
CoRE Working Group C. Amsuess
Internet-Draft Energy Harvesting Solutions
Intended status: Standards Track March 27, 2017
Expires: September 28, 2017

Request-Tag option
draft-amsuess-core-request-tag-00

Abstract

 This memo describes an optional extension to the Constrained
 Application Protocol (CoAP, [RFC7252] and [RFC7959]) that allows
 matching of request blocks. This primarily serves to transfer the
 security properties that Object Security of CoAP (OSCOAP,
 [I-D.ietf-core-object-security]) provides for single requests to
 blockwise transfers. The security of blockwise transfer in OSCOAP is
 reflected on in a dedicated section.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 28, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Amsuess Expires September 28, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Request-Tag option March 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. The Request-Tag option 3
2.1. For inclusion in OSCOAP 4

3. Security properties of blockwise transfer 5
3.1. Blockwise transfer cases 6
3.2. Attack scenarios . 8
3.2.1. "Promote Valjean" (on blockwise case SN) 9
3.2.2. "Free the hitman" (blockwise case SN or SS) 10

4. Rationale . 11
5. Security Considerations 12
6. IANA Considerations . 12
7. References . 12
7.1. Normative References 12
7.2. Informative References 12

Appendix A. Use of Request-Tag by proxies 13
Appendix B. Examples . 13
B.1. OSCOAP inner-blockwise 13
B.2. Use by proxies . 15

 Author's Address . 16

1. Introduction

 The OSCOAP protocol provides a security layer for CoAP that, given a
 security context shared with a peer, provides

 o encryption of payload and some options,

 o integrity protection of the encrypted data and some more message
 options,

 o protection against replays once a request has reached the server,
 and

 o protected matching between request and response messages.

 It does not (and should not) provide sequential delivery. In
 particular, it does not protect against requests being delayed; the
 corresponding attack and mitigation is described in
 [I-D.mattsson-core-coap-actuators].

 The goal of this memo is to provide protection to the bodies of a
 blockwise fragmented request/response pair that is equivalent to the
 protection that would be provided if the complete request and

Amsuess Expires September 28, 2017 [Page 2]

Internet-Draft Request-Tag option March 2017

 response bodies fit into single messae each. (Packing long payloads
 into single OSCOAP messages is actually possible using the outer
 blockwise mechanism, but does not go well with the constraints of
 devices CoAP is designed for). [Author's note: The results of this
 might move back into OSCOAP - for now, the matter is explored here.]

 The proposed method of matching blocks to each other is the
 introduction of a Request-Tag option, which is similar to the ETag
 sent along with responses, but ephemeral and set by the client. It
 is phrased in a way that it can not only be used in OSCOAP, but also
 by other security mechanisms (eg. CoAP over DTLS), or for other
 purposes (see Appendix A).

 In order to minimize the impact on message sizes, the Request-Tag
 option is designed to be only used when required[, and its
 interaction with OSCOAP should mandate actively setting it only in
 rare cases. If this is still insufficient, compressing it into the
 AAD can still be considered].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The terms "payload" and "body" are used as in [RFC7959]. The
 complete interchange of a request and a response body is called a
 REST "operation", while a request and response message (as matched by
 their tokens) is called an "exchange".

2. The Request-Tag option

 A new option is defined for all request methods:

+-----+---+---+---+---+-----------------------+--------+--------+---------+
| No. | C | U | N | R | Name | Format | Length | Default |
+-----+---+---+---+---+-----------------------+--------+--------+---------+
| TBD | x | x | - | | Request-Tag | opaque | 0-8 | (none) |
+-----+---+---+---+---+-----------------------+--------+--------+---------+

C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

 Figure 1: Option summary

 It is critical (because a client that wants to secure its request
 body can't have a server ignore it), unsafe (because it needs to
 understood by any proxy that does blockwise (dis)assembly), and not
 repeatable. ([Does "unsafe" make nocachekey irrelevant? I think
 so.])

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7959

Amsuess Expires September 28, 2017 [Page 3]

Internet-Draft Request-Tag option March 2017

 A client MAY set the Request-Tag option to indicate that the
 receiving server MUST NOT act on any block in the same blockwise
 operation that has a different Request-Tag set. A server MUST NOT
 use blocks with and blocks without Request-Tag option either.

 [Note on future development: If it turns out we need to compress the
 option into the AAD, this might hook in here and specify that when
 OSCOAP and blockwise is in use, the client MUST set a Request-Tag if
 and only if it sets a Block1 option in descriptive usage, and is
 value MUST be the partial IV of that message. That value MUST then
 be included somewhere in the AAD of every block message _after_ the
 first, where this compression proposal so far fails because the
 verifying server would have to know at AAD-building time whether or
 not this is an inner blockwise request.]

 If the Request-Tag option is set, the client MAY perform simultaneous
 operations that utilize Block1 fragmentation from the same endpoint
 towards the same resource, lifting the limitation of [RFC7959]
 section 2.5. The server is still under no obligation to keep state
 of more than one transaction. When an operation is in progress and a
 second one can not be served at the same time, the server MUST either
 respond to the second request with a 5.03 response code (in which it
 SHOULD indicate the time it is willing to wait for additional blocks
 in the first open operation in the Max-Age option), or cancel the
 first operation by responding 4.08 in subsequent exchanges in the
 first operations. Clients that see the latter behavior SHOULD [or
 MUST?] fall back to serializing requests as it would without the
 Request-Tag option.

 [Author's note: The above paragraph sounds problematic to me. For
 further exploration of those error cases, I'd need to know how
 simultaneous operations (even on different resources) from different
 endpoints are handled in constrained clients; I only did stateless
 operations in constrained devices so far.]

 The option is not used in responses.

 If a request that uses Request-Tag is rejected with 4.02 Bad Option,
 the client MAY retry the operation without it, but it then needs to
 serialize all operations that affect the same resource. Security
 requirements can forbid dropping the Request-Tag option.

2.1. For inclusion in OSCOAP

 [Author's note: If this stays a document of its own, OSCOAP should
 make a normative reference to it and state something like:

https://datatracker.ietf.org/doc/html/rfc7959#section-2.5
https://datatracker.ietf.org/doc/html/rfc7959#section-2.5

Amsuess Expires September 28, 2017 [Page 4]

Internet-Draft Request-Tag option March 2017

 Whenever the Block1 option is used as inner option, the Request-
 Tag option must be considered. A Request-Tag value (where the
 absence of a Request-Tag option is counted as a value too, and
 distinct from the empty option) can only be reused when all
 request messages sent in a different exchange with the same option
 value have either been answered (and successfully unprotected), or
 their sender sequence numbers differ from the next request by at
 least the window size (in which case they can not be accepted by
 the server after the new request has started).

 If the client follows the suggestion of only storing its own
 sequence numbers to persistent memory every K requests, it must
 increment the stored sequence number counter before using the last
 window-size sequence numbers available, because the remaining
 sequence numbes might only be used with certain constraints (it
 might be necessary to set a Request-Tag on them).

 With this text, clients could even work around ever needing to send
 the option by bumping their sequence number - looks like bad behavior
 in the first place, but then again, it is just a variant of the
 "forbid out-of-order sequence numbers in blockwise" alternative
 option.

 AFAICT this would be the first actual use of the window size; so far
 client and server can well interact with different replay window
 sizes. Probably it's OK to be the first user of the parameter.

 For the options list:

 The Request-Discriminator option is added to the "E=*" category in
 the options list, and is listed together with Block1/2 in all other
 places they are mentioned.

 For somewhere else (?):

 A server responding an inner Block2 option SHOULD use an ETag on it,
 even if the result is not cachable (eg. the response to a POST
 request), and take reasonable measures against identical ETags on
 distinct states, otherwise OSCOAP does not provide integrity
 protection of the response body.

]

3. Security properties of blockwise transfer

 Blockwise transfer, specified in [RFC7959], fragments REST operations
 into exchanges of individual blocks. It provides, at the discretion
 of the server, direct access to parts of a resource representation

https://datatracker.ietf.org/doc/html/rfc7959

Amsuess Expires September 28, 2017 [Page 5]

Internet-Draft Request-Tag option March 2017

 (where the client can fetch or send any block in any sequence, also
 called "random access") or sequential access (where the operation is
 started by exchanging the first block, and terminates in the exchange
 of the last block).

 The individual blocks are correlated only by the client _endpoint_
 (or security context if applicable), the requested _URI_, and _time_
 (and thereby server state, where the operation is available at most
 until another request with the same endpoint/URI combination
 arrives).

 The specification does include security considerations, which do
 advise against allowing random write access, but does not contain a
 mechanism that allows protecting the integrity of the operation's
 body. Consequently, the attacks described below are possible even
 when blockwise transfer is used over DTLS to the author's knowledge.

3.1. Blockwise transfer cases

 There are several shapes a blockwise exchange can take, named here
 for further reference. Requests or responses bodies are called
 "small" or "large" here if they do or do not, respectively, fit in a
 single message. Empty bodies are small. Naming consists of case
 discrimination letters for No blockwise, Sequential transfer and
 Random access in the Block1 and Block2 phases, respectively.

 [Author's note: I'd appreciate real examples to replace the more
 contrived ones; the worst are marked with (?).]

 o _NN_: Request and response bodies are both small. No
 fragmentation happens.

 Examples: GETs to sensors, PUTs to actors.

 Integrity protection: Request/response matching is sufficient.

 o _NS_: A small request causes a large response, which gets
 fragmented and sequentially fetched by the client.

 Examples: GETting an unfiltered link-format list, PUTting a
 compressed image to a picture frame that decides to return its
 (decompressed) state in full in the response(?).

 Integrity protection: The full request is copied in each
 subsequent request.

 Changes in the response need to be covered by the server setting a
 unique ETag.

Amsuess Expires September 28, 2017 [Page 6]

Internet-Draft Request-Tag option March 2017

 Client and server could still disagree over whether the requests
 constitute a single or distinct REST operations; that's a general
 issue that should be pointed out. Note, however, that the _SS_
 case _does_ provide that distinction! ["making non-blockwise as
 safe as blockwise" is not part of the mission statement (only the
 other way round), so probably we should accept this here and not
 try to provide that assurance - it would make every request a
 Request-Tag candidate, and rule out anything but NSTART=1 because
 the client couldn't know whether Block2 will be used.]

 o _NR_: A small request is used to access a large one at random
 offsets.

 Examples: Inspecting a device's exposed memory.

 Integrity protection: Likewith _NS_, just that the distinction
 between single and distinct REST operations is presumably [check!]
 not meaningful anyway.

 o _SN_: A large request is sent in sequential blocks with a small
 (typically empty) response.

 The server can, after any block, indicate that it has processed
 the blocks so far, and send a status for the processed ones.

 Examples: FETCHing a complex query, POSTing one's resource list to
 a resource directory.

 Integrity protection: The same Request-Tag gets set to all request
 blocks. The server treats blocks with a different tag (eg.
 replays from an earlier transmission) as different operations and
 possibly rejects them as incomplete entities.

 o _RN_: A large request is sent in a random-access pattern,
 resulting in a small response(s) (typically, one response each, as
 the server would in that scenario send successful responses after
 each block or small groups of blocks.

 Examples: Storing data in a memory region of a device. (?)

 Integrity protection: The client can set a Request-Tag if it wants
 to group operations, but there is presumably [check!] no
 correlation to protect anyway.

 o _SR_, _RR_: Large requests (sequentially or randomly requested)
 that have their large responses fetched in random access patterns
 - these cases are explicitly forbidden in blockwise transfer
 ([RFC7959] section 2.7).

https://datatracker.ietf.org/doc/html/rfc7959#section-2.7

Amsuess Expires September 28, 2017 [Page 7]

Internet-Draft Request-Tag option March 2017

 o _RS_: [That's a tough one. A) I can't come up with examples, and
 B) the same section 2.7 says that Block2 processing starts when
 the _last_ block is done, implying that the request is sequential
 but not outright prescribing it. Furthermore, can there be
 inbetween successful replies?]

 o _SS_: A large request is sent sequentially, and the large response
 is fetched in sequential blocks after the request has been
 transmitted in full.

 Integrity protection: The client sets a Request-Tag as in the _SN_
 case. The last exchange (itself protected by OSCOAP's request/
 response matching) carries the Request-Tag option, and as with
 NS, the server sets an ETag.

 This is a case for which the Request-Tag use might need extending
 to the Block2 phase; while the protection is sufficient by passing
 the link on from Request-Tag to ETag, the server's state might be
 overridden by a simultaneous request (which the Request-Tag option
 promises to deal with), and the client may fail to retrieve the
 data because another request clears the state. This is
 problematic more for the proxy use case than for protected
 blockwise transfers. It is not fatal for the proxy case, though:
 It would need to serialize only the last exchange of the Block1
 phase and the complete Block2 phase, but in that it does not
 depend on the client's data any more, can finish the Block2 phase
 quickly and spool the data for the client to fetch before
 finishing the next operation.

 [Note that the _NS_ picture frame example is by far the worst and
 farest-fetched. I'd like to have an example of a non-safe request
 resulting in fragmented responses, but that behavior is usually
 discouraged (PUT responses typically being empty, POST responses
 bearing a Location), but not outright forbidden, and catered for in
 blockwise where it comes to combined use of Block1 and Block2.]

3.2. Attack scenarios

 This section outlines some attacks that should be mitigated by the
 Request-Tag option. They are written with a malicious proxy between
 client and server in mind; whether that is a forward, reverse,
 transparent proxy, or any other entity on the data path that can
 intercept and inject packages into the communication is irrelevant to
 the attacks.

 The illustrations draw terminology (especially the "@" and "X"
 symbols) from [I-D.mattsson-core-coap-actuators].

Amsuess Expires September 28, 2017 [Page 8]

Internet-Draft Request-Tag option March 2017

 The scenarios typically require the attacker to have a good idea of
 the content of the packages that are transferred. Note that the
 attacker can see the codes of the messages.

3.2.1. "Promote Valjean" (on blockwise case SN)

 In this scenario, blocks from two operations on a POST-accepting
 resource are combined to make the server execute an action that was
 not intended by the authorized client. This works only if the client
 attempts a second operation after first operation failed (due what
 the attacker made appear like a network outage) within the replay
 window. The client does not receive a confirmation on the second
 operation either, but by the time, the server has already executed
 the unauthorized action.

 Client Foe Server
 | | |
 +-------------> POST "incarcerate" (Block1: 0, more to come)
 | | |
 <-------------+ 2.31 Continue (Block1: 0 received, send more)
 | | |
 +----->@ | POST "valjean" (Block1: 1, last block)
 | | |
 +----->X | All retransmissions dropped
 | | |

 (Client: Odd, but let's go on and promote Javert)

 | | |
 +-------------> POST "promote" (Block1: 0, more to come)
 | | |
 | X<-----+ 2.31 Continue (Block1: 0 received, send more)
 | | |
 | @------> POST "valjean" (Block1: 1, last block)
 | | |
 | X<-----+ 2.04 Valjean Promoted

 Figure 2: Attack example

 With Request-Tag in place, the client would have assigned a different
 Request-Tag to the "promote" line, and the server would have either
 reacted to the "valjean" POST by incarcerating valjean (if it could
 keep both operation states at the same time), or responded 5.03 to
 the "promote" request until a timeout, or responded 4.08 to the
 injected "valjean" request.

Amsuess Expires September 28, 2017 [Page 9]

Internet-Draft Request-Tag option March 2017

 The client would only have been free to use the same Request-Tag on
 the "promote" POST as on the "incarcerate" POST if, in the meantime,
 it had exchanged enough messages that the latest message of the first
 use ("valjean") is dropped from the server's window, and thus the
 sever would not accept its replay.

3.2.2. "Free the hitman" (blockwise case SN or SS)

 In this example, mismatched Block1 packages against a resource that
 passes judgement are mixed up to create a response matched to the
 wrong operation.

 Again, a first operation is aborted by the proxy ("Homeless stole
 apples. What shall we do with him?" - "Set him free."), and a part
 of that operation is later used in a different operation to prime the
 server for responding leniently to another operation that would
 originally have been "Hitman killed someone. What shall we do with
 him?" - "Hang him.".

Client Foe Server
 | | |
 +----->@ | POST "Homeless stole apples. Wh"
 | | | (Block1: 0, more to come)

(Client: We'll try that one later again; for now, we have something more
urgent:)

 | | |
 +-------------> POST "Hitman killed someone. Wh"
 | | | (Block1: 0, more to come)
 | | |
 | @<-----+ 2.31 Continue (Block1: 0 received, send more)
 | | |
 | @------> POST "Homeless stole apples. Wh"
 | | | (Block1: 0, more to come)
 | | |
 | X<-----+ 2.31 Continue (Block1: 0 received, send more)
 | | |
 <------@ | 2.31 Continue (Block1: 0 received, send more)
 | | |
 +-------------> POST "at shall we do with him?"
 | | | (Block1: 1, last block)
 | | |
 <-------------+ 2.05 "Set him free."
 (Block1: 1 received, and this is the result)

 Figure 3: Attack example

Amsuess Expires September 28, 2017 [Page 10]

Internet-Draft Request-Tag option March 2017

 The example works equivalently with longer responses, placing it in
 the _SS_ category instead of the _SN_.

 [More examples would help, especially for the other blockwise cases.
 Is it relevant to distinguish non-piggybacked responses?]

4. Rationale

 This part is informative and serves to illustrate why this option is
 necessary, and how it is different from similar concepts.

 Why not...

 o forbid out-of-order sequence numbers in blockwise?

 This could be a viable path. To see whether this works, the
Section 3.1 chapter would hopefully help. (It should not rule out

 legitimate cases of random acces, after all).

 This would exclude other uses of the option like that in
Appendix A.

 o put an option in OSCOAP?

 This would work, and might in the end happen with compression of
 the Request-Tag option into the AAD.

 As before, this would exclude other uses cases.

 o open up an endpoint per operation?

 This was explored in an earlier draft version as Request-
 Discriminator, which would have been a lightweight way to
 "multiplex" different endpoints (at least for the purpose of
 blockwise making references to them) into one secured connection.

 It is still the author's assumption that this would laregly be
 equivalent to the Request-Tag both in the OSCOAP application and
 in the use case explored in Appendix A, but the Request-Tag path
 is being explored currently because it is easier to understand,
 explain and reason about, while the Request-Discriminator way
 might result in less normative text with more comments, and
 possibly have similar effects in implementation codebases.

 A Request-Discriminator option could, among other things, be used
 by a proxies that act as OSCOAP terminators (eg. network
 interfaces in composite devices that use unencrypted CoAP on
 internal serial lines) to disambiguate request from different

Amsuess Expires September 28, 2017 [Page 11]

Internet-Draft Request-Tag option March 2017

 security contexts towards crypto-unware but blockwise-capable
 components.

5. Security Considerations

 When used in combination with OSCOAP or other security layers to
 prevent block mixing between REST operations, it is crucial to only
 reuse request tags as specified, and not to use any affected sequence
 numbers (which means the latest sequence number plus the window size)
 should information about used request tags get lost.

 While the Request-Tag is not echoed back by the server unlike the
 Token, the client should still refrain from setting it to internal
 values (like memory address of state data) to avoid exposing internal
 data to a server that it could use in unrelated attacks.

6. IANA Considerations

 [Missing: have a number assigned and the option published]

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <http://www.rfc-editor.org/info/rfc7959>.

7.2. Informative References

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security of CoAP (OSCOAP)", draft-ietf-core-

object-security-01 (work in progress), December 2016.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7959
http://www.rfc-editor.org/info/rfc7959
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-01
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-01

Amsuess Expires September 28, 2017 [Page 12]

Internet-Draft Request-Tag option March 2017

 [I-D.mattsson-core-coap-actuators]
 Mattsson, J., Fornehed, J., Selander, G., and F.
 Palombini, "Controlling Actuators with CoAP", draft-

mattsson-core-coap-actuators-02 (work in progress),
 November 2016.

Appendix A. Use of Request-Tag by proxies

 In pre-OSCOAP practice, proxies rarely face situations where
 simultaneous Block1 operations from different affect a single
 resource and can not be executed in parallel due to the constraints
 of only one Block1 operation being possible per endpoint pair and
 resource. (If that happens, the proxy can either serialize the
 requests, or 5.03 the second requester until the first request has
 completed).

 With OSCOAP, all clients access the resource "/" as far as a proxy is
 concerned, which would lead to more frequent situations in which it
 would need to serialize requests. Clients that employ OSCOAP's
 outer-blockwise mechanism find themselves in a similar situation.

 Those proxies and clients can utilize the Request-Tag option work off
 those requests in parallel by assigning them different Request-Tag
 values. To a proxy, this will only mean an increase in state of up
 to eight bytes per operation (if it could handle unencrypted
 simultaneous requests, it would tell them apart by their URIs; here,
 it tells them apart by their request tags). The state a server needs
 to keep per operation increases by the same eight bytes compared to
 serving the same simultaneous requests directly to different
 endopoints.

Appendix B. Examples

B.1. OSCOAP inner-blockwise

 All messages exchanged in the following diagrams transferred as
 OSCOAP protected messages. The field data shown indicates code,
 payload and options of the unprotected (ie. inner) messages.
 Payloads are symbolic and do not necessarily line up in any block
 size when taken literally. Sequence numbers used are indicated at
 the sender side, and the window size used is 32.

 Figure 4 shows how under usual circumstances, the Request-Tag option
 does not need to be set:

https://datatracker.ietf.org/doc/html/draft-mattsson-core-coap-actuators-02
https://datatracker.ietf.org/doc/html/draft-mattsson-core-coap-actuators-02

Amsuess Expires September 28, 2017 [Page 13]

Internet-Draft Request-Tag option March 2017

 Client Server
 | |
 [1]-----------> POST "incarcerate" (Block1: 0, more to come)
 | |
 <----------[11] 2.31 Continue (Block1: 0 received, send more)
 | |
 [2]-----------> POST "valjean" (Block1: 1, last block)
 | |
 <----------[12] 2.04 Valjean incarcerated (Block1: 1 received)
 | |
 [3]-----------> POST "promote" (Block1: 0, more to come)
 | |
 <----------[13] 2.31 Continue (Block1: 0 received, send more)
 | |
 [4]-----------> POST "javert" (Block1: 1, last block)
 | |
 <----------[14] 2.04 Javert promoted (Block1: 1 received)

 Figure 4: Back to back block transfer

 If there is any doubt about whether all sent sequence numbers of a
 Request-Tag value are either acknowledged or off the window, the
 client uses a different value as in Figure 5. The client here uses
 the shortest possible value, the empty string:

Amsuess Expires September 28, 2017 [Page 14]

Internet-Draft Request-Tag option March 2017

Client Server
 | |
 [1]-----------> POST "incarcerate" (Block1: 0, more to come)
 | |
 <----------[11] 2.31 Continue (Block1: 0 received, send more)
 | |
 [2]---X | POST "valjean" (Block1: 1, last block)
 | |

(extended network outage; when it's over, the client attempts a different
operation:)

 [3]-----------> POST "promote" (Block1: 0, more to come;
 | | Request-Tag: "")
 | |
 <----------[12] 2.31 Continue (Block1: 0 received, send more)
 | |
 [4]-----------> POST "javert" (Block1: 1, last block;
 | | Request-Tag: "")
 | |
 <----------[14] 2.04 Javert promoted (Block1: 1 received)

 Figure 5: Behavior after extended package loss

B.2. Use by proxies

 A proxy can use the Request-Tag option to work off operations from
 different clients (indicated by the two origin lines under "Clients")
 towards a single resource:

 Clients Proxy Server
 | | |
 +-----> | POST "Homeless stole apples. Wh"
 | | | (Block1: 0, more to come)
 | | |
 | +------> POST "Homeless stole apples. Wh"
 | | | (Block1: 0, more to come)
 | | |
 | <------+ 2.31 Continue (Block1: 0 received, send more)
 | | |
 <-----+ | 2.31 Continue (Block1: 0 received, send more)
 | |
 |
 +-------> | POST "Hitman killed someone. Wh"
 | | | (Block1: 0, more to come)
 | | |
 | +------> POST "Hitman killed someone. Wh"
 | | | (Block1: 0, more to come; Request-Tag: "")

Amsuess Expires September 28, 2017 [Page 15]

Internet-Draft Request-Tag option March 2017

 | | |
 | <------+ 2.31 Continue (Block1: 0 received, send more)
 | | |
 <-------+ | 2.31 Continue (Block1: 0 received, send more)
 | | |
 | | | |
 |-----> | POST "at shall we do with him?"
 | | | (Block1: 1, last block)
 | | |
 | +------> POST "at shall we do with him?"
 | | | (Block1: 1, last block)
 | | |
 | <------+ 2.05 "Set him free."
 | | | (Block1: 1 received, and this is the result)
 | | |
 <-----+ | 2.05 "Set him free."
 | | | | (Block1: 1 received, and this is the result)
 |
 |-------> | POST "at shall we do with him?"
 | | | (Block1: 1, last block)
 | | |
 | +------> POST "at shall we do with him?"
 | | | (Block1: 1, last block, Request-Tag: "")
 | | |
 | <------+ 2.05 "Hang him."
 | | | (Block1: 1 received, and this is the result)
 | | |
 <-------+ | 2.05 "Hang him."
 | | | (Block1: 1 received, and this is the result)

 Figure 6: Proxy example

Author's Address

 Christian Amsuess
 Energy Harvesting Solutions

 Email: c.amsuess@energyharvesting.at

Amsuess Expires September 28, 2017 [Page 16]

