
Workgroup: CoRE

Internet-Draft:

draft-amsuess-core-resource-directory-

extensions-10

Published: 4 March 2024

Intended Status: Experimental

Expires: 5 September 2024

Authors: C. Amsüss

CoRE Resource Directory Extensions

Abstract

A collection of extensions to the Resource Directory [rfc9176] that

can stand on their own, and have no clear future in specification

yet.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Constrained RESTful

Environments Working Group mailing list (core@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/core/.

Source for this draft and an issue tracker can be found at https://

gitlab.com/chrysn/resource-directory-extensions.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/core/
https://gitlab.com/chrysn/resource-directory-extensions
https://gitlab.com/chrysn/resource-directory-extensions
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Reverse Proxy requests

2.1. Discovery

2.2. Registration

2.2.1. Registration updates

2.3. Proxy behavior

2.3.1. Limitations from using a reverse proxy

2.4. On-Demand proxying

2.5. Multiple upstreams

2.6. Examples

2.6.1. Registration through a firewall

2.6.2. Registration from a browser context

2.7. Notes on stability and maturity

2.8. Security considerations

2.9. Alternatives to be explored

3. Infinite lifetime

3.1. Example

4. Limited lifetimes

5. Zone identifier introspection

5.1. Example

6. Proxying multicast requests

6.1. Example

7. Registrations that update DNS records

8. Propagating server generated registration information

9. Combining simple registration with EDHOC and ACE

9.1. Generic EDHOC in reverse flow

9.2. ACE roles

9.3. ACE EDHOC profile

9.4. ACE OSCORE profile

9.5. ACE OSCORE profile without ACE

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Attic

Appendix B. Change log

Appendix C. Acknowledgements

Author's Address

¶

https://trustee.ietf.org/license-info

1. Introduction

This document pools some extensions to the Resource Directory

[rfc9176] that might be useful but have no place in the original

document.

They might become individual documents for IETF submission, simple

registrations in the RD Parameter Registry at IANA, or grow into a

shape where they can be submitted as a collection of tools.

At its current state, this draft is a collection of ideas.

2. Reverse Proxy requests

When a registrant registers at a Resource Directory, it might not

have a suitable address it can use as a base address. Typical

reasons include being inside a NAT without control over port

forwarding, or only being able to open outgoing connections (as

program running inside a web browser utilizing CoAP over WebSocket

[RFC8323] might be).

[rfc9176] suggests (in the Cellular M2M use case) that proxy access

to such endpoints can be provided, it gives no concrete mechanism to

do that; this is such a mechanism.

This mechanism is intended to be a last-resort option to provide

connectivity. Where possible, direct connections are preferred.

Before registering for proxying, the registrant should attempt to

obtain a publicly available port, for example using PCP ([RFC6887]).

The same mechanism can also be employed by registrants that want to

conceal their network address from its clients.

A deployed application where this is implicitly done is LwM2M

[citation missing]. Notable differences are that the protocol used

between the client and the proxying RD is not CoAP but application

specific, and that the RD (depending on some configuration) eagerly

populates its proxy caches by sending requests and starting

observations at registration time.

2.1. Discovery

An RD that provides proxying functionality advertises it by

announcing the additional resource type "TBD1" on its directory

resource.

2.2. Registration

A client passes the "proxy=yes" or "proxy=ondemand" query parameter

in addition to (but typically instead of) a "base" query parameter.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A server that receives a "proxy=yes" query parameter in a

registration (or receives "proxy=ondemand" and decides it needs to

proxy) MUST come up with a "Proxy URL" on which it accepts requests,

and which it uses as a Registration Base URI for lookups on the

present registration.

The Proxy URL SHOULD have no path component, as acting as a reverse

proxy in such a scenario means that any relative references in all

representations that are proxied must be recognized and possibly

rewritten.

The RD MAY accept connections also on alternative Registration Base

URIs using different protocols; it can advertise them using the

mechanisms of [I-D.ietf-core-transport-indication].

The registrant is not informed of the chosen public name by the RD.

(Section 8 discusses means how to change that).

This mechanism is applicable to all transports that can be used to

register. If proxying is active, the restrictions on when the base

parameter needs to be present ([rfc9176] Registration template) are

relaxed: The base parameter may also be absent if the connection

originates from an ephemeral port, as long as the underlying

protocol supports role reversal, and link-local IPv6 addresses may

be used without any concerns of expressibility.

If the client uses the role reversal rule relaxation, both it and

the server keep that connection open for as long as it wants to be

reachable. When the connection terminates, the RD SHOULD treat the

registration as having timed out (even if its lifetime has not been

exceeded) and MAY eventually remove the registration. It is yet to

be decided whether the RD's announced ability to do proxying should

imply that infinite lifetimes are necessarily supported for such

registrations; at least, it is RECOMMENDED.

2.2.1. Registration updates

The "proxy" query parameter can not be changed or repeated in a

registration update; RD servers MUST answer 4.00 Bad Request to any

registration update that has a "proxy" query parameter.

As always, registration updates can explicitly or implicitly update

the Registration Base URI. In proxied registrations, those changes

are not propagated to lookup, but do change the forwarding address

of the proxy.

For example, if a registration is established over TCP, an update

can come along in a new TCP connection. Starting then, proxied

requests are forwarded along that new connection.

¶

¶

¶

¶

¶

¶

¶

¶

¶

2.3. Proxy behavior

The RD operates as a reverse-proxy as described in [RFC7252] Section

5.7.3 at the announced Proxy URL(s), where it decides based on the

requested host and port to which registrant endpoint to forward the

request.

The address the incoming request are forwarded to is the base

address of the registration. If an explicit "base" paremter is

given, the RD will forward requests to that location. Otherwise, it

forwards to the registration's source address (which is the implied

base parameter).

When an implicit base is used, the requests forwarded by the RD to

the EP contain no Uri-Host option. EPs that want to run multiple

parallel registrations (especially gateway-like devices) can either

open up separate connections, or use an additional (to-be-specified)

mechanism to set the "virtual host name" for that registration in a

separate argument.

2.3.1. Limitations from using a reverse proxy

The registrant requesting the reverse proxying needs to ensure that

all services it provides are compatible with being operated behind a

reverse proxy with an unknown name. In particular, this rules out

all applications that refer to local resources by a full URI (as

opposed to relative references without scheme and host).

Applications behind a reverse proxy can not use role reversal.

Some of these limitations can be mitigated if the application knows

its advertised address. The mechanisms of Section 8 might be used to

change that.

2.4. On-Demand proxying

If an endpoint is deployed in an unknown network, it might not know

whether it is behind a NAT that would require it to configure an

explicit base address, and ask the RD to assist by proxying if

necessary by registering with the "proxy=ondemand" query parameter.

A server receiving that SHOULD use a different IP address to try to

access the registrant's .well-known/core file using a GET request

under the Registration Base URI. If that succeeds, it may assume

that no NAT is present, and ignore the proxying request. Otherwise,

it configures proxying as if "proxy=yes" were requested.

Note that this is only a heuristic [and not tested in deployments

yet].

¶

¶

¶

¶

¶

¶

¶

¶

2.5. Multiple upstreams

When a proxying RD is operating behind a router that has uplinks

with multiple provisioning domains (see [RFC7556]) or a similar

setup, it MAY mint multiple addresses that are reachable on the

respective provisioning domains. When possible, it is preferred to

keep the number of URIs handed out low (avoiding URI aliasing); this

can be achieved by announcing both the proxy's public addresses

under the same wildcard name.

If RDs are announced by the uplinks using RDAO, the proxy may use

the methods of [I-D.amsuess-core-rd-replication] to distribute its

registrations to all the announced upstream RDs.

In such setups, the router can forward the upstream RDs using the

PvD option ([RFC8801]) to PvD-aware hosts and only announce the

local RD to PvD-unaware ones (which then forwards their

registrations). It can be expected that PvD-aware endpoints are

capable of registering with multiple RDs simultaneously.

2.6. Examples

2.6.1. Registration through a firewall

Later, lookup of that registration might say:

A request to that resource will end up at an IP address of the RD,

which will forward it using its the IP and port on which the

registrant had registered as source port, thus reaching the

registrant through the stateful firewall.

¶

¶

¶

Req from [2001:db8:42::9876]:5683:

POST coap://rd.example.net/rd?ep=node9876&proxy=ondemand

</some-resource>;rt="example.x"

Req from other-address.rd.example.net:

GET coap://[2001:db8:42::9876]/.well-known/core

Request blocked by stateful firewall around [2001:db8:42::]

RD decides that proxying is necessary

Res: 2.04 Created

Location: /reg/abcd

¶

¶

Req: GET coap://rd.example.net/lookup/res?rt=example.x

Res: 2.05 Content

<coap://node987.rd.example.net/some-resource>;rt="example.x

¶

¶

2.6.2. Registration from a browser context

The gyroscope can now not only be looked up in the RD, but also be

reached:

In this example, the RD has chosen to do port-based rather than

host-based virtual hosting and announces its literal IP address as

that allows clients to not send the lengthy Uri-Host option with all

requests.

2.7. Notes on stability and maturity

Using this with UDP can be quite fragile; the author only draws on

own experience that this can work across cell-phone NATs and does

not claim that this will work over generic firewalls.

[It may make sense to have the example as TCP right away.]

2.8. Security considerations

An RD MAY impose additional restrictions on which endpoints can

register for proxying, and thus respond 4.01 Unauthorized to request

that would pass had they not requested proxying.

Attackers could do third party registrations with an attacked

device's address as base URI, though the RD would probably not

amplify any attacks in that case.

The RD MUST NOT reveal the address at which it reaches the

registrant except for adaequately authenticated and authorized

debugging purposes, as that address could reveal sensitive location

data the registrant may wish to hide by using a proxy.

Usual caveats for proxies apply.

2.9. Alternatives to be explored

With the mechanisms of [I-D.ietf-core-transport-indication], an RD

could also operate as a forward proxy, and indicate its availability

Req: POST coaps+ws://rd.example.net/rd?ep=node1234&proxy=yes

</gyroscope>;rt="core.s"

Res: 2.04 Created

Location: /reg/123

¶

¶

Req: GET coap://rd.example.net/lookup/res?rt=core.s

Res: 2.05 Content

<coap://[2001:db8:1::1]:10123/gyroscope>;rt="core.s"

¶

¶

¶

¶

¶

¶

¶

¶

for that purpose in a has-proxy link it creates on its own, and

which it makes discoverable through its lookup interfaces.

How a registrant opts in to that behavior, how it selects a suitable

public address (using the base attribute is tempting, but conflicts

with the currently prescribed proxy behavior) and for which

scenarios this is preferable is a topic being explored.

As with the reverse proxy address, the registrant is not informed of

the public addresses (though again, Section 8 can be used to change

that). Knowing these addresses can be relevant when the endpoint

advertises its services out of band (e.g. by showing a QR code or

exposing links through NFC), but also when the mechanism of

[I-D.ietf-core-transport-indication] Appendix D is used.

3. Infinite lifetime

An RD can indicate support for infinite lifetimes by adding the

resoruce type "TBD2" to its list of resource types.

A registrant that wishes to keep its registration alive indefinitely

can set the lifetime value as "lt=inf".

Registrations with infinite lifetimes never time out. Unlike regular

registrations, they are not "soft state"; the registrant can expect

the RD to persist the registrations across network changes, reboots,

softare updates and that like.

Typical use cases for infinite life times are:

Commissioning tools (CTs) that do not return to the deployment

site, and thus can not refresh the soft state

Proxy registrations whose lifetime is limited by a connection

that is kept alive

3.1. Example

Had the example of Section 2.6.2 discovered support for infinite

lifetimes during lookup like this:

it could register like that:

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

Req: GET coaps+ws://rd.example.net/.well-known/core?rt=core.rd*

Res: 2.05 Content

</rd>;rt="core.rd TBD1 TBD2";ct=40

¶

¶

and never need to update the registration for as long as the

websocket connection is open.

(When it gets terminated, it could try renewing the registration,

but needs to be prepared for the RD to already have removed the

original registration.)

4. Limited lifetimes

Even if an RD supports infinite lifetimes, it may not accept them

from just any registrant. Even more, an RD may have policies in

place that require a certain frequency of updates and thus place an

upper limit on lt lower than the technical limit of 136 years.

This document does not define any means of communicating lifetime

limits, but explores a few options:

Administrative channels.

An RD that sees registrations with unreasonably long lifetimes

can flag them for its operator to take further measures.

While sounding tediously manual, this captures the observation

that different components are configured in a softly incompatible

way, and need operator intervention (because if there were

automatic means, they obviously failed).

General advertisement of preferred lifetimes.

When the limitations on the lifetimes are not from authorization

but from general setup, an RD could advertise that property in a

to-be-created link target attribute of its registration resource.

Different attributes could express preference or hard limits.

This information is also available easily for registrants, which

may then heed the advice if supported, and may notify their

operators that they just started spending more resources than

they were configured to.

It is also available to tools that provision endpoints with their

RD address (and parameters), as they can use the same lookup

interface.

Per-registration information.

Req: POST coaps+ws://rd.example.net/rd?ep=node1234&proxy=yes<=inf

</gyroscope>;rt="core.s"

Res: 2.04 Created

Location: /reg/123

¶

¶

¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

¶

* ¶

For soft limits, the RD can offer the endpoint additional

metadata if it queries them post-registration. That query can use

the endpoint lookup interface, or the extension of Section 8.

This may require additional round-trips on the part of endpoint.

Hard limits informed by error codes.

An RD can reject registrations with overly long lifetimes if the

endpoint is not authorized to use such long lifetimes with a 4.01

Unauthorized error. The mechanisms of [RFC9290], with a to-be-

defined error detail on the permissible lifetime, can be used to

propagate information back to then endpoint.

This behavior is explicitly NOT RECOMMENDED, because devices may

crucially depend on the RD's services -- this rejection may even

be the reason why the device is not configured with the new

settings that would contain a shorter lifetime.

5. Zone identifier introspection

The 'split-horizon' mechanism of [rfc9176] (that registrations with

link-local bases can only be read from the zone they registered on)

reduces the usability of the endpoint lookup interface for debugging

purposes.

To allow an administrator to read out the "show-zone-id" query

parameter for endpoint and resource lookup is introduced.

A Resource Directory that understands this parameter MUST NOT limit

lookup results to registrations from the lookup's zone, and MUST use

[RFC6874] zone identifiers to annotate which zone those

registrations are valid on.

The RD MUST limit such requests to authenticated and authorized

debugging requests, as registrants may rely on the RD to keep their

presence secret from other links.

5.1. Example

6. Proxying multicast requests

Multicast requests are hard to forward at a proxy: Even if a media

type is used in which multiple responses can be aggregated

¶

* ¶

¶

¶

¶

¶

¶

¶

Req: GET /rd-lookup/ep?show-zone-id&et=printer

Res: 2.05 Content

</reg/1>;base="coap://[2001:db8::1]";et=printer;ep="bigprinter",

</reg/2>;base="coap://[fe80::99%wlan0]";et=printer;ep="localprinter-1234",

</reg/3>;base="coap://[fe80::99%eth2]";et=printer;ep="localprinter-5678",

¶

transparently, the proxy can not reliably know when all responses

have come in. [RFC7390] Section 2.9 describes the difficulties in

more detail.

Note that [I-D.tiloca-core-groupcomm-proxy] provides a mechanism

that does allow the forwarding of multicast requests. It is yet to

be determined what the respective pros and cons are. Conversely,

that lookup mechanism may also serve as an alternative to resource

lookup on an RD.

A proxy MAY expose an interface compatible with the RD lookup

interface, which SHOULD be advertised by a link to it that indicates

the resource types core.rd-lookup-res and TBD4.

The proxy sends multicast requests to All CoAP Nodes ([RFC7252]

Section 12.8) requesting their .well-known/core files either eagerly

(ie. in regular intervals independent of queries) or on demand (in

which case it SHOULD limit the results by applying [RFC6690] query

filtering; if it has received multiple query parameters it should

forward the one it deems most likely to limit the results, as .well-

known/core only supports a single query parameter).

In comparison to classical RD operation, this RD behaves roughly as

if it had received a simple registration with a All CoAP Nodes

address as the source address, if such behavior were specified. The

individual registrations that result from this neither have an

explicit registration resource nor an explicit endpoint name; given

that the endpoint lookup interface is not present on such proxies,

neither can be queried.

Clients that would intend to do run a multicast discovery operation

behind the proxy can then instead query that resource lookup

interface. They SHOULD use observation on lookups, as an on-demand

implementation MAY return the first result before others have

arrived, or MAY even return an empty link set immediately.

6.1. Example

¶

¶

¶

¶

¶

¶

Req: GET coap+ws://gateway.example.com/.well-known/core?rt=TBD4

Res: 2.05 Content

</discover>;rt="core.rd-lookup-res TBD4";ct=40

Req: GET coap+ws://gateway.example.com/discover?rt=core.s

Observe: 0

Res: 2.05 Content

Observe: 0

Content-Format: 40

(empty payload)

¶

At the same time, the proxy sends out multicast requests on its

interfaces:

upon receipt of which it sends out a notification to the websocket

client:

7. Registrations that update DNS records

An RD that is provisioned with means to update a DNS zone and that

has a known mapping from registrants to host names could use

registrations to populate DNS records from registration base

addresses.

When combined with Section 2, these records point to the RD's built-

in proxy rather than to the base address.

This mechanism is not described in further detail yet as it does not

interact well yet with how the base registration attribute interacts

with the proxy announcements of

[I-D.ietf-core-transport-indication].

8. Propagating server generated registration information

The RD can populate some data into the registration: The RD may pick

the sector and endpoint name based on the endpoint's credentials, or

(as introduced in this documents) reverse proxy names and soft

lifetime limits can be added.

With the exception of sector and endpoint name, the registrant can

query those properties through the endpoint lookup interface.

However, this is cumbersome as it requires it to use both the

registration and the lookup interface.

The architecture of [I-D.ietf-core-coap-pubsub] offers a different

architectural setup: Applied to the RD, the registration would

generate both a registration metadata resource (at which the

¶

Req: GET coap://ff05::fd/.well-known/core?rt=core.s

Res (from [2001:db8::1]:5683): 2.05 Content

</temp>;ct="0 112";rt="core.s"

Res (from [2001:db8::2]:5683): 2.05 Content

</light>;ct="0 112";rt="core.s"

¶

¶

Res: 2.05 Content

Observe: 1

Content-Format: 40

<coap://[2001:db8::1]/temp>;ct="0 112";rt="core.s";anchor="coap://[2001:db8::1]",

<coap://[2001:db8::2]/light>;ct="0 112";rt="core.s";anchro="coap://[2001:db8::2]"

¶

¶

¶

¶

¶

¶

registrant can set or query its registration's metadata) and a

registration link resource (which contains all the links the

registrant provides). Such a setup would make it easier for

registrants to query or update registration metadata, including

querying for an implicitly assigned endpoint name or sector.

Extending the RD specification to allow this style of operation

would be possible without altering its client facing interfaces.

Alternatively, using a new media type for operations on the

registration resource and/or the FETCH and PATCH methods would

enable such operations in a less intrusive way. While it would be

tempting to add an Accept option to the registration request to

solicit immediate information on the registration that was just

created, the Accept option's criticality would render this

incompatible with existing servers. The option can still be set if

the new content format is advertised by the RD.

Without any media type suggested so far, this is what a registration

could look like if the RD advertised that it provided content format

TBD6 on the registration interface:

9. Combining simple registration with EDHOC and ACE

For very constrained devices, starting a simple registration may be

the only occasion at which they use the CoAP client role. If they

exclusively send piggybacked responses (Section 5.2.1 of [RFC7252])

and handle only idempotent requests, they can completely avoid the

need for handling retransmissions.

This section presents some patterns in which an endpoint can

register securely without implementing more CoAP features.

9.1. Generic EDHOC in reverse flow

When such a endpoints uses EDHOC [I-D.ietf-lake-edhoc], it can

follow this flow:

¶

¶

¶

Req from [2001:db8::1]:5683:

POST coap://rd.example.net/rd

Accept: TBD6

Payload:

</some-resource>;rt="example.x"

Res: 2.04 Created

Location: /reg/abcd

Content-Format: TBD6

Payload:

Soft lifetime limit 3600, please update your registration in time.

Forward proxy services are offered at coaps+ws://rd.example.net and

coaps+tcp://rd.example.net.

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7252#section-5.2.1

The endpoints requests simple registration with its RD. This request

is unencrypted. Both for privacy reasons and to reduce configuration

effort, the endpoints elides the ep registration parameter -- it

will be established during authentication anyway.

TBD: Can we establish the correctness of the parameters somewhere

later? (It could if it repeated any parameters in EAD3, at least as

an empty item indicating that it's a simple registration).

The RD initiates an EDHOC exchange as part of its query for the

endpoints's /.well-known/core resource. As the endpoints has the

more vulnerable identity, EDHOC is performed in reverse message

flow. After the RD has received message 3, it sends the GET request

for the endpoints's /.well-known/core resource to complete the

registration and responds to the original unencrypted registration.

TBD: Can the endpoints obtain confirmation that it is now

registered? (It could, if the EAD3 item above is critical: then, the

presence of OSCORE traffic with that key material implies acceptance

of that EAD3.)

9.2. ACE roles

In an ACE context ([RFC9200]), the endpoints is the Resource Server

(RS), and the RD is the client (C). This is aligned with the

endpoints' capabilities: The RD is in a position to talk to the ACE

Authorization Server (AS) and obtain a token to enable communication

with the endpoints, and the endpoints does not need to perform any

additional communication.

The token's audience may be "any endpoint eligible for RD

registration" or a particular endpoint. Its subject is the RD. Its

scope is to read the /.well-known/core resource.

In some scenarios it may make sense to operate the AS and the RD in

a single system, in which case communication between those parties

is cut short.

9.3. ACE EDHOC profile

When the ACE EDHOC profile [I-D.ietf-ace-edhoc-oscore-profile] is

used, the RD needs to upload its token to the endpoints's authz-info

endpoint (which is a term from ACE, using "endpoint" for a resource

path and not for a host as the RD specification does) before

executing EDHOC, because sending a token is only supported in EDHOC

messages 1 and 3 (whereas the RD sends message 2). The posted token

needs to be issued for the audience group of all eligible endpoints,

as the RD does not know the identity of the endpoint at this stage.

When the endpoint sends its credentials, the RD will know from

matching the endpoint's credentials against the rs_cnf2 and aud2

¶

¶

¶

¶

¶

¶

¶

list it obtained with the token (defined in Section 3.2 of

[I-D.ietf-ace-workflow-and-params]) which endpoint is being

registered.

Both parties can use kid as their ID_CRED_x to keep messages small.

The endpoint receives the full ID_CRED of the RD as part of the

signed token; the RD can look up the ID_CRED of the endpoint in its

rs_cnf2 data.

Hypothetically, if a token were permitted to be sent in message 2,

the RS could do that, and save the extra round-trip for POSTing the

token.

Alternatively, the RD could initiate EDHOC in forward message flow.

By the time it receives the endpoint's credentials (eg. kid) in

message 2, it can ask the AS for a token suitable for that

particular endpoint, or find a suitable token in a list it has

obtained earlier (TBD: how?). This workflow has the downside of

revealing the endpoint's ID_CRED_x to active attackers. This may be

acceptable, especially when the endpoint is only sending a kid, and

more so if the AS has a means of updating that ID.

9.4. ACE OSCORE profile

In the ACE OSCORE profile [RFC9203], a token is used that contains

symmetric key material.

The message flow is similar to EDHOC and OSCORE: The endpoint sends

an unencrypted registration request, but the endpoint needs to

publicly reveal its identity by sending the ep registration

parameter.

Then, the RD can obtain a token for this particular endpoint. Like

in ACE EDHOC, it POSTs it to the endpoint's authz-info endpoint; in

addition, it sends a random nonce and receives one in the response.

Without any further steps, it can then derive an OSCORE context from

the token and the nonces, and send an OSCORE request for the

endpoint's /.well-known/core resource.

This mode of operation is only recommended if the endpoint already

makes its identity public for other reasons.

9.5. ACE OSCORE profile without ACE

When assigning the reversed ACE roles to the participants, there is

a mode of operation that enables the ACE OSCORE profile while

preserving privacy of the endpoint:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-workflow-and-params-00#section-3.2

[I-D.amsuess-core-rd-replication]

[RFC6874]

[RFC7252]

If the endpoint is provisioned with a public key of the AS in

addition to the symmetric material it shares with it in the ACE

OSCORE profile, the device can generate a token containing a secret

key, symmstrically encrypt (or MAC it) for the AS, and

asymmetrically encrypt it for the AS (eg. using Direct Key

Agreement). It then initiates the ACE OSCORE profile with the RD,

which needs to introspect the token at the AS to obtain the secret

key material within.

This token's roles are different: Its subject is an endpoint, its

audience is the RD, and its scope is to register with a particular

endpoint name. The AS verifies during introspection whether the

endpoint is actually eligible to do this.

It is unsure whether this whole process provides complexity benefits

over the EDHOC based workflow, given that it does necessitate an

asymmetric operation.

(Note that while it is well possible to perform ACE OSCORE profile

without the asymmetrical step, for example by just symmetrically

encrypting the token created by the endpoint, by provisioning the

endpoint with a single token response containing a token encrypted

to the RS, or with one containing an abbreviated token which the RS

can introspect at the AS, this adds little compared to Section 9.4,

because the endpoint's initial message will always contain identical

parts that allow identification. The endpoint creating a random

token and encrypting it symmetrically to the AS is almost viable and

privacy preserving, but decrypting the token at the AS without any

information identifying the symmetric ke would scale badly.)

10. References

10.1. Normative References

Amsüss, C., "Resource Directory Replication", Work in

Progress, Internet-Draft, draft-amsuess-core-rd-

replication-02, 11 March 2019, <https://

datatracker.ietf.org/doc/html/draft-amsuess-core-rd-

replication-02>.

Carpenter, B., Cheshire, S., and R. Hinden, "Representing

IPv6 Zone Identifiers in Address Literals and Uniform

Resource Identifiers", RFC 6874, DOI 10.17487/RFC6874,

February 2013, <https://www.rfc-editor.org/rfc/rfc6874>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/rfc/

rfc7252>.

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-amsuess-core-rd-replication-02
https://datatracker.ietf.org/doc/html/draft-amsuess-core-rd-replication-02
https://datatracker.ietf.org/doc/html/draft-amsuess-core-rd-replication-02
https://www.rfc-editor.org/rfc/rfc6874
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc7252

[rfc9176]

[I-D.ietf-ace-edhoc-oscore-profile]

[I-D.ietf-ace-workflow-and-params]

[I-D.ietf-core-coap-pubsub]

[I-D.ietf-core-coral]

[I-D.ietf-core-transport-indication]

[I-D.ietf-lake-edhoc]

Amsüss, C., Ed., Shelby, Z., Koster, M., Bormann, C.,

and P. van der Stok, "Constrained RESTful Environments

(CoRE) Resource Directory", RFC 9176, DOI 10.17487/

RFC9176, April 2022, <https://www.rfc-editor.org/rfc/

rfc9176>.

10.2. Informative References

Selander, G., Mattsson, J. P.,

Tiloca, M., and R. Höglund, "Ephemeral Diffie-Hellman

Over COSE (EDHOC) and Object Security for Constrained

Environments (OSCORE) Profile for Authentication and

Authorization for Constrained Environments (ACE)", Work

in Progress, Internet-Draft, draft-ietf-ace-edhoc-oscore-

profile-03, 23 October 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-ace-edhoc-

oscore-profile-03>.

Tiloca, M. and G. Selander,

"Alternative Workflow and OAuth Parameters for the

Authentication and Authorization for Constrained

Environments (ACE) Framework", Work in Progress,

Internet-Draft, draft-ietf-ace-workflow-and-params-00, 2

January 2024, <https://datatracker.ietf.org/doc/html/

draft-ietf-ace-workflow-and-params-00>.

Jimenez, J., Koster, M., and A. Keränen,

"A publish-subscribe architecture for the Constrained

Application Protocol (CoAP)", Work in Progress, Internet-

Draft, draft-ietf-core-coap-pubsub-13, 20 October 2023,

<https://datatracker.ietf.org/doc/html/draft-ietf-core-

coap-pubsub-13>.

Amsüss, C. and T. Fossati, "The Constrained

RESTful Application Language (CoRAL)", Work in Progress,

Internet-Draft, draft-ietf-core-coral-06, 4 March 2024,

<https://datatracker.ietf.org/doc/html/draft-ietf-core-

coral-06>.

Amsüss, C., "CoAP Protocol Indication", Work in Progress,

Internet-Draft, draft-ietf-core-transport-indication-03,

23 October 2023, <https://datatracker.ietf.org/doc/html/

draft-ietf-core-transport-indication-03>.

Selander, G., Mattsson, J. P., and F.

Palombini, "Ephemeral Diffie-Hellman Over COSE (EDHOC)",

Work in Progress, Internet-Draft, draft-ietf-lake-

https://www.rfc-editor.org/rfc/rfc9176
https://www.rfc-editor.org/rfc/rfc9176
https://datatracker.ietf.org/doc/html/draft-ietf-ace-edhoc-oscore-profile-03
https://datatracker.ietf.org/doc/html/draft-ietf-ace-edhoc-oscore-profile-03
https://datatracker.ietf.org/doc/html/draft-ietf-ace-edhoc-oscore-profile-03
https://datatracker.ietf.org/doc/html/draft-ietf-ace-workflow-and-params-00
https://datatracker.ietf.org/doc/html/draft-ietf-ace-workflow-and-params-00
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-13
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-13
https://datatracker.ietf.org/doc/html/draft-ietf-core-coral-06
https://datatracker.ietf.org/doc/html/draft-ietf-core-coral-06
https://datatracker.ietf.org/doc/html/draft-ietf-core-transport-indication-03
https://datatracker.ietf.org/doc/html/draft-ietf-core-transport-indication-03

[I-D.tiloca-core-groupcomm-proxy]

[RFC6690]

[RFC6887]

[RFC7390]

[RFC7556]

[RFC8323]

[RFC8801]

[RFC9200]

[RFC9203]

edhoc-23, 22 January 2024, <https://datatracker.ietf.org/

doc/html/draft-ietf-lake-edhoc-23>.

Tiloca, M. and E. Dijk, "Proxy

Operations for CoAP Group Communication", Work in

Progress, Internet-Draft, draft-tiloca-core-groupcomm-

proxy-09, 31 August 2023, <https://datatracker.ietf.org/

doc/html/draft-tiloca-core-groupcomm-proxy-09>.

Shelby, Z., "Constrained RESTful Environments (CoRE) Link

Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,

<https://www.rfc-editor.org/rfc/rfc6690>.

Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R.,

and P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,

DOI 10.17487/RFC6887, April 2013, <https://www.rfc-

editor.org/rfc/rfc6887>.

Rahman, A., Ed. and E. Dijk, Ed., "Group Communication

for the Constrained Application Protocol (CoAP)", RFC

7390, DOI 10.17487/RFC7390, October 2014, <https://

www.rfc-editor.org/rfc/rfc7390>.

Anipko, D., Ed., "Multiple Provisioning Domain

Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,

<https://www.rfc-editor.org/rfc/rfc7556>.

Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,

Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained

Application Protocol) over TCP, TLS, and WebSockets", RFC

8323, DOI 10.17487/RFC8323, February 2018, <https://

www.rfc-editor.org/rfc/rfc8323>.

Pfister, P., Vyncke, É., Pauly, T., Schinazi, D., and W.

Shao, "Discovering Provisioning Domain Names and Data",

RFC 8801, DOI 10.17487/RFC8801, July 2020, <https://

www.rfc-editor.org/rfc/rfc8801>.

Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S.,

and H. Tschofenig, "Authentication and Authorization for

Constrained Environments Using the OAuth 2.0 Framework

(ACE-OAuth)", RFC 9200, DOI 10.17487/RFC9200, August

2022, <https://www.rfc-editor.org/rfc/rfc9200>.

Palombini, F., Seitz, L., Selander, G., and M.

Gunnarsson, "The Object Security for Constrained RESTful

Environments (OSCORE) Profile of the Authentication and

Authorization for Constrained Environments (ACE)

Framework", RFC 9203, DOI 10.17487/RFC9203, August 2022,

<https://www.rfc-editor.org/rfc/rfc9203>.

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-23
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-23
https://datatracker.ietf.org/doc/html/draft-tiloca-core-groupcomm-proxy-09
https://datatracker.ietf.org/doc/html/draft-tiloca-core-groupcomm-proxy-09
https://www.rfc-editor.org/rfc/rfc6690
https://www.rfc-editor.org/rfc/rfc6887
https://www.rfc-editor.org/rfc/rfc6887
https://www.rfc-editor.org/rfc/rfc7390
https://www.rfc-editor.org/rfc/rfc7390
https://www.rfc-editor.org/rfc/rfc7556
https://www.rfc-editor.org/rfc/rfc8323
https://www.rfc-editor.org/rfc/rfc8323
https://www.rfc-editor.org/rfc/rfc8801
https://www.rfc-editor.org/rfc/rfc8801
https://www.rfc-editor.org/rfc/rfc9200
https://www.rfc-editor.org/rfc/rfc9203

[RFC9290]
Fossati, T. and C. Bormann, "Concise Problem Details for

Constrained Application Protocol (CoAP) APIs", RFC 9290,

DOI 10.17487/RFC9290, October 2022, <https://www.rfc-

editor.org/rfc/rfc9290>.

Appendix A. Attic

Several extensions to the RD have been proposed in earlier versions

of this document and were removed; this section summarizes them,

lists where to look up the latest version, and gives reasons for

their removal:

Opportunistic RD (until -10)

Describes how moderately capable devices can automatically

configure and advertise themselves as an RD while no

administratively configured RD is present.

Removed due to large complexity and lack of real use cases.

Lifetime age (until -10)

References Section 5.2 of [I-D.amsuess-core-rd-replication] to

allow administrators to see how much of a registration's lifetime

has expired.

Removed in favor of more generic provenance mechanisms described

in Section 5.1 of [I-D.amsuess-core-rd-replication], and for lack

of use cases.

Lookup across link relations (until -10)

Describes how a lookup may be combined ahead of time with

requests for following more link relations.

Removed in favor of utilizing [I-D.ietf-core-coral] FETCH

requests.

Appendix B. Change log

Since -09:

Added section on use with EDHOC and ACE security

Moved Opportunistic RD, Lifetime age and Lookup across link

relations into the newly created attic.

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

¶

* ¶

*

¶

https://www.rfc-editor.org/rfc/rfc9290
https://www.rfc-editor.org/rfc/rfc9290
https://datatracker.ietf.org/doc/html/draft-amsuess-core-rd-replication-02#section-5.2
https://datatracker.ietf.org/doc/html/draft-amsuess-core-rd-replication-02#section-5.1

Since -08:

Add section on propagating server generated information.

Reference transport-indication appendix as one reason why

propagation can be relevant.

Since -07:

Update references.

Since -06:

Add sketch for DNS updates.

Add sketch for forward proxying.

Fix erroneous section numbers.

Since -05:

Add section on Limited Lifetimes.

Point out limitations to applications that use reverse proxying.

Minor reference and bugfix updates.

Since -04:

Minor adjustments:

Mention LwM2M and how it is already doing RD proxying.

Tie proxying in with infinite lifetimes.

Remove note on not being able to switch protocols: RDs that

support some future protocol negotiation can do that.

Point out that there is no Uri-Host from the RD proxy to the

EP, but there could be.

Infinite lifetimes: Take up CTs more explicitly from RD

discussion.

Start exploring interactions with groupcomm-proxy.

Since -03:

Added interaction with PvD (Provisioning Domains)

¶

* ¶

*

¶

¶

* ¶

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

* ¶

- ¶

- ¶

-

¶

-

¶

-

¶

- ¶

¶

* ¶

Since -02:

Added abstract

Added example of CoRAL FETCH to Lookup across link relations

section

Since -01:

Added section on Opportunistic RDs

Since -00:

Add multicast proxy usage pattern

ondemand proxying: Probing queries must be sent from a different

address

proxying: Point to RFC7252 to describe how the actual proxying

happens

proxying: Describe this as a last-resort options and suggest

attempting PCP first

Appendix C. Acknowledgements

[Reviews from: Jaime Jimenez]

Section 4 was inspired by Ben Kaduk's comments from reviewing

[rfc9176].

Author's Address

Christian Amsüss

Email: christian@amsuess.com

¶

* ¶

*

¶

¶

* ¶

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

mailto:christian@amsuess.com

	CoRE Resource Directory Extensions
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Reverse Proxy requests
	2.1. Discovery
	2.2. Registration
	2.2.1. Registration updates

	2.3. Proxy behavior
	2.3.1. Limitations from using a reverse proxy

	2.4. On-Demand proxying
	2.5. Multiple upstreams
	2.6. Examples
	2.6.1. Registration through a firewall
	2.6.2. Registration from a browser context

	2.7. Notes on stability and maturity
	2.8. Security considerations
	2.9. Alternatives to be explored

	3. Infinite lifetime
	3.1. Example

	4. Limited lifetimes
	5. Zone identifier introspection
	5.1. Example

	6. Proxying multicast requests
	6.1. Example

	7. Registrations that update DNS records
	8. Propagating server generated registration information
	9. Combining simple registration with EDHOC and ACE
	9.1. Generic EDHOC in reverse flow
	9.2. ACE roles
	9.3. ACE EDHOC profile
	9.4. ACE OSCORE profile
	9.5. ACE OSCORE profile without ACE

	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Attic
	Appendix B. Change log
	Appendix C. Acknowledgements
	Author's Address

