
CoRE Working Group C. Amsuess
Internet-Draft Energy Harvesting Solutions
Updates: RFC7959 (if approved) J. Mattsson
Intended status: Standards Track G. Selander
Expires: January 2, 2018 Ericsson AB
 July 01, 2017

Repeat And Request-Tag
draft-amsuess-core-repeat-request-tag-00

Abstract

 This document defines two optional extensions to the Constrained
 Application Protocol (CoAP): the Repeat option and the Request-Tag
 option. Each of these options when integrity protected, such as with
 DTLS or OSCOAP, protects against certain attacks on CoAP message
 exchanges.

 The Repeat option enables a CoAP server to verify the freshness of a
 request by requiring the CoAP client to make another request and
 include a server-provided challenge. The Request-Tag option allows
 the CoAP server to match message fragments belonging to the same
 request message, fragmented using the CoAP Block-Wise Transfer
 mechanism. This document also specifies additional processing
 requirements on Block1 and Block2 options.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 2, 2018.

Amsuess, et al. Expires January 2, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Repeat And Request-Tag July 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Request Freshness . 3
1.2. Fragmented Message Body Integrity 3
1.3. Terminology . 4

2. The Repeat Option . 5
2.1. Option Format . 5
2.2. Repeat Processing . 5
2.3. Applications . 7

3. The Request-Tag Option 8
3.1. Option Format . 8
3.2. Request-Tag Processing 9
3.3. Applications . 10
3.3.1. Body Integrity Based on Payload Integrity 10
3.3.2. Multiple Concurrent Blockwise Operations 11

4. Block2 / ETag Processing 12
5. IANA Considerations . 12
6. Security Considerations 12
7. References . 13
7.1. Normative References 13
7.2. Informative References 13

Appendix A. Performance Impact When Using the Repeat Option . . 14
Appendix B. Request-Tag Message Size Impact 15

 Authors' Addresses . 15

1. Introduction

 The initial CoAP suite of specifications ([RFC7252], [RFC7641],
 [RFC7959]) was designed with the assumption that security could be
 provided on a separate layer, in particular by using DTLS
 ([RFC6347]). However, for some use cases, additional functionality
 or extra processing is needed to support secure CoAP operations.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc6347

Amsuess, et al. Expires January 2, 2018 [Page 2]

Internet-Draft Repeat And Request-Tag July 2017

 This document specifies two server-oriented CoAP options, the Repeat
 option and the Request-Tag option, addressing the security features
 request freshness and fragmented message body integrity,
 respectively. These options in themselves do not replace the need
 for a security protocol; they specify the format and processing of
 data which, when integrity protected in a message, e.g. using DTLS
 ([RFC6347]) or OSCOAP ([I-D.ietf-core-object-security]), provide
 those security features. The Request-Tag option and also the ETag
 option are mandatory to use with Block1 and Block2, respectively, to
 secure blockwise operations with multiple representations of a
 particular resource as is specified in this document.

1.1. Request Freshness

 A CoAP server receiving a request may not be able to verify when the
 request was sent by the CoAP client. This remains true even if the
 request was protected with a security protocol, such as DTLS. This
 makes CoAP requests vulnerable to certain delay attacks which are
 particularly incriminating in the case of actuators
 ([I-D.mattsson-core-coap-actuators]). Some attacks are possible to
 mitigate by establishing fresh session keys (e.g. performing the DTLS
 handshake) for each actuation, but in general this is not a solution
 suitable for constrained environments.

 A straightforward mitigation of potential delayed requests is that
 the CoAP server rejects a request the first time it appears and asks
 the CoAP client to prove that it intended to make the request at this
 point in time. The Repeat option, defined in this document,
 specifies such a mechanism which thereby enables the CoAP server to
 verify the freshness of a request. This mechanism is not only
 important in the case of actuators, or other use cases where the CoAP
 operations require freshness of requests, but also in general for
 synchronizing state between CoAP client and server.

1.2. Fragmented Message Body Integrity

 CoAP was designed to work over unreliable transports, such as UDP,
 and include a lightweight reliability feature to handle messages
 which are lost or arrive out of order. In order for a security
 protocol to support CoAP operations over unreliable transports, it
 must allow out-of-order delivery of messages using e.g. a sliding
 replay window such as described in Section 4.1.2.6 of DTLS
 ([RFC6347]).

 The Block-Wise Transfer mechanism [RFC7959] extends CoAP by defining
 the transfer of a large resource representation (CoAP message body)
 as a sequence of blocks (CoAP message payloads). The mechanism uses
 a pair of CoAP options, Block1 and Block2, pertaining to the request

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7959

Amsuess, et al. Expires January 2, 2018 [Page 3]

Internet-Draft Repeat And Request-Tag July 2017

 and response payload, respectively. The blockwise functionality does
 not support the detection of interchanged blocks between different
 message bodies to the same endpoint having the same block number.
 This remains true even when CoAP is used together with a security
 protocol such as DTLS or OSCOAP, within the replay window
 ([I-D.amsuess-core-request-tag]), which is a vulnerability of CoAP
 when using RFC7959.

 A straightforward mitigation of mixing up blocks from different
 messages is to use unique identifiers for different message bodies,
 which would provide equivalent protection to the case where the
 complete body fits into a single payload. The ETag option [RFC7252],
 set by the CoAP server, identifies a response body fragmented using
 the Block2 option. This document defines the Request-Tag option for
 identifying the request body fragmented using the Block1 option,
 similar to ETag, but ephemeral and set by the CoAP client.

1.3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise specified, the terms "client" and "server" refers to
 "CoAP client" and "CoAP server", respectively, as defined in
 [RFC7252].

 The terms "payload" and "body" of a message are used as in [RFC7959].
 The complete interchange of a request and a response body is called a
 (REST) "operation", while a request and response message (as matched
 by their tokens) is called an "exchange". An operation fragmented
 using [RFC7959] is called a "blockwise operation". A blockwise
 operation which is fragmenting the request body is called a
 "blockwise request operation". A blockwise operation which is
 fragmenting the response body is called a "blockwise response
 operation".

 Two blockwise operations between the same endpoint pair on the same
 resource are said to be "concurrent" if a block of the second request
 is exchanged even though the client still intends to exchange further
 blocks in the first operation. (Concurrent blockwise request
 operations are impossible with the options of [RFC7959] because the
 second operation's block overwrites any state of the first
 exchange.).

 The Repeat and Request-Tag options are defined in this document. The
 concept "Request-Tag value" is defined in Section 3.1.

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc7959

Amsuess, et al. Expires January 2, 2018 [Page 4]

Internet-Draft Repeat And Request-Tag July 2017

2. The Repeat Option

 The Repeat option is a server-driven challenge-response mechanism for
 CoAP. The Repeat option value is a challenge from the server to the
 client included in a CoAP response and echoed in a CoAP request.

2.1. Option Format

 The Repeat Option is elective, safe-to-forward, not part of the
 cache-key, and not repeatable, see Figure 1. Note that the Repeat
 option has nothing to do with the property of an option being
 repeatable, i.e. be allowed to occur more than once in a message, as
 defined in Section 5.4.5 of [RFC7252].

 +-----+---+---+---+---+-------------+--------+--------+---------+---+
 | No. | C | U | N | R | Name | Format | Length | Default | E |
 +-----+---+---+---+---+-------------+--------+--------+---------+---+
 | TBD | | | | | Repeat | opaque | 8-40 | (none) | x |
 +-----+---+---+---+---+-------------+--------+--------+---------+---+

 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable,
 E=Encrypt and Integrity Protect (when using OSCOAP)

 Figure 1: Repeat Option Summary

 The value of the Repeat option MUST be a (pseudo-)random bit string
 of a length of at least 64 bits. A new (pseudo-)random bit string
 MUST be generated by the server for each use of the Repeat option.

2.2. Repeat Processing

 It is important to identify under what conditions a CoAP request to a
 resource is required to be fresh. These conditions can for example
 include what resource is requested, the request method and other data
 in the request, and conditions in the environment such as the state
 of the server or the time of the day.

 A server MAY include the Repeat option in a response. The Repeat
 option MUST NOT be used with empty CoAP requests. If the server
 receives a request which has freshness requirements, and the request
 does not contain the Repeat option, the server SHOULD send a 4.03
 Forbidden response with a Repeat option. The server SHOULD cache the
 transmitted Repeat option value and the response transmit time (here
 denoted t0).

 Upon receiving a response with the Repeat option within the
 EXCHANGE_LIFETIME ([RFC7252]) of the original request, the client

https://datatracker.ietf.org/doc/html/rfc7252#section-5.4.5
https://datatracker.ietf.org/doc/html/rfc7252

Amsuess, et al. Expires January 2, 2018 [Page 5]

Internet-Draft Repeat And Request-Tag July 2017

 SHOULD echo the Repeat option with the same value in a new request to
 the server. Upon receiving a 4.03 Forbidden response with the Repeat
 option in response to a request within the EXCHANGE_LIFETIME of the
 original request, the client SHOULD resend the original request. The
 client MAY send a different request compared to the original request.

 If the server receives a request which has freshness requirements,
 and the request contains the Repeat option, the server MUST verify
 that the option value equals a cached value; otherwise the request is
 not processed further. The server MUST calculate the round-trip time
 RTT = (t1 - t0), where t1 is the request receive time. The server
 MUST only accept requests with a round-trip time below a certain
 threshold T, i.e. RTT < T, otherwise the request is not processed
 further, and an error message MAY be sent. The threshold T is
 application specific, its value depends e.g. on the freshness
 requirements of the request. An example message flow is illustrated
 in Figure 2.

 When used to serve freshness requirements, CoAP messages containing
 the Repeat option MUST be integrity protected, e.g. using DTLS or
 OSCOAP ([I-D.ietf-core-object-security]).

 If the server loses time synchronization, e.g. due to reboot, it MUST
 delete all cached Repeat option values and response transmission
 times.

Amsuess, et al. Expires January 2, 2018 [Page 6]

Internet-Draft Repeat And Request-Tag July 2017

 Client Server
 | |
 +----->| Code: 0.03 (PUT)
 | PUT | Token: 0x41
 | | Uri-Path: lock
 | | Payload: 0 (Unlock)
 | |
 |<-----+ t0 Code: 4.03 (Forbidden)
 | 4.03 | Token: 0x41
 | | Repeat: 0x6c880d41167ba807
 | |
 +----->| t1 Code: 0.03 (PUT)
 | PUT | Token: 0x42
 | | Uri-Path: lock
 | | Repeat: 0x6c880d41167ba807
 | | Payload: 0 (Unlock)
 | |
 |<-----+ Code: 2.04 (Changed)
 | 2.04 | Token: 0x42
 | |

 Figure 2: Repeat option message flow

 Constrained server implementations can use the mechanisms outlined in
Appendix A to minimize the memory impact of having many unanswered

 Repeat responses.

2.3. Applications

 1. Actuation requests often require freshness guarantees to avoid
 accidental or malicious delayed actuator actions.

 2. To avoid additional roundtrips for applications with multiple
 actuator requests in rapid sequence between the same client and
 server, the server may use the Repeat option (with a new value)
 in response to a request containing the Repeat option. The
 client then uses the Repeat option with the new value in the next
 actuation request, and the server compares the receive time
 accordingly.

 3. If a server reboots during operation it may need to synchronize
 state with requesting clients before continuing the interaction.
 For example, with OSCOAP it is possible to reuse a persistently
 stored security context by synchronizing the Partial IV (sequence
 number) using the Repeat option.

Amsuess, et al. Expires January 2, 2018 [Page 7]

Internet-Draft Repeat And Request-Tag July 2017

 4. When a device joins a multicast/broadcast group the device may
 need to synchronize state or time with the sender to ensure that
 the received message is fresh. By synchronizing time with the
 broadcaster, time can be used for synchronizing subsequent
 broadcast messages. A server MUST NOT synchronize state or time
 with clients which are not the authority of the property being
 synchronized. E.g. if access to a server resource is dependent
 on time, then the client MUST NOT set the time of the server.

 5. A server that sends large responses to unauthenticated peers and
 wants to mitigate the amplification attacks described in

Section 11.3 of [RFC7252] (where an attacker would put a victim's
 address in the source address of a CoAP request) can ask a client
 to Repeat its request to verify the source address. This needs
 to be done only once per peer, and limits the range of potential
 victims from the general Internet to endpoints that have been
 previously in contact with the server. For this application, the
 Repeat option can be used in messages that are not integrity
 protected, for example during discovery.

3. The Request-Tag Option

 The Request-Tag is intended for use as a short-lived identifier for
 keeping apart distinct blockwise request operations on one resource
 from one client. It enables the receiving server to reliably
 assemble request payloads (blocks) to their message bodies, and, if
 it chooses to support it, to reliably process simultaneous blockwise
 request operations on a single resource. The requests must be be
 integrity protected in order to protect against interchange of blocks
 between different message bodies.

3.1. Option Format

 The Request-Tag option has the same properties as the Block1 option:
 it is critical, unsafe, not part of the cache-key, and not
 repeatable, see Figure 3.

 +-----+---+---+---+---+-------------+--------+--------+---------+---+
 | No. | C | U | N | R | Name | Format | Length | Default | E |
 +-----+---+---+---+---+-------------+--------+--------+---------+---+
 | TBD | x | x | - | | Request-Tag | opaque | 0-8 | (none) | * |
 +-----+---+---+---+---+-------------+--------+--------+---------+---+

 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable,
 E=Encrypt and Integrity Protect (when using OSCOAP)

 Figure 3: Request-Tag Option Summary

https://datatracker.ietf.org/doc/html/rfc7252#section-11.3

Amsuess, et al. Expires January 2, 2018 [Page 8]

Internet-Draft Repeat And Request-Tag July 2017

 [Note to RFC editor: If this document is not released together with
 OSCOAP but before it, the following paragraph and the "E" column
 above need to move into OSCOAP.]

 Request-Tag, like the Block1 option, is a special class E option in
 terms of OSCOAP processing (see Section 4.3.1.2 of
 [I-D.ietf-core-object-security]): The Request-Tag MAY be an inner or
 outer option. The inner option is encrypted and integrity protected
 between client and server, and provides message body identification
 in case of end-to-end fragmentation of requests. The outer option is
 visible to proxies and labels message bodies in case of hop-by-hop
 fragmentation of requests.

 Every message in which the Block1 option is set is considered to
 carry a "Request-Tag value" that can be compared for equality with
 the value of any other such message. Absence of the Request-Tag
 option implies a value that is distinct from any value of a message
 with the Request-Tag option set, and equal to that of any other
 message without the Request-Tag option. Messages with the Request-
 Tag option set have equal Request-Tag values if and only if their
 option lengths and option values are equal.

 The value of the Request-Tag option is generated by the client for
 every blockwise request operation. Clients are encouraged to
 generate compact Request-Tag values. It MUST be different from any
 other Request-Tag value used in the same security context on the same
 resource, but MAY be reused when all earlier operations with the same
 value are concluded. What constitutes a concluded operation depends
 on the application, and is outlined individually in Section 3.3.

3.2. Request-Tag Processing

 A server MUST NOT act on any two blocks in the same blockwise request
 operation that have different Request-Tag values. This also means
 that a block cannot overwrite kept context when the Request-Tag does
 not match (cf. [RFC7959] Section 2.5). The server is still under no
 obligation to keep state of more than one transaction. When an
 operation is in progress and a second one cannot be served at the
 same time, the server MUST respond to the second request with a 5.03
 (Service Unavailable) response code and SHOULD indicate the time it
 is willing to wait for additional blocks in the first operation using
 the Max-Age option, as specified in Section 5.9.3.4 of [RFC7252].

 A server receiving a Request-Tag MUST treat it as opaque and make no
 assumptions about its content or structure.

 Two messages arriving at the server with the same Request-Tag value
 do not necessarily belong to the same operation. They can still be

https://datatracker.ietf.org/doc/html/rfc7959#section-2.5
https://datatracker.ietf.org/doc/html/rfc7252#section-5.9.3.4

Amsuess, et al. Expires January 2, 2018 [Page 9]

Internet-Draft Repeat And Request-Tag July 2017

 treated as independent messages by the server (e.g. when it sends
 2.01/2.04 responses for every block), or initiate a new operation
 (overwriting kept context) when sending the first block again.

 The Request-Tag option is not used in responses.

 If a request that uses Request-Tag is rejected with 4.02 Bad Option,
 the client MAY retry the operation without it, but then it MUST
 serialize all operations that affect the same resource. Security
 requirements can forbid dropping the Request-Tag option.

3.3. Applications

3.3.1. Body Integrity Based on Payload Integrity

 When a client fragments a request body into multiple message
 payloads, even if the individual messages are integrity protected, it
 is still possible for a man-in-the-middle to maliciously replace
 later operation's blocks with earlier operation's blocks (see
 Section 3.2 of [I-D.amsuess-core-request-tag]). Therefore, the
 integrity protection of each block does not extend to the operation's
 request body.

 In order to gain that protection, use the Request-Tag mechanism as
 follows:

 o The message payloads MUST be integrity protected end-to-end
 between client and server.

 o The client MUST NOT reuse a Request-Tag value within a security
 association unless all previous blockwise request operations on
 the same resource that used the same Request-Tag value have
 concluded.

 Note that the server needs to verify that all blocks within an
 operation come from the same security association, because the
 security association is a part of the endpoint as per [RFC7252].

 o The client MUST NOT regard a blockwise request operation as
 concluded unless all of the messages the client previously sent in
 the operation have been confirmed by the message integrity
 protection mechanism, or are considered invalid by the server if
 replayed.

 Typically, in OSCOAP, these confirmations can result either from
 the client receiving an OSCOAP response message matching the
 request (an empty ACK is insufficient), or because the message's

https://datatracker.ietf.org/doc/html/rfc7252

Amsuess, et al. Expires January 2, 2018 [Page 10]

Internet-Draft Repeat And Request-Tag July 2017

 sequence number is old enough to be outside the server's receive
 window.

 In DTLS, this can only be confirmed if the request message was not
 retransmitted, and was responded to.

 Authors of other documents (e.g. [I-D.ietf-core-object-security])
 are invited to mandate this behavior for clients that execute
 blockwise interactions over secured transports. In this way, the
 server can rely on a conforming client to set the Request-Tag option
 when required, and thereby conclude on the integrity of the assembled
 body.

 Note that this mechanism is implicitly implemented when the security
 layer guarantees ordered delivery (e.g. CoAP over TLS
 [I-D.tschofenig-core-coap-tcp-tls]). This is because with each
 message, any earlier operation can be regarded as concluded by the
 client, so it never needs to set the Request-Tag option unless it
 wants to perform concurrent operations.

3.3.2. Multiple Concurrent Blockwise Operations

 CoAP clients, especially CoAP proxies, may initiate a blockwise
 request operation to a resource, to which a previous one is already
 in progress, and which the new request should not cancel. One
 example is when a CoAP proxy fragments an OSCOAP messages using
 blockwise (so-called "outer" blockwise, see Section 4.3.1. of
 [I-D.ietf-core-object-security])), where the Uri-Path is hidden
 inside the encrypted message, and all the proxy sees is the server's
 "/" path.

 When a client fragments a message as part of a blockwise request
 operation, it can do so without a Request-Tag option set. For this
 application, an operation can be regarded as concluded when a final
 Block1 option has been sent and acknowledged, or when the client
 chose not to continue with the operation (e.g. by user choice, or in
 the case of a proxy when it decides not to take any further messages
 in the operation due to a timeout). When another concurrent
 blockwise request operation is made (i.e. before the operation is
 concluded), the client can use a different Request-Tag value (as
 specified in Section 3.1). The possible outcomes are:

 o The server responds with a successful code.

 The concurrent blockwise operations can then continue.

 o The server responds 4.02 Bad Option.

Amsuess, et al. Expires January 2, 2018 [Page 11]

Internet-Draft Repeat And Request-Tag July 2017

 This can indicate that the server does not support Request-Tag.
 The client should wait for the first operation to conclude, and
 then try the same request without a Request-Tag option.

 o The server responds 5.03 Service Unavailable with a Max-Age option
 to indicate when it is likely to be available again.

 This can indicate that the server supports Request-Tag, but still
 is not prepared to handle concurrent requests. The client should
 wait for as long as the response is valid, and then retry the
 operation, which may not need to carry a Request-Tag option by
 then any more.

 In the cases where a CoAP proxy receives an error code, it can
 indicate the anticipated delay by sending a 5.03 Service Unavailable
 response itself. Note that this behavior is no different from what a
 CoAP proxy would need to do were it unaware of the Request-Tag
 option.

4. Block2 / ETag Processing

 The same security properties as in Section 3.3.1 can be obtained for
 blockwise response operations. The threat model here is not an
 attacker (because the response is made sure to belong to the current
 request by the security layer), but blocks in the client's cache.

 Analogous rules to Section 3.2 are already in place for assembling a
 response body in Section 2.4 of [RFC7959].

 To gain equivalent protection to Section 3.3.1, a server MUST use the
 Block2 option in conjunction with the ETag option ([RFC7252],
 Section 5.10.6), and MUST NOT use the same ETag value for different
 representations of a resource.

5. IANA Considerations

 [TBD: Fill out the option templates for Repeat and Request-Tag]

6. Security Considerations

 Servers that store a Repeat challenge per client can be attacked for
 resource exhaustion, and should consider minimizing the state kept
 per client, e.g. using a mechanism as described in Appendix A.

https://datatracker.ietf.org/doc/html/rfc7959#section-2.4
https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.6
https://datatracker.ietf.org/doc/html/rfc7252#section-5.10.6

Amsuess, et al. Expires January 2, 2018 [Page 12]

Internet-Draft Repeat And Request-Tag July 2017

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <http://www.rfc-editor.org/info/rfc7959>.

7.2. Informative References

 [I-D.amsuess-core-request-tag]
 Amsuess, C., "Request-Tag option", draft-amsuess-core-

request-tag-00 (work in progress), March 2017.

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security of CoAP (OSCOAP)", draft-ietf-core-

object-security-03 (work in progress), May 2017.

 [I-D.mattsson-core-coap-actuators]
 Mattsson, J., Fornehed, J., Selander, G., and F.
 Palombini, "Controlling Actuators with CoAP", draft-

mattsson-core-coap-actuators-02 (work in progress),
 November 2016.

 [I-D.tschofenig-core-coap-tcp-tls]
 Bormann, C., Lemay, S., Technologies, Z., and H.
 Tschofenig, "A TCP and TLS Transport for the Constrained
 Application Protocol (CoAP)", draft-tschofenig-core-coap-

tcp-tls-05 (work in progress), November 2015.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
http://www.rfc-editor.org/info/rfc7959
https://datatracker.ietf.org/doc/html/draft-amsuess-core-request-tag-00
https://datatracker.ietf.org/doc/html/draft-amsuess-core-request-tag-00
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-03
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-03
https://datatracker.ietf.org/doc/html/draft-mattsson-core-coap-actuators-02
https://datatracker.ietf.org/doc/html/draft-mattsson-core-coap-actuators-02
https://datatracker.ietf.org/doc/html/draft-tschofenig-core-coap-tcp-tls-05
https://datatracker.ietf.org/doc/html/draft-tschofenig-core-coap-tcp-tls-05
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347

Amsuess, et al. Expires January 2, 2018 [Page 13]

Internet-Draft Repeat And Request-Tag July 2017

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

Appendix A. Performance Impact When Using the Repeat Option

 The Repeat option requires the server to keep some state in order to
 later verify the repeated request.

 Instead of caching Repeat option values and response transmission
 times, the server MAY use the encryption of the response transmit
 time t0 as Repeat option value. Such a scheme needs to ensure that
 the server can detect a replay of a previous encrypted response
 transmit time.

 For example, the server MAY encrypt t0 with AES-CCM-128-64-64 using a
 (pseudo-)random secret key k generated and cached by the server. A
 unique IV MUST be used with each encryption, e.g. using a sequence
 number. If the server loses time synchronization, e.g. due to
 reboot, then k MUST be deleted and replaced by a new random secret
 key. When using encrypted response transmit times, the Repeat
 processing is modified in the following way: The verification of
 cached option value in the server processing is replaced by the
 verification of the integrity of the encrypted option value using the
 cached key and IV (e.g. sequence number).

 The two methods - (a) the list of cached values, and (b) the
 encryption of transmit time - have different impact on the
 implementation:

 o size of cached data (list of cached values vs. key and IV)

 o size of message (typically larger with encrypted time)

 o computation (encryption + decryption vs. generation new nonce +
 cache + lookup)

 In general, the encryption of transmission times is most useful if
 the number of concurrent requests is high.

 A hybrid scheme is also possible: the first Repeat option values are
 cached, and if the number of concurrent requests reach a certain
 threshold, then encrypted times are used until there is space for
 storing new values in the list. In that case, the server may need to
 make both verifications - either that the Repeat value is in the
 list, or that it verifies in decryption - and in either case that the
 transmission time is valid.

https://datatracker.ietf.org/doc/html/rfc7641
http://www.rfc-editor.org/info/rfc7641

Amsuess, et al. Expires January 2, 2018 [Page 14]

Internet-Draft Repeat And Request-Tag July 2017

Appendix B. Request-Tag Message Size Impact

 In absence of concurrent operations, the Request-Tag mechanism for
 body integrity (Section 3.3.1) incurs no overhead if no messages are
 lost (more precisely: in OSCOAP, if no operations are aborted due to
 repeated transmission failure; in DTLS, if no packages are lost), or
 when blockwise request operations happen rarely (in OSCOAP, if only
 one request operation with losses within the replay window).

 In those situations, the Request-Tag value of no Request-Tag option
 present can be reused over and over again.

 When the "no-Request-Tag value" is used-up within a security context,
 the Request-Tag value of a present but empty option can be used (1
 Byte overhead), and when that is used-up, 256 values from one byte
 long options (2 Bytes overhead) can be used.

 In situations where those overheads are unacceptable (e.g. because
 the payloads are known to be at a fragmentation threshold), the
 absent Request-Tag value can be made usable again:

 o In DTLS, a new session can be established.

 o In OSCOAP, the sequence number can be artificially increased so
 that all lost messages are outside of the replay window by the
 time the first request of the new operation gets processed, and
 all earlier operations can therefore be regarded as concluded.

Authors' Addresses

 Christian Amsuess
 Energy Harvesting Solutions

 Email: c.amsuess@energyharvesting.at

 John Mattsson
 Ericsson AB

 Email: john.mattsson@ericsson.com

 Goeran Selander
 Ericsson AB

 Email: goran.selander@ericsson.com

Amsuess, et al. Expires January 2, 2018 [Page 15]

