section, two independent chains of approaches are presented.
 The "shared authority" approach (using anycast or DNS aliases), and
 proxy-based caching (in stages from using generic proxies to RD
 replication that only bears little resemblance to proxies).

 In the remainder of this document, the term "proxy" always refers to
 a device which a client can access as if it were a resource
 directory, and forwards the request to an actual RD.

 Elements from those chains can be mixed.

4.1. Shared authority

 With this approach, a single host and port (or "authority" component
 in the generic URI syntax) is used for all interactions with the RD.

 This can be implemented using a host name pointing to different IP
 addresses simultaneously or depending on the requester's location,
 using IP anycast addresses or both.

 From the client's or proxy's point of view, all interaction happens
 with same Origin Server.

 In this setup, the replication is hidden from the REST interactions,
 and takes place inside the RD server implementation or its database
 backend.

 Compared to the other approaches, this is more complex to set up when
 it involves managing anycast addresses: Running an IPv4 anycast
 network on Internet scale requires running an Autonomous System. In
 either variation, all server instances are tightly coupled; they need
 shared administration and probably need to run the same software.

 The replication characteristics are laregly inherited from the
 underlying backend.

Amsuess Expires September 12, 2019 [Page 4]

Internet-Draft Resource Directory Replication March 2019

 As registering endpoints only store the URI constructed from the
 Location-Path option to their registration request, registration
 updates can end up at any instance of the server, though they are
 likely to reach the same one as before most of the time.

 Spontaneous failure of individual nodes can interrupt endpoints'
 registrations in scenarious that do not use anycast addresses until
 the unusable addresses have left DNS caches.

4.2. Plain caching

 Caching reverse proxies that are not particularly aware of a Resource
 Directory can be used to mitigate the effect of large numbers of
 requests on a single RD server. In this approach, there exists a
 single central RD server instance, but proxies are placed in front of
 it to reduce its load.

 Caching is applicable only to the lookup interfaces; the POST request
 used in registration and renewal are not cacheable.

 A prerequisite for successful caching is that fresh copies exist in
 the cache; this is likely to happen only if there are many alike
 requests to the Resource Directory. The proxy can than serve cached
 copies, and might find it advantageous to observe frequent queries.

 The simplest way to set up such proxying is to have the proxies
 forward all requests to the central RD and to advertise only the
 proxies' addresses.

 Due to the discovery process of the RD, operators can also limit the
 proxies to the lookup interfaces and advertise the central server for
 registration purposes. A sample exchange between a node and its
 6LoWPAN border router could be:

Req: GET coap://[fe80::1]/.well-known/core?rt=core.rd*

Res: 2.05 Content
<coap://central-rd.example.com/rd>;rt="core.rd",
<coap://europe3.proxy.rd.example.com/rd-lookup/res>;rt="core.rd-lookup-res",
<coap://europe3.proxy.rd.example.com/rd-lookup/ep>;rt="core.rd-lookup-ep"

 Special care should be taken when a reverse proxy is not accessed by
 the client under the same address as the origin server, as relative
 references change their meaning when served from there. This can be
 ignored completely on the resource lookup interface (as long as the
 provenance extension is not used); ignoring it on the endpoint lookup
 interface gives the client "wrong" results, though that is likely to
 only matter to applications that use both the lookup and the

Amsuess Expires September 12, 2019 [Page 5]

Internet-Draft Resource Directory Replication March 2019

 registration interface, like Commissioning Tools could do. Proxies
 can be configured to do content transcoding (cf. [RFC8075]
 Section 6.5.2) to preserve the lookup responses' original meanings.

 This approach does not help at all with large numbers of
 registrations. It can mitigate issues with large numbers of lookup
 requests, provided that many identical requests arrive at the proxy.
 The effect on the redundancy goal is negligible: The proxy can
 provide lookup results only for as long as the cache is fresh during
 a central server outage, which is 60 seconds unless the RD server
 says otherwise.

 This approach can be run with off-the-shelf RD servers and proxies.
 The only configuration required is for the proxy to have a forwarding
 address, and for the RD (or its announcer) tho know which lookup
 addresses to advertise.

4.3. RD-aware caching

 Similar to the above, specialized proxies can be employed that are
 aware that their target is an RD lookup address.

 The "plain caching" approach is limited in that it requires a small
 set of lookups to be frequently performed. A proxy that is aware
 that the address it is forwarding to is of the Resource Type
 "core.rd-lookup-*" can utilize knowledge of how an RD works to serve
 more specialized requests as well from fresh generic content.

 For example, assume that the proxy frequently receives requests of
 the shape

Req: GET /rd-lookup/res?rt=core.s&rt=ex.temperature&ex.building=8341&title=X

 for arbitrary values of X. Then it can use the following request to
 keep a fresh cache:

Req: GET coap://rd.example.com/rd-lookup/res?rt=core.s&rt=ex.temperature
 &ex.building=8341
Observe: 1

 and from that serve filtered responses to individual requests.

 This method shares the advantages of plain caching, with reduced
 limitations but requiring specialized proxying software. The
 software does not necessarily need more configuration: A general-
 purpose proxy is free to explore the origin server's ".well-known/
 core" information, and can decide to enable RD optimizations after

https://datatracker.ietf.org/doc/html/rfc8075#section-6.5.2
https://datatracker.ietf.org/doc/html/rfc8075#section-6.5.2

Amsuess Expires September 12, 2019 [Page 6]

Internet-Draft Resource Directory Replication March 2019

 discovering that the frequently accesses resources are of resource
 type "core.rd-lookup-*".

4.3.1. Potential for improvement

 Observing a large lookup result is relatively inefficient as the
 complete document needs to be transferred when a change happens.
 Serializations of web links that are suitable for expressing small
 deltas are expected to be developed for PATCH operations on
 registration resources. If those formats are compatible with
 observation, they can be applied directly. Otherwise, the proxy can
 try to establish a "push" dynamic link ([I-D.ietf-core-dynlink]) to
 receive continuous PATCH updates on its resource.

 The applicability of the RD-aware approach is further limited to
 query parameters of which the proxy knows that they are not subject
 to lookup filtering on other entities than the queried one. In the
 example above, were the variable part the "d" attribute (of
 endpoints, as opposed to the "title" of resources), the proxy could
 not do the filtering on its own becaus it would not have the required
 information. Even the above example does not allow for fully
 accurate replication, as the endpoint _might_ register with a "title"
 endpoint attribute, even though no such attribute is specified right
 now. Also, annotating the links in the endpoint lookup with
 information about which registration they belong to would help the
 proxy keep all the data around to solve more complex queries. The
 provenance extension is proposed for that purpose.

 In its extreme form, the proxy can observe the complete endpoint
 lookup resource of the Resource Directory. and run a dedicated
 observation for each registration. It can then answer all queries on
 its own based on the continuously fresh state transferred in the
 observations.

 For such proxies, it can be suitable to configure them to use stale
 cache values for extended periods of time when the RD becomes
 intermittently unavailable.

4.4. Distinct registration points

 Caching proxies that are aware of RD semantics could be extended to
 gather information from more than one Resource Directory.

 When executing queries, they would consider candidates from all
 configured upstream servers and report the union of the respective
 query results. At this stage, it is highly recommended that content
 transcoding takes place.

Amsuess Expires September 12, 2019 [Page 7]

Internet-Draft Resource Directory Replication March 2019

 With this approach, many distinct registration URIs can be
 advertised, for example due to geographic proximity.

 Unlike the other proxying approaches, this helps with the "large
 number of registrations" goal. If that number is unmanageable for
 single devices, proxies need not keep full copies of all the RDs'
 states but rather send out queries to all of their upstreams,
 behaving more like the "plain caching" proxies. This multiplies the
 lookup traffic, but allows for huge numbers of registrations. The
 problems of "too many lookups" versus "too many registrations" can be
 traded off against each other if the proxies keep parts of the RDs'
 states locally at hand while forwarding more exotic requests to all
 RDs.

4.4.1. Redundancy and handover

 This approach also tackles the redundancy goal. When an endpoint
 registeres at its RD, the RD updates its endpoint and resource lookup
 results and includes the registration data until further notice (for
 correct operation, the "Lifetime Age" extension is useful).

 If at some point in time that RD server becomes unavailable, the
 proxies can keep the cached information around. Before the lifetime
 expires, the endpoint will attempt to renew its registration and find
 that the RD is unavailable. It will then go through discovery again,
 find the most recently advertised registration URI or pick another
 one out of a set and start a new registration there.

 If the lookup proxies do not evict the old (and soon-to-time-out)
 registration when the new one on a different RD with the same
 endpoint name and domain arrives, at worst there will be the same
 information twice from two registration resources available for
 lookup.

4.4.2. Loops between RDs and proxies

 In this configuration, it can be tempting to run a Resource Directory
 and a lookup proxy (aimed at multiple resource directories) on the
 same host.

 [It might be easier to recommend simply using different hosts, at
 least host names, in those cases, or anything else that allows direct
 and not publically advertised access to the real RDs' lookups.]

 In such a setup, other aggregating lookup proxies must take care to
 only select locally registered entries. With the current filtering
 rules, observing the resources "/rd-lookup/ep?href=/*" and "/rd-
 lookup/res?provenance=/*" crudely provides that kind of filtering.

Amsuess Expires September 12, 2019 [Page 8]

Internet-Draft Resource Directory Replication March 2019

5. Proposed RD extensions

5.1. Provenance

 In order for an RD-aware proxy to serve resource lookup requests that
 filter on endpoint parameters, the proxy needs a way to tell which
 endpoint registration submitted that link. That information might
 also be useful for other purposes.

 This introduces a new link attribute "provenance". Its value is a
 URI reference as described by [RFC3986] Section 4.1. The URI is to
 be interpreted by the same rules that apply to the "anchor"
 attribute, namely by resolving the reference relative to the
 requested document's URI. The attribute should not be repeated, and
 in presence of multiple attributes, only the last should be
 considered.

 [TODO: If a something link-format-ish comes up during the
 development of this document which allows setting base-hrefs in-line,
 evaluate whether it really makes sense to inherit anchor's rules or
 whether it's better to phrase it in a way that the requested base URI
 always counts. A composite CoRAL endpoint-and-resource lookup on the
 RD might make this extension proposal obsolete.]

 The URI given in the "provenance" attribute describes where the
 information in the link was obtained from. An aggregator of links
 can thus declare its sources for each link.

 It is recommended that a Resource Directory adds the URI of the
 registration resource to resource lookups. Thus, if an endpoint
 registers as

 Req: POST /rd?ep=node1
 Payload:
 </sensors/temp>;if="core.s"

 Res: 2.01 Created
 Location: /reg/1234

 then a lookup will add a provenance attribute:

 Req: GET /rd-lookup/res?if=core.s

 Res: 2.05 Content
 Payload:
 <coap://.../sensors/temp>;if="core.s";anchor="coap://...";
 provenance="/reg/1234"

https://datatracker.ietf.org/doc/html/rfc3986#section-4.1

Amsuess Expires September 12, 2019 [Page 9]

Internet-Draft Resource Directory Replication March 2019

 This is not an IANA consideration as there is no established registry
 of link attributes.

 By itself, the provenance attribute does not need to be registered in
 the RD Parameters Registry because it is just another link attribute.
 If it is desired that provenance information is only shown on request
 (eg. by RD-aware proxies), a parameter can be introduced there:

 o Full name: Link provenance

 o short: provenance

 o Validity: URI

 o Use: Resource lookup only

 o Description: If "provenance" or any string starting with
 "provenance=" is given as one of the ampersand-delimited query
 arguments, the RD is instructed to add the provenance attribute to
 all looked up links; otherwise, the RD will not present them. The
 filtering rules still apply: If there is a "=" sign in the query
 argument, only links with matching provenance will be reported.

5.2. Lifetime reporting

 The result of an endpoint lookup as a whole has inhomogenous cache
 properties that would determine its Max-Age:

 o The document can change at any time when a new endpoint registers.

 o The document can change at any time when an endpoint deregisters.

 o Each record can be expected to not change until its lifetime has
 expired.

 As currently specified, a lookup client has no way to tell where in
 its lifetime an endpoint is. Therefore, a new link attribute is
 suggested that allows the RD to share that information:

 The new link attribute Lifetime Remaining (lt-remaining) is described
 for use in RD Endpoint Lookups. Valid values are integers from 0 to
 the lifetime of the registration. The value indicates how many
 seconds have passed since the endpoint last renewed its registration.

 Care has to be taken when replicating this value in caches, as the
 caching agent might be unaware of the attribute's semantics and not
 update it. (This is unlike the Max-Age attribute, which a caching
 agent needs to understand and reduce accordingly when serving from

Amsuess Expires September 12, 2019 [Page 10]

Internet-Draft Resource Directory Replication March 2019

 the cache). It should therefore only be used with responses that
 carry the default Max-Age of 60 or less.

 Clients that use the lookup interface (especially RD-aware proxies)
 are free to treat that record and its corresponding resource records
 as fresh until after lt-remaining seconds have passed since the
 endpoint lookup result was obtained, especially if the origin server
 has become unavailable.

 Security considerations: Given that this leaks information about the
 endpoint's communication patterns, it may be prudent for an RD only
 to reveal this information on a need-to-know basis.

6. Example scenarios

6.1. Redundant and replicated resource lookup (anycast)

 This scenario describes a setup where millions of devices register in
 a company-wide Resource Directory.

 The directory is scaled using the shared authority / anycast
 approach, and the RD implementation is backed by a NoSQL-style
 distributed database.

 /'''''''______/'''''__/''''''''\
 /- -\
 |, NoSQL database |
 \,,, ,~''
 _____/'''__________/'''' \
 / | \
 /''''''\ /''''''\ /''''''\
 | RD-A | | RD-B | | RD-C |
 ______/ ______/ ______/
 / | | \ / | | | \ | | |
 E E C E E E E E C C C C

 ("E" and "C" represent endpoints and lookup clients, respectively)

 Both endloints and lookup clients receive the RD address
 "2001:db8::an1:ca57" is announced to all devices on the network using
 the RDAO option in IPv6 Neighbor Discovery. Any packages to that
 addresses are routed by the network to the closest of the three RD
 instances A, B and C. Discovery invariably looks like this:

Amsuess Expires September 12, 2019 [Page 11]

Internet-Draft Resource Directory Replication March 2019

 Req: GET coap://[2001:db8::an1:ca57/.well-known/core?rt=core.rd*

 Res: 2.05 Content
 </rd>;rt="core.rd",
 </rd-lookup/res>;rt="core.rd-lookup-res",
 </rd-lookup/ep>;rt="core.rd-lookup-ep"

 An endpoint close to B would therefore register with

 Req: POST coap://[2001:db8::an1:ca57]/rd?ep=endpoint1&
 d=facility23.eu.example.com
 Payload:
 </sensors/temp>;if="core.s"

 Res: 2.01 Created
 Location: /reg/123e4567-e89b-12d3-a456-426655440000

 Any client could immediately see that the endpoint is registered by
 issuing

 Req: GET coap://[2001:db8::an1:ca57]/rd-lookup/ep?ep=endpoint1&
 d=facility23.eu.example.com

 Res: 2.05 Content
 Payload:
 </reg/123e4567-e89b-12d3-a456-426655440000>;ep="endpoint1";
 d="facility23.eu.example.com";con="coap://[2001:db8:23::1]"

 If at any point in time the RD instance B becomes unavailable, the
 registering endpoint's renewal requests will be routed to the next
 available instance, for example A. That instance can update the
 shared database with renewed lifetime just as B would have done.

 How this performs under a net split depends on the database backend.
 Registration resources based on UUIDs were chosen in this example
 because those would allow the system to keep accepting new
 registrations even in a netsplit situation; the risk of the
 registration request not being idempotent towards a node that
 switches sides during such a split is considered acceptable.

6.2. Redundant and replicated resource lookup (distinct registration
 points)

 This scenario takes place in the same environment as the previous
 one.

 Rather than a shared database, distinct registration points are
 advertised. The advertised registration points are called RD-A to

Amsuess Expires September 12, 2019 [Page 12]

Internet-Draft Resource Directory Replication March 2019

 RD-C; independent of them are lookup proxies LP-X to LP-Z. Some of
 them run on the same hosts.

 /'''''''______/'''''__/''''''''\
 /- -\
 |, |
 \,,, ,~''
 _____/'''__________/'''' \
 | | \
 /''''''\ | /''''''\ | /''''''\ | /''''''\
 | RD-A |--+ | RD-B |--+--| RD-C | +--| LP-Z |
 | LP-X | | | LP-Y | | | | | | |
 _____1/ | _____2/ | ____3/ | _____4/
 | | |
 +--+--+ +--+--+ +--+
 E E C E E E C C

 The lookup proxies in this scenario are constantly observing the
 "/rd-lookup/ep?href=/*" and "/rd-lookup/res?provenance=/*" resources
 of known RDs on other hosts, and might get updated internally with
 state from a co-hosted RD or observe that using an internal
 interface. As there is no really suitable content format and
 observation mechanism for those yet, the exchanges are partially
 described in words here.

 RDAO announcements point to the nearest host (whose IP address ends
 with the numbers of the respective box in the figure), and hosts that
 do not serve both functions provide lookup as follows:

 Req: GET coap://[2001:db8:23::3]/.well-known/core?rt=core.rd*

 Res: 2.05 Content
 Payload:
 </rd>;rt="core.rd",
 <coap://[2001:db8:23::2]/rd-lookup/ep>;rt="core.rd-lookup-ep",
 <coap://[2001:db8:23::2]/rd-lookup/res>;rt="core.rd-lookup-res"

 When a client then registers as

 Req: POST coap://[2001:db8:23::3]/rd?ep=endpoint1&
 d=facility23.eu.example.com
 Payload:
 </sensors/temp>;if="core.s"

 Res: 2.01 Created
 Location: /reg/42

Amsuess Expires September 12, 2019 [Page 13]

Internet-Draft Resource Directory Replication March 2019

 the RD at 3 sends notifications to the observing lookup proxies X, Y
 and Z:

 Res: Patch Result
 Add one record: </reg/42>;ep="endpoint1";d="facility23.eu.example.com";
 con="coap://[2001:db8:23::1]";lt-remaining=90000

 As soon as that is processed, clients can query LP-Z

 Req: GET coap://[2001:db8:4::4]/rd-lookup/ep?ep=endpoint1&
 d=facility23.eu.example.com

 Res: 2.05 Content
 Payload:
 <coap://[2001:db8:23::3]/reg/42>;ep="endpoint1";
 d="facility23.eu.example.com";con="coap://[2001:db8:23::1]"

 (Note that lt-remaining is elided to the client as per the security
 considerations for that information).

 When a net split happens that cuts LP-Z's site off the rest, it keeps
 that information available until the lt-remaining runs out.

 When RD-C unexpectedly becomes unavailable, endpoint1 fails to renew
 its registration. It then starts the RD discovery process again,
 picks the next available RD (this time B) and gets a new registration
 from that.

 RD-B then sends an update to the proxies:

 Res: Patch Result
 Add one record: </reg/11>;ep="endpoint1";d="facility23.eu.example.com";
 con="coap://[2001:db8:23::1]";lt-remaining=90000

 The proxies remove C's registration "/reg/42" based on the duplicate
 name and now answer requests like this:

Amsuess Expires September 12, 2019 [Page 14]

Internet-Draft Resource Directory Replication March 2019

 Req: GET /rd-lookup/ep?ep=endpoint1&d=facility23.eu.example.com

 Res: 2.05 Content
 Payload:
 <coap://[2001:db8:23::2]/reg/11>;ep="endpoint1";
 d="facility23.eu.example.com";con="coap://[2001:db8:23::1]"

 Req: GET /rd-lookup/res?if=core.s&d=facility23.eu.example.com

 Res: 2.05 Content
 Payload:
 <coap://[2001:db8:23::1]/sensors/temp>;if="core.s";
 anchor="coap://[2001:db8:23::1]/sensors/temp";
 provenance="coap://[2001:db8:23:2]/reg/11",
 ...

6.2.1. Variation: Large number of registrations, localized queries

 If the lookup proxies are not capable of keeping track of all the
 registered data, they can opt to forward requests to all the RDs
 instead. In this example, queries are often localized (queries
 within a building are often limited to the same building), so LP-Y
 could decide to only keep two particular observations active to each
 RD:

 o "/rd-lookup/ep?href=/*&d=facility23.eu.example.com"

 o "/rd-lookup/res?provenance=/*&d=facility23.eu.example.com"

 With those observed, it could still accurately respond to the above
 queries without calling out to the other RDs.

 If a query came in as "/rd-lookup/res?if=core.s", it would still need
 to forward that query to all RDs to build an overview of all sensors
 in the network for the requester.

6.2.2. Variation: Combination with anycast

 In a variation of this, all the RDs and LPs can use a shared anycast
 address. They would be then advertised as in the anycast/NoSQL
 example.

 All RDs would need to be configured such that they encode their host
 name in their path (eg. "/reg/rd-c/42"). Nodes must then have proxy
 forwarding rules set up such that

 o "/rd" is served from the local RD if there is one, or forwarded to
 any (the closest) RD

Amsuess Expires September 12, 2019 [Page 15]

Internet-Draft Resource Directory Replication March 2019

 o "/reg/*" requests are served if hosted locally, otherwise
 forwarded to the appropriate RD, or respond with a 5.04 Gateway
 timeout if that is not available any more

 o Lookup request are served from the local lookup proxy, or
 forwarded to the closest one on RD-only hosts.

 Such a setup is easier if all hosts provide both registration and
 lookup functionality.

6.3. Anonymous global endpoint lookup

 This scenario describes a way to provide connectivity into devices in
 difficult network situations based on identifiers of their
 cryptographic keys, in this case the (sufficently long) ID context
 plus recipient ID of OSCORE ([I-D.ietf-core-object-security]). A
 global network of untrusted Resource Directory servers is built, and
 the individual servers provide network relaying services for
 endpoints that operate behind NAT or firewalls.

 It assumes the existance of two other hypothetical mechanisms:

 o The "proxy" parameter from
 [I-D.amsuess-core-resource-directory-extensions]

 o A URI scheme called "oscore".

 A URI of the form "oscore://VGhh...2aWNl/sensor/temp" refers to a
 resource "/sensor/temp/" on any OSCORE capable host with which the
 client has a key established under the KID context and recipient
 ID given by the base64 string in the authority component.

 To resolve the URI to a concrete protocol and socket, a form of
 Resource Directory assisted protocol negotiation is used.

 RD servers join a global pool of servers using a protocol that is not
 further described here, but could conceivably be based on distributed
 hash tables (DHTs).

 Endpoints register only with a key derived name, and usually do not
 provide any links because those would be accessible only to
 authenticated requesters.

 They register at any of a set of preconfigured DNS names for finding
 a Resource Directory. Those names resolve to any of the currently
 active RD servers, where geographic proximity could play a role in
 the choice of address returned.

Amsuess Expires September 12, 2019 [Page 16]

Internet-Draft Resource Directory Replication March 2019

 When the endpoint discovers the registration URI (for which it uses
 coap+tcp to make later proxying more stable), the server returns
 links to its explicit IP address:

 <coap+tcp://[2001:db8:1:2::3]/rd>;rt="core.rd",
 <coap+tcp://[2001:db8:1:2::3]/rd-lookup/ep>;rt="core.rd-lookup-ep"

 (This avoids conflict when the DNS assignment flips and a different
 host (on which the registration resource is unknown) is returned.
 Alternatively, the servers could use a unified scheme of registration
 resource naming like "/reg/${name}" or a UUID-based scheme.)

 The endpoint then registers:

 Req: POST coap+tcp://[2001:db8:1:2::3]/rd?proxy&ep=VGhhdCdzIHRoZSB\
 LZXlJZENvbnRleHQgdXNlZCB3aXRoIHRoaXMgZGV2aWNl
 Payload: empty

 Res: 2.01 Created
 Location: /reg/123

 When a client wants to talk to that registered server, its RD
 discovery process will yield another instance, which it then queries:

 Req: GET coap://[2001:db8:4:5::6]/rd-lookup/ep?ep=VGhhdCdzIHRoZSBL\
 ZXlJZENvbnRleHQgdXNlZCB3aXRoIHRoaXMgZGV2aWNl

 The server will look up the given ep name in the backing DHT, and
 forward the request right to the (precisely: any) RD server that has
 announced that ep value, which then answers:

 Res: 2.05 Created
 Payload:
 <coap+tcp://[2001:db8:1:2::3]/reg/123>;ep="VGhh...2aWNl";
 con="coap://[2001:db8:1:2::3]:10123";
 at="coap+tcp://[2001:db8:1:2::3]:10123"

 (This particular server uses multiple ports to tell traffic for
 different endpoints apart; it could just as well use a catch-all DNS
 record, do name based virtual hosting and announce
 "con="coap://reg123.server3.example.com" instead.)

 The client will then use the discovered address to direct its OSCORE
 requests to, and the RD server will proxy for it.

 Note that while this setup _can_ serve as a generic RD and answer
 resource requests as well, it is doubtful whether there would be any
 interest in it given the data becomes public, and is limited by the

Amsuess Expires September 12, 2019 [Page 17]

Internet-Draft Resource Directory Replication March 2019

 necessity to have an "ep=" filter in all requests lest the network be
 flooded with requests.

7. References

7.1. Informative References

 [I-D.amsuess-core-resource-directory-extensions]
 Amsuess, C., "CoRE Resource Directory Extensions", draft-

amsuess-core-resource-directory-extensions-00 (work in
 progress), January 2019.

 [I-D.ietf-core-dynlink]
 Shelby, Z., Koster, M., Groves, C., Zhu, J., and B.
 Silverajan, "Dynamic Resource Linking for Constrained
 RESTful Environments", draft-ietf-core-dynlink-08 (work in
 progress), March 2019.

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-16 (work in
 progress), March 2019.

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., Stok, P., and C.
 Amsuess, "CoRE Resource Directory", draft-ietf-core-

resource-directory-19 (work in progress), January 2019.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC8075] Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
 E. Dijk, "Guidelines for Mapping Implementations: HTTP to
 the Constrained Application Protocol (CoAP)", RFC 8075,
 DOI 10.17487/RFC8075, February 2017,
 <https://www.rfc-editor.org/info/rfc8075>.

https://datatracker.ietf.org/doc/html/draft-amsuess-core-resource-directory-extensions-00
https://datatracker.ietf.org/doc/html/draft-amsuess-core-resource-directory-extensions-00
https://datatracker.ietf.org/doc/html/draft-ietf-core-dynlink-08
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-16
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-19
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-19
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc8075
https://www.rfc-editor.org/info/rfc8075

Amsuess Expires September 12, 2019 [Page 18]

Internet-Draft Resource Directory Replication March 2019

7.2. URIs

 [1] https://github.com/chrysn/resource-directory-replication

Author's Address

 Christian Amsuess
 Hollandstr. 12/4
 1020
 Austria

 Phone: +43-664-9790639
 Email: christian@amsuess.com

Amsuess Expires September 12, 2019 [Page 19]

https://github.com/chrysn/resource-directory-replication

