
Workgroup: CoRE

Internet-Draft:

draft-amsuess-core-transport-indication-01

Published: 10 July 2021

Intended Status: Standards Track

Expires: 11 January 2022

Authors: C. Amsüss

CoAP Protocol Indication

Abstract

The Constrained Application Protocol (CoAP, [RFC7252]) is available

over different transports (UDP, DTLS, TCP, TLS, WebSockets), but

lacks a way to unify these addresses. This document provides

terminology based on Web Linking [RFC8288] to express alternative

transports available to a device, and to optimize exchanges using

these.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Constrained RESTful

Environments Working Group mailing list (core@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/core/.

Source for this draft and an issue tracker can be found at https://

gitlab.com/chrysn/transport-indication.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 January 2022.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/core/
https://gitlab.com/chrysn/transport-indication
https://gitlab.com/chrysn/transport-indication
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Goals

2. Indicating alternative transports

2.1. Example

2.2. Security context propagation

2.3. Choice of transports

2.4. Selection of a canonical origin

2.5. Advertisement through a Resource Directory

3. Elision of Proxy-Scheme and Uri-Host

4. Third party proxy services

4.1. Generic proxy advertisements

5. Client picked proxies

6. Related work and applicability to related fields

6.1. On HTTP

6.2. Using DNS

6.3. Using names outside regular DNS

7. Security considerations

7.1. Security context propagation

7.2. Traffic misdirection

7.3. Protecting the proxy

7.4. Implementing proxies

8. IANA considerations

8.1. Link Relation Types

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Change log

Appendix B. Open Questions / further ideas

Appendix C. Acknowledgements

Author's Address

¶

¶

https://trustee.ietf.org/license-info

Same-host proxy

hosts

1. Introduction

The Constrained Application Protocol (CoAP) provides transports

mechanisms (UDP and DTLS since [RFC7252], TCP, TLS and WebSockets

since [RFC8323]), with some additional being used in LwM2M [lwm2m]

and even more being explored ([I-D.bormann-t2trg-slipmux], [I-

D.amsuess-core-coap-over-gatt]). These are mutually incompatible on

the wire, but CoAP implementations commonly support several of them,

and proxies can translate between them.

CoAP currently lacks a way to indicate which transports are

available for a given resource, and to indicate that a device is

prepared to serve as a proxy; this document solves both by

introducing the "has-proxy" terminology to Web Linking [RFC8288]

that expresses the former through the latter. The additional "has-

unique-proxy" term is introduced to negate any per-request overhead

that would otherwise be introduced in the course of this.

CoAP also lacks a unified scheme to label a resource in a transport-

indepenent way. This document does not attempt to introduce any new

scheme here, or raise a scheme to be the canonical one. Instead,

each host can pick a canonical address for its resources, and

advertise other transports in addition.

1.1. Terminology

A CoAP server that accepts forward proxy requests

(i.e., requests carrying the Proxy-Scheme option) exclusively for

URIs that it is the authoritative server for is defined as a

"same-host proxy".

The distinction between a same-host and any other proxy is only

relevant on a practical, server-implementation and illustrative

level; this specification does not use the distinction in

normative requirements, and clients need not make the distinction

at all.

The verb "to host" is used here in the sense of the link

relation of the same name defined in [RFC6690].

For resources discovered via CoAP's discovery interface, a

hosting statement is typically provided by the defaults implied

by [RFC6690] where a link like </sensor/temp> is implied to have

the relation "hosts" and the anchor /, such that a statement

"coap://hostname hosts coap://hostname/sensor/temp" can be

inferred.

For many application it can make sense to assume that any

resource has a "host" relation leading from the root path of the

server without having performed that discovery explicitly.

¶

¶

¶

¶

¶

¶

¶

¶

[TBD: The last paragraph could be a contentuous point; things

should still work without it, and maybe that's even better

because it precludes a dynamic resource created with one

transport from use with another transport unless explicitly

cleared.]

When talking of proxy requests, this document only talks of the

Proxy-Scheme option. Given that all URIs this is usable with can be

expressed in decomposed CoAP URIs, the need for using the Proxy-URI

option should never arise.

1.2. Goals

This document introduces provisions for the seamless use of

different transport mechanisms for CoAP. Combined, these provide:

Enablement: Inform clients of the availability of other

transports of servers.

No Aliasing: Any URI aliasing must be opt-in by the server. Any

defined mechanisms must allow applications to keep working on the

canonical URIs given by the server.

Optimization: Do not incur per-request overhead from switching

protocls. This may depend on the server's willingness to create

aliased URIs.

Proxy usability: All information provided must be usable by aware

proxies to reduce the need for duplicate cache entries.

Proxy announcement: Allow third parties to announce that they

provide alternative transports to a host.

For all these functions, security policies must be described that

allow the client to use them as securely as the original transport.

This document will not concern itself with changes in transport

availability over time, neither in causing them ("Please take up

your TCP interface, I'm going to send a firmware update") nor in

advertising them (other than by the server putting suitable Max-Age

values on any of its statements).

2. Indicating alternative transports

While CoAP can indicate the authority component of the requested URI

in all requests (by means of Uri-Host), indicating the scheme of a

requested URI (by means of Proxy-Scheme) makes the request

implicitly a proxy request. However, this needs to be of only little

practical concern: Any device can serve as a proxy for itself (a

"same-host proxy") by accepting requests that carry the Proxy-Scheme

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

option. If it is to be a well-behaved as a proxy, the device should

then check whether it recognizes the name indicated in Uri-Host as

one of its own [TBD: Check whether 7252 makes this a stricter

requirement], reject the request with 5.05 when it is not

recognized, and otherwise process it as it would process a request

coming in on that protocol (which, for many hosts, is the same as if

the option were absent completely).

A server can indicate support for same-host proxying (or any kind of

proxying, really) by serving a Web Link with the "has-proxy"

relation.

The semantics of a link from C to T with relations has-proxy ("C

has-proxy T", <T>;rel=has-proxy;anchor="C") are that for any

resource R hosted on C ("C hosts R"), T is can be used as a proxy to

obtain R.

Note that HTTP and CoAP proxies are not located at a particular

resource, but at a host in general. Thus, a proxy URI T in these

protocols can not carry a path or query component. This is true even

for CoAP over WebSockets (which uses the concrete resource /.well-

known/coap, but that can not expressed in "coap+ws" URI). Future

protocols for which CoAP proxying is defined may have expressible

path components.

2.1. Example

A constrained device at the address 2001:db8::1 that supports CoAP

over TCP in addition to CoAP can self-describe like this:

¶

¶

¶

¶

¶

Figure 1: Follow-up request through a has-proxy relation

Note that generating this discovery file needs to be dynamic based

on its available addresses; only if queried using a link-local

source address, it may also respond with a link-local address in the

authority component of the proxy URI.

Unless the device makes resources discoverable at coap+tcp://

[2001:db8::1]/.well-known/core or another discovery mechanism,

clients may not assume that coap+tcp://[2001:db8::1]/sensors/temp is

a valid resource (let alone has any relation to the other resource

on the same path). The server advertising itself like this may

reject any request on CoAP-over-TCP unless they contain a Proxy-

Scheme option.

Clients that want to access the device using CoAP-over-TCP would

send a request by connecting to 2001:db8::1 TCP port 5683 and

sending a GET with the options Proxy-Scheme: coap, no Uri-Host or -

Port options (utilizing their default values), and the Uri-Paths

"sensors" and "temp".

2.2. Security context propagation

If the originally requested URI R or the application requirements

demand a security mechanism is used, the client MUST only use the

proxy T if the proxy can provide suitable credentials. (The hosting

URI C is immaterial to these considerations).

Req: to [ff02::fd]:5683 on UDP

Code: GET

Uri-Path: /.well-known/core

Uri-Query: if=tag:example.com,sensor

Res: from [2001:db8::1]:5683

Content-Format: application/link-format

Payload:

</sensors/temp>;if="tag:example.com,sensor",

<coap+tcp://[2001:db8::1]>;rel=has-proxy;anchor="/"

Req: to [2001:db8::1]:5683 on TCP

Code: GET

Proxy-Scheme: coap

Uri-Path: /sensors/temp

Observe: 0

Res: 2.05 Content

Observe: 0

Payload:

39.1°C

¶

¶

¶

¶

Credentials are usable if either:

The credentials are good for the intended use of R.

For example, if the application uses the host name and a public

key infrastructure and R is coap://example.com/ the proxy

accessed as coap+tcp://[2001:db8::1] still needs to provide a

certificate chain for the name example.com to one of the system's

trust anchors. If, on the other hand, the application is doing a

firmware update and requires any certificate from its configured

firmware update issuer, the proxy needs to provide such a

firmware update certificate.

The credentials are suitable as a general trusted proxy for the

system.

This applies only to security mechsnisms that are terminated in

proxies (i.e. (D)TLS and not OSCORE).

For a client to trust a proxy to this extent, it must have

configured knowledge which proxies it may trust. Such

configuration is generally only possible if the application's

security selection is based on the host name (as the client's

intention to, as in the above example, obtain a firmware update,

can not be transported to the proxy).

This option is unlikely to be useful in same-host proxies, but

convenient in scenarios like in Section 4.

2.3. Choice of transports

It is up to the client whether to use an advertised proxy transport,

or (if multiple are provided) which to pick.

Links to proxies may be annotated with additional metadata that may

help guide such a choice; defining such metadata is out of scope for

this document.

Clients MAY switch between advertised transports as long as the

document describing them is fresh; they may even do so per request.

(For example, they may perform individual requests using CoAP-over-

UDP, but choose CoAP-over-TCP for requests with large expected

responses).

2.4. Selection of a canonical origin

While a server is at liberty to provide the same resource

independently on different transports (i.e. to create aliases), it

may make sense for it to pick a single scheme and authority under

which it announces its resources. Using only one address helps

¶

* ¶

¶

*

¶

¶

¶

¶

¶

¶

¶

proxies keep their caches efficient, and makes it easier for clients

to avoid exploring the same server twice from different angles.

When there is a predominant scheme and authority through which an

existing service is discovered, it makes sense to use these for the

canonical addresses.

Otherwise, it is suggested to use the coap or coaps scheme (given

that these are the most basic and widespread ones), and the most

stable usable name the host has.

2.5. Advertisement through a Resource Directory

In the Resource Directory specification [I-D.ietf-core-resource-

directory], protocol negotiation was anticipated to use multiple

base values. This approach was abandoned since then, as it would

incur heavy URI aliasing.

Instead, devices can submit their has-proxy links to the Resource

Directory like all their other metadata.

A client performing resource lookup can ask the RD to provide

available (same-host-)proxies in a follow-up request by asking for ?

anchor=the-discovered-host&rel=has-proxy. The RD may also volunteer

that information during resource lookups even though the has-proxy

link itself does not match the search criteria.

[It may be useful to define RD parameters for use with lookup here,

which'd guide which available proxies to include.]

3. Elision of Proxy-Scheme and Uri-Host

A CoAP server may publish and accept multiple URIs for the same

resource, for example when it accepts requests on different IP

addresses that do not carry a Uri-Host option, or when it accepts

requests both with and without the Uri-Host option carrying a

registered name. Likewise, the server may serve the same resources

on different transports. This makes for efficient requests (with no

Proxy-Scheme or Uri-Host option), but In general is discouraged

[aliases].

To make efficient requests possible without creating URI aliases

that propagate, the "has-unique-proxy" specialization of the has-

proxy relation is defined.

If a proxy is unique, it means that it unconditionally forwards to

the server indicated in the link context, even if the Proxy-Scheme

and Uri-Host options are elided.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[The following two paragraphs are both true but follow different

approaches to explaining the observable and implementable behavior;

it may later be decided to focus on one or the other in this

document.]

While this creates URI aliasing in the requests as they are sent

over the network, applications that discover a proxy this way should

not "think" in terms of these URIs, but retain the originally

discovered URIs (which, because Cool URIs Don't Change[cooluris],

should be long-term usable). They use the proxy for as long as they

have fresh knowledge of the has-(unique-)proxy statement.

In a way, advertising has-unique-proxy can be viewed as a

description of the link target in terms of SCHC [I-D.ietf-lpwan-

coap-static-context-hc]: In requests to that target, the link

source's scheme and host are implicitly present.

A client MAY use a unique-proxy like a proxy and still send the

Proxy-Scheme and Uri-Host option; such a client needs to recognize

both relation types, as relations of the has-unique-proxy type are a

specialization of has-proxy and typically don't carry the latter

(redundant) annotation. [To be evaluated -- one one hand,

supporting it this way means that the server needs to identify all

of its addresses and reject others. Then again, is a server that

(like many now do) fully ignore any set Uri-Host correct at all?]

Example:

¶

¶

¶

¶

¶

Req: to [ff02::fd]:5683 on UDP

Code: GET

Uri-Path: /.well-known/core

Uri-Query: if=tag:example.com,sensor

Res: from [2001:db8::1]:5683

Content-Format: application/link-format

Payload:

</sensors/>;if="tag:example.com,collection",

<coap+tcp://[2001:db8::1]>;rel=has-proxy;anchor="/"

Req: to [2001:db8::1]:5683 on TCP

Code: GET

Uri-Path: /sensors/

Res: 2.05 Content

Content-Format: application/link-format

Payload:

</sensors/temperature>;if="tag:example.com,sensor"

Figure 2: Follow-up request through a has-unique-proxy relation.

Compared to the last example, 5 bytes of scheme indication are saved

during the follow-up request.

It is noteworthy that when the URI reference /sensors/temperature is

resolved, the base URI is coap://device0815.example.com and not its

coap+ws counterpart -- as the request is implicitly forwarded there,

which both the client and the server are aware of. However, this

detail is of little practical importance: A simplistic client that

uses coap+ws://device0815.proxy.rd.example.com as a base URI will

still arrive at an identical follow-up request with no ill effect,

as long as it only uses the wrongly assembled URI for dereferencing

resources, the security context is the same, and it does not (for

example) pass it on to other devices.

4. Third party proxy services

A server that is aware of a suitable cross proxy may use the has-

proxy relation to advertise that proxy. If the protocol used towards

the proxy provides name indication (as CoAP over TLS or WebSockets

does), or by using a large number of addresses or ports, it can even

advertise a (more efficient) has-unique-proxy relation. This is

particularly interesting when the advertisements are made available

across transports, for example in a Resource Directory.

How the server can discover and trust such a proxy is out of scope

for this document, but generally involves the same kind of links.

The proxy may advertise itself without the origin server's

involvement; in that case, the client needs to take additional care

(see Section 7.2).

¶

¶

¶

¶

Figure 3: HTTP based discovery and CoAP-over-WS request to a CoAP

resource through a has-unique-proxy relation

4.1. Generic proxy advertisements

A third party proxy may advertise its availability to act as a proxy

for arbitrary CoAP requests.

[TBD: Specify a mechanism for this; <coap+ws://myself>;rel=has-

proxy;anchor="coap://*" for all supported protocols appears to be an

obvious but wrong solution.]

The considerations of Section 7.2 apply here.

5. Client picked proxies

When a resource is accessed through an "actual" proxy (i.e., a host

between the client and the server, which itself may have a same-host

proxy in addition to that), the proxy's choice of the upstream

server is originally (i.e., without the mechanisms of this document)

either configured (as in a "chain" of proxies) or determined by the

request URI (where a proxy picks CoAP over TCP for a request aimed

at a coap+tcp URI).

A proxy that has learned, by active solicitation of the information

or by consulting links in its cache, that the requested URI is

available through a same-host proxy, or that has learned of

advertised URI aliasings, may use that information in choosing the

upstream transport, and to use responses obtained through one

transport to satisfy requests on another.

Req: GET http://rd.example.com/rd-lookup?if=tag:example.com,sensor

Res:

Content-Format: application/link-format

Payload:

<coap://device0815.example.com/sensors/>;if="tag:example.com,collection",

<coap+wss://device0815.proxy.rd.example.com>;rel=has-unique-proxy;anchor="coap://device0815.example.com/"

Req: to device0815.proxy.rd.example.com on WebSocket

Host (indicated during upgrade): device0815.proxy.rd.example.com

Code: GET

Uri-Path: /sensors/

Res: 2.05 Content

Content-Format: application/link-format

Payload:

</sensors/temperature>;if="tag:example.com,sensor"

¶

¶

¶

¶

¶

For example, if a host at coap://h1.example.com has advertised </

res>,<coap+tcp://h1.example.com>;rel=has-proxy;anchor="/", then a

proxy that has an active CoAP-over-TCP connection to h1.example.com

can forward an incoming request for coap://h1.example.com/res

through that CoAP-over-TCP connection with a suitable Proxy-Scheme

on that connection.

If the host had marked the proxy point as <coap+tcp://

h1.example.com>;rel=has-unique-proxy, then the proxy could elide the

Proxy-Scheme and Uri-Host options, and would (from the original CoAP

caching rules) also be allowed to use any fresh cache representation

of coap+tcp://h1.example.com/res to satisfy requests for coap://

h1.example.com/res.

6. Related work and applicability to related fields

6.1. On HTTP

The mechanisms introduced here are similar to the Alt-Svc header of

[RFC7838] in that they do not create different application-visible

addresses, but provide dispatch through lower transport

implementations.

Unlike in HTTP, the variations of CoAP protocols each come with

their unique URI schemes. Thus, origin URIs can be used without

introducing a distrinction between protocol-id and scheme.

To accomodate the message size constraints typical of CoRE

environments, and accounting for the differences between HTTP

headers and CoAP options, information is delivered once at discovery

time.

Using the has-proxy and has-unique-proxy with HTTP URIs as the

context is NOT RECOMMENDED; the HTTP provisions the Alt-Svc header

and ALPN are preferred.

6.2. Using DNS

As pointed out in [RFC7838], DNS can already serve some of the

applications of Alt-Svc and has-unique-proxy by providing different

CNAME records. These cover cases of multiple addresses, but not

different ports or protocols.

While not specified for CoAP yet (and neither being specified here),

[which is an open discussion point for CoRE -- should we? Here? In

a separte DNS-SD document?]

DNS SRV records (possibly in combination with DNS Service Discovery

[RFC6763]) can provide records that could be considered equivalent

¶

¶

¶

¶

¶

¶

¶

¶

¶

to has-unique-proxy relations. If _coap._tcp, _coaps._tcp,

_coap._udp, _coap+ws._tcp etc. were defined with suitable semantics,

these can be equivalent:

``` _coap._udp.device.example.com SRV 0 0 device.example.com 61616

device.example.com AAAA 2001:db8::1

<coap://[2001:db8::1]>;rel=has-unique-proxy;anchor="coap://

device.example.com" ```

It would be up to such a specification to give details on what the

link's context is; unlike the link based discovery of this document,

it would either need to pick one distinguished context scheme for

which these records are looked up, or would introduce aliasing on

its own.

6.3. Using names outside regular DNS

Names that are resolved through different mechanisms than DNS, or

names which are defined within the scope of DNS but have no

universally valid answers to A/AAAA requests, can be advertised

using the relation types defined here and CoAP discovery.

In figure Figure 4, a server using a cryptographic name as described

in [I-D.amsuess-t2trg-rdlink] is discovered and used.

¶

¶

¶

¶

¶

¶

Req: to [ff02::fd]:5683 on UDP

Code: GET

Uri-Path: /.well-known/core

Uri-Query: rel=has-proxy&anchor=coap://nbswy3dpo5xxe3denbswy3dpo5xxe3de.ab.rdlink.arpa

Res: from [2001:db8::1]:5683

Content-Format: application/link-format

Payload:

<coap://[2001:db8::1]>;rel=has-unique-proxy;anchor="coap://nbswy3dpo5xxe3denbswy3dpo5xxe3de.ab.rdlink.arpa"

Req: to [2001:db8::1]:5683 on TCP

Code: GET

OSCORE: ...

Uri-Path: /sensors/temp

Observe: 0

Res: 2.05 Content

OSCORE: ...

Observe: 0

Payload:

39.1°C



Figure 4: Obtaining a sensor value from a local device with a global

name

7. Security considerations

7.1. Security context propagation

Clients need to strictly enforce the rules of Section 2.2. Failure

to do so, in particular using a thusly announced proxy based on a

certificate that attests the proxy's name, would allow attackers to

circumvent the client's security expectation.

The option to accept credentials suitable for a general trusted

proxy is in place for (D)TLS protected scenarios, in which cross-

protocol end-to-end protection is not available. Whether a client

will recognize certificates for general trusted proxies at all

depends on the original proxy setup's security considerations (of 

[RFC7252] Section 11.2 and [RFC2616] Section 15.7).

7.2. Traffic misdirection

Accepting arbitrary proxies, even with security context propagation

performed properly, would attackers to redirect traffic through

systems under their control. Not only does that impact availability,

it also allows an attacker to observe traffic patterns.

This affects both OSCORE and (D)TLS, as neither protect the

participants' network addresses.

Other than the security context propagation rules, there are no hard

and general rules about when an advertised proxy is a suitable

candidate. Aspects for consideration are:

When no direct connection is possible (e.g. because the resource

to be accessed is served as coap+tcp and TCP is not implemented

in the client, or because the resource's host is available on

IPv6 while the client has no default IPv6 route), using a proxy

is necessary if complete service disruption is to be avoided.

While an adversary can cause such a situation (e.g. by

manipulating routing or DNS entries), such an adversary is

usually already in a position to observe traffic patterns.

A proxy advertised by the device hosting the resource to be

accessed is less risky to use than one advertised by a third

party.

Note that in some applications, servers produce representations

based on unverified user input. In such cases, and more so when

¶

¶

¶

¶

¶

*

¶

¶

*

¶



[RFC7252]

multiple applications share a security context, the

advertisements' provenance may need to be considered.

7.3. Protecting the proxy

A widely published statement about a host's availability as a proxy

can cause many clients to attempt to use it.

This is mitigated in well-behaved clients by observing the rate

limits of [RFC7252], and by ceasing attempts to reach a proxy for

the Max-Age of received errors.

Operators can further limit ill-effects by ensuring that their

client systems do not needlessly use proxies advertised in an

unsecured way, and by providing own proxies when their clients need

them.

7.4. Implementing proxies

Proxies that are trusted (i.e., that terminate (D)TLS connections

and have an own server certificate) need to consider the same

aspects as clients for their client-side interface as all other

clients.

Proxies can often process data from different security contexts.

When they do, care needs to be taken to not apply has-proxy

statements across security contexts. (This consideration is not

specific to proxies, but comes up more frequently there).

8. IANA considerations

8.1. Link Relation Types

IANA is asked to add two entries into the Link Relation Type

Registry last updated in [RFC8288]:

Relation

Name
Description Reference

has-proxy
The link target can be used as a proxy to

reach the link context.
RFCthis

has-unique-

proxy

Like has-proxy, and using this proxy implies

scheme and host of the target.
RFCthis

Table 1: New Link Relation types

9. References

9.1. Normative References

¶

¶

¶

¶

¶

¶

¶



[RFC8288]

[aliases]

[cooluris]

[I-D.amsuess-core-coap-over-gatt]

[I-D.amsuess-t2trg-rdlink]

[I-D.bormann-t2trg-slipmux]

[I-D.ietf-core-resource-directory]

[I-D.ietf-lpwan-coap-static-context-hc]

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://doi.org/10.17487/RFC7252>. 

Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/

RFC8288, October 2017, <https://doi.org/10.17487/

RFC8288>. 

9.2. Informative References

W3C, "Architecture of the World Wide Web, Section 2.3.1

URI aliases", n.d., <https://www.w3.org/TR/webarch/#uri-

aliases>. 

BL, T., "Cool URIs don't change", n.d., <https://

www.w3.org/Provider/Style/URI>. 

Amsüss, C., "CoAP over GATT (Bluetooth Low Energy Generic

Attributes)", Work in Progress, Internet-Draft, draft-

amsuess-core-coap-over-gatt-01, 2 November 2020, 

<https://datatracker.ietf.org/doc/html/draft-amsuess-

core-coap-over-gatt-01>. 

Amsüss, C., "rdlink: Robust distributed links to

constrained devices", Work in Progress, Internet-Draft,

draft-amsuess-t2trg-rdlink-01, 23 September 2019, 

<https://datatracker.ietf.org/doc/html/draft-amsuess-

t2trg-rdlink-01>. 

Bormann, C. and T. Kaupat, "Slipmux:

Using an UART interface for diagnostics, configuration,

and packet transfer", Work in Progress, Internet-Draft,

draft-bormann-t2trg-slipmux-03, 4 November 2019, 

<https://datatracker.ietf.org/doc/html/draft-bormann-

t2trg-slipmux-03>. 

Amsüss, C., Shelby, Z., Koster,

M., Bormann, C., and P. V. D. Stok, "CoRE Resource

Directory", Work in Progress, Internet-Draft, draft-ietf-

core-resource-directory-28, 7 March 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-core-resource-

directory-28>. 

Minaburo, A., Toutain, L.,

and R. Andreasen, "Static Context Header Compression

(SCHC) for the Constrained Application Protocol (CoAP)", 

Work in Progress, Internet-Draft, draft-ietf-lpwan-coap-

static-context-hc-19, 8 March 2021, <https://

https://doi.org/10.17487/RFC7252
https://doi.org/10.17487/RFC8288
https://doi.org/10.17487/RFC8288
https://www.w3.org/TR/webarch/#uri-aliases
https://www.w3.org/TR/webarch/#uri-aliases
https://www.w3.org/Provider/Style/URI
https://www.w3.org/Provider/Style/URI
https://datatracker.ietf.org/doc/html/draft-amsuess-core-coap-over-gatt-01
https://datatracker.ietf.org/doc/html/draft-amsuess-core-coap-over-gatt-01
https://datatracker.ietf.org/doc/html/draft-amsuess-t2trg-rdlink-01
https://datatracker.ietf.org/doc/html/draft-amsuess-t2trg-rdlink-01
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-slipmux-03
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-slipmux-03
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-28
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-28
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-28
https://datatracker.ietf.org/doc/html/draft-ietf-lpwan-coap-static-context-hc-19


[I-D.silverajan-core-coap-protocol-negotiation]

[lwm2m]

[RFC2616]

[RFC6690]

[RFC6763]

[RFC7838]

[RFC8323]

[RFC8613]

datatracker.ietf.org/doc/html/draft-ietf-lpwan-coap-

static-context-hc-19>. 

Silverajan, B. and 

M. Ocak, "CoAP Protocol Negotiation", Work in Progress, 

Internet-Draft, draft-silverajan-core-coap-protocol-

negotiation-09, 2 July 2018, <https://

datatracker.ietf.org/doc/html/draft-silverajan-core-coap-

protocol-negotiation-09>. 

OMA SpecWorks, "White Paper - Lightweight M2M 1.1", n.d.,

<https://omaspecworks.org/white-paper-lightweight-

m2m-1-1/>. 

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., 

Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, DOI 10.17487/

RFC2616, June 1999, <https://doi.org/10.17487/RFC2616>. 

Shelby, Z., "Constrained RESTful Environments (CoRE) Link

Format", RFC 6690, DOI 10.17487/RFC6690, August 2012, 

<https://doi.org/10.17487/RFC6690>. 

Cheshire, S. and M. Krochmal, "DNS-Based Service

Discovery", RFC 6763, DOI 10.17487/RFC6763, February

2013, <https://doi.org/10.17487/RFC6763>. 

Nottingham, M., McManus, P., and J. Reschke, "HTTP

Alternative Services", RFC 7838, DOI 10.17487/RFC7838, 

April 2016, <https://doi.org/10.17487/RFC7838>. 

Bormann, C., Lemay, S., Tschofenig, H., Hartke, K., 

Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained

Application Protocol) over TCP, TLS, and WebSockets", RFC

8323, DOI 10.17487/RFC8323, February 2018, <https://

doi.org/10.17487/RFC8323>. 

Selander, G., Mattsson, J., Palombini, F., and L. Seitz, 

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019, 

<https://doi.org/10.17487/RFC8613>. 

Appendix A. Change log

Since -00:

Added introduction

Added examples

¶

* ¶

* ¶

https://datatracker.ietf.org/doc/html/draft-ietf-lpwan-coap-static-context-hc-19
https://datatracker.ietf.org/doc/html/draft-ietf-lpwan-coap-static-context-hc-19
https://datatracker.ietf.org/doc/html/draft-silverajan-core-coap-protocol-negotiation-09
https://datatracker.ietf.org/doc/html/draft-silverajan-core-coap-protocol-negotiation-09
https://datatracker.ietf.org/doc/html/draft-silverajan-core-coap-protocol-negotiation-09
https://omaspecworks.org/white-paper-lightweight-m2m-1-1/
https://omaspecworks.org/white-paper-lightweight-m2m-1-1/
https://doi.org/10.17487/RFC2616
https://doi.org/10.17487/RFC6690
https://doi.org/10.17487/RFC6763
https://doi.org/10.17487/RFC7838
https://doi.org/10.17487/RFC8323
https://doi.org/10.17487/RFC8323
https://doi.org/10.17487/RFC8613


Added SCHC analogy

Expanded security considerations

Added guidance on choice of transport, and canonical addresses

Added subsection on interaction with a Resource Directory

Added comparisons with related work, including rdlink and DNS-SD

sketches

Added IANA considerations

Added section on open questions

Appendix B. Open Questions / further ideas

OSCORE interaction: [RFC8613] Section 4.1.3.2 requirements place

OSCORE use in a weird category between has-proxy and has-unique-

proxy (because if routing still works, the result will be

correct). Not sure how to write this down properly, or whether

it's actionable at all.

Possibly there is an inbetween category of "The host needs the

Uri-Host etc. when accessed through CoAP, but because the host

does not use the same OSCORE KID across different virtual hosts,

it's has-unique-proxy as soon as you talk OSCORE".

Self-uniqueness:

A host that wants to indicate that it doesn't care about Uri-Host

can probably publish something like </>;rel=has-unique-proxy to

do so.

This'd help applications justify when they can elide the Uri-

Host, even when no different protocols are involved.

Advertising under a stable name:

If a host wants to advertise its host name rather than its IP

address during multicast, how does it best do that?

Options, when answering from 2001:db8::1 to a request to ff02::fd

are:

which is verbose but formally clear, and

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

¶

* ¶

¶

¶

* ¶

¶

¶

<coap://myhostname/foo>,...,

<coap://[2001:db8::1]>;rel=has-unique-proxy;anchor="coap://myhostname"

¶

¶



which is compatible with unaware clients, but its correctnes with

respect to canonical URIs needs to be argued by the client, in

this sequence

understanding the has-unique-proxy line,

understanding that the request that went to 2001:db8::1 was

really a Proxy-Scheme/Uri-Host-elided version of a request to

coap://myhostname, and then

processing any relative reference with this new base in mind.

(Not that it'd need to happen in software in that sequence, but

that's the sequence needed to understand how the /foo here is

really coap://myhostname/foo).

Appendix C. Acknowledgements

This document heavily builds on concepts explored by Bill Silverajan

and Mert Ocak in [I-D.silverajan-core-coap-protocol-negotiation],

and together with Ines Robles and Klaus Hartke inside T2TRG.

Author's Address

Christian Amsüss

Hollandstr. 12/4

1020

Austria

Phone: +43-664-9790639

Email: christian@amsuess.com

</foo>,...,

<coap://[2001:db8::1]>;rel=has-unique-proxy;anchor="coap://myhostname"

¶

¶

- ¶

-

¶

- ¶

¶

¶

tel:+43-664-9790639
mailto:christian@amsuess.com

	CoAP Protocol Indication
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Goals

	2. Indicating alternative transports
	2.1. Example
	2.2. Security context propagation
	2.3. Choice of transports
	2.4. Selection of a canonical origin
	2.5. Advertisement through a Resource Directory

	3. Elision of Proxy-Scheme and Uri-Host
	4. Third party proxy services
	4.1. Generic proxy advertisements

	5. Client picked proxies
	6. Related work and applicability to related fields
	6.1. On HTTP
	6.2. Using DNS
	6.3. Using names outside regular DNS

	7. Security considerations
	7.1. Security context propagation
	7.2. Traffic misdirection
	7.3. Protecting the proxy
	7.4. Implementing proxies

	8. IANA considerations
	8.1. Link Relation Types

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Change log
	Appendix B. Open Questions / further ideas
	Appendix C. Acknowledgements
	Author's Address


