
SPKI Working Group Matt Blaze
Internet Draft Joan Feigenbaum
expires in six months Angelos D. Keromytis
 April 1998

The KeyNote Trust-Management System
draft-angelos-spki-keynote-01.txt (A)

Status of this Memo

 This document is an Internet-Draft. Internet Drafts are working doc-
 uments of the Internet Engineering Task Force (IETF), its Areas, and
 its Working Groups. Note that other groups may also distribute work-
 ing documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months, and may be updated, replaced, or obsoleted by other documents
 at any time. It is not appropriate to use Internet Drafts as refer-
 ence material, or to cite them other than as a ``working draft'' or
 ``work in progress.''

 To view the entire list of current Internet-Drafts, please check
 the "1id-abstracts.txt" listing contained in the Internet-Drafts
 Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net
 (Northern Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au
 (Pacific Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu
 (US West Coast).

 Distribution of this memo is unlimited.

Abstract

 This memo describes KeyNote, a simple trust-management system to
 support public-key infrastructure. It outlines the syntax and
 semantics of keynote credentials, describes action environment
 processing, and describes the application architecture into which a
 KeyNote implementation would fit.

Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [Bra97].

Blaze/Feigenbaum/Keromytis expires in six months [Page i]

DRAFT KeyNote April 1998

1. Introduction

 This memo describes KeyNote, a simple trust-management system for
 public-key infrastructures. Trust management, introduced in the
 PolicyMaker system [BFL96], is a unified approach to specifying and
 interpreting security policies, credentials, and relationships that
 allows direct authorization of security-critical actions. In
 particular, a trust-management system combines the notion of
 specifying security policy with the mechanism for specifying security
 credentials (subsuming the role of "certificates"). Credentials
 describe a specific delegation of trust among public keys; unlike
 traditional certificates, which bind keys to names, trust-management
 credentials bind keys to the authorization to perform specific tasks.

 KeyNote provides a simple notation for specifying both local
 security policies and security credentials that can be sent over an
 untrusted network. Policies and credentials, called "assertions" as
 in PolicyMaker, contain predicates that describe the trusted
 actions permitted by the holders of specific public keys. A signed
 assertion that can be sent over an untrusted network is called a
 Credential Assertion. Credential assertions, which serve the role
 of "certificates," have the same syntax as policy assertions with
 the additional feature that they are signed by the entity
 delegating the trust. A KeyNote evaluator accepts as input a set of
 local policy assertions, a collection of credential assertions, and
 a collection of attributes, called an "action environment," that
 describes a proposed trusted action associated with a set of public
 keys. KeyNote determines whether proposed actions are consistent
 with local policy by applying the assertion predicates to the
 action environment.

 Although the basic design of KeyNote is similar in spirit to that of
 PolicyMaker, KeyNote's features have been simplified to more directly
 support public-key infrastructure-like applications. The central
 differences between PolicyMaker and KeyNote are:
 - KeyNote predicates are written in a simple notation based on
 C-like expressions and regular expressions.
 - The KeyNote system always returns a boolean (trusted or not)
 answer.
 - Credential signature verification is built in to the KeyNote
 system.
 - Assertion syntax is based on a human-readable
 "RFC-822"-style syntax.
 - Trusted actions are described by simple attribute/value pairs.

2. KeyNote Assertion Format

https://datatracker.ietf.org/doc/html/rfc822

 All KeyNote assertions are encoded in ASCII strings. Four mandatory
 fields MUST appear in all assertions (KEYNOTE-VERSION, SIGNER,
 KEY-PREDICATE, and ACTION-PREDICATE); three optional fields MAY
 appear (COMMENT, SIGNATURE, and LOCAL-INIT).

Blaze/Feigenbaum/Keromytis expires in six months [Page 1]

DRAFT KeyNote April 1998

 The version of KeyNote assertions described in this document is 1.
 All fields MUST start at the beginning of a line; fields may be
 continued by indenting with at least one SPACE or TAB character at
 the beginning of the line. Whitespace separates tokens but is
 otherwise ignored outside of quoted strings (our grammars below
 omit whitespace processing in the interest of readability). All
 name tokens are case-insensitive. It is encouraged that keys be
 encoded in lower-case hex digits. String comparison of keys for
 internal purposes (e.g., matching a key in the KEY-PREDICATE of one
 assertion with a key in the SIGNER field of another assertion) MUST
 be case insensitive. In the following sections, the notation [X]*
 means zero or more repetitions of the string X. The notation [X]+
 means one or more repetitions of the string X.

2.1 Key Encoding

 Keys are encoded as ALG[:LEN:HEXENC]+, where LEN is an ASCII-encoded
 decimal number, indicating the number of characters in the HEXENC
 field. HEXENC is key encoded in hexadecimal digits. If more than
 one component is needed by the signature algorithm, the extra
 components are appended. The required number of components is
 determined by the key type. ALG is an ASCII string that describes
 the key type (such as RSA or DSA).

2.2 The KEYNOTE-VERSION field

 The KEYNOTE-VERSION field is of the form KEYNOTE-VERSION:VerNumber,
 where VerNumber is an ASCII-encoded decimal number. The current
 version is 1. This field MUST be the first field appearing in a
 KeyNote assertion.

2.3 The LOCAL-INIT field

 The initialization field is of the form:
 Local-Init: Name = ConstantString [, Name = ConstantString]*

 Name is an identifier that can be used in the ACTION-PREDICATE and
 KEY-PREDICATE fields instead of the string ConstantString. If the
 LOCAL-INIT field defines more than one identifier, it can occupy
 more than one line and be indented. ConstantString can be composed
 by concatenating smaller strings using the "+" operator (see the
 examples). If an initialization identifier is accessed but has
 not been defined, it should evaluate to the empty string. The
 initialized identifier ANGELOS_DSA_KEY could, for example, be used
 in the KEY-PREDICATE field as KEY-PREDICATE: $ANGELOS_DSA_KEY

 When an initialization identifier is accessed in an
 ACTION-PREDICATE expression, it shadows the value of any action
 environment identifier, for this assertion only. If an identifier

 is declared more than once in the LOCAL-INIT field, the assertion
 MUST be considered invalid.

Blaze/Feigenbaum/Keromytis expires in six months [Page 2]

DRAFT KeyNote April 1998

2.4 The SIGNER field

 The SIGNER field is of the form SIGNER:KEY, where KEY is a key
 encoded as described in 2.1 or an initialization constant as
 described in 2.3. The SIGNER field may instead be of the form
 SIGNER:Policy. A Policy assertion is one that is trusted
 directly by the local environment. It can serve as the "root" of a
 trust structure that authorizes a requested action. A valid input
 to the KeyNote evaluator must contain at least one Policy
 assertion. Because they are trusted locally, Policy assertions do
 not require cryptographic signature verification.

2.5 The KEY-PREDICATE field

 The KEY-PREDICATE field is of the form Key-Predicate:KEY-EXPR.
 KEY-EXPR is given by the following grammar:

 KEY-EXPR: (KEY-EXPR) |
 KEY-EXPR "&&" KEY-EXPR |
 KEY-EXPR "||" KEY-EXPR |
 K-of(KEYLIST) |
 KEY |
 "$"STRING

 KEYLIST: KEY |
 "$"STRING |
 KEY, KEYLIST |
 "$"STRING, KEYLIST

 STRING: [a-zA-Z0-9][a-zA-Z0-9_\.]*

 The "&&" operator has higher precedence than the "||" operator.

 "K" is an ASCII-encoded decimal number. A KEYLIST SHOULD contain at
 least K keys. Whitespace characters (space, tab, newline) in
 KEY-EXPR MUST be ignored. The semantics of k-OF are that at least
 K distinct keys from the KEYLIST must authorize a request. If the
 KEY-EXPR field is empty, it always evaluates to TRUE and is used
 for direct authorization of a ACTION-PREDICATE by a policy or a
 credential.

2.6 The SIGNATURE field

 The SIGNATURE field is of the form Signature:NAME[:LEN:SIG]+, where
 NAME is an ASCII string that indicates the signature type (e.g.,
 RSA-MD5-PKCS1). LEN is an ASCII encoded decimal number that
 indicates the length of the SIG field. SIG is the signature encoded
 in hexadecimal digits. If more than one component is needed by
 the signature algorithm, the extra components are appended. The

 required number of components is determined by the NAME field
 value. The signature is computed over the KEYNOTE-VERSION, SIGNER,
 LOCAL-INIT, KEY-PREDICATE, COMMENT, and ACTION-PREDICATE fields,

Blaze/Feigenbaum/Keromytis expires in six months [Page 3]

DRAFT KeyNote April 1998

 concatenated with the NAME field, as they appear in the credential.
 This field MUST be last in a KeyNote assertion.

2.7 The COMMENT field

 The COMMENT field is of the form Comment: .*
 The interpretation of this field is application-dependent.

2.8 The ACTION-PREDICATE field

 The ACTION-PREDICATE field is of the form ACTION-PREDICATE: EXPR,
 where EXPR is described by the following grammar:

 EXPR: "(" EXPR ")" |
 EXPR "&&" EXPR | /* Logical AND */
 EXPR "||" EXPR | /* Logical OR */
 "!"EXPR | /* Logical NOT */
 NUMEXPR |
 FLOATEXPR |
 STRINGEXPR |
 true | false

 NUMEXPR: NUMEX < NUMEX | /* Integer expression comparisons */
 NUMEX > NUMEX |
 NUMEX <= NUMEX |
 NUMEX >= NUMEX |
 NUMEX == NUMEX |
 NUMEX != NUMEX

 FLOATEXPR: FLOATEX < FLOATEX | /* Floating point */
 FLOATEX > FLOATEX |
 FLOATEX <= FLOATEX |
 FLOATEX >= FLOATEX

 STRINGEXPR: STR == STR | /* String comparisons */
 STR != STR |
 STR < STR | /* Alphanumeric comparison */
 STR > STR |
 STR <= STR |
 STR >= STR |
 STR ~= REGEXP /* Regular expression matching */

 STR: STR + STR | /* String concatenation */
 STR . STR | /* Also string concatenation */
 LITERALSTRING |
 VARIABLE
 "$(" STR ")"

 NUMEX: NUMEX + NUMEX | /* Arithmetic operations */

 NUMEX - NUMEX |
 NUMEX * NUMEX |
 NUMEX / NUMEX |

Blaze/Feigenbaum/Keromytis expires in six months [Page 4]

DRAFT KeyNote April 1998

 NUMEX % NUMEX |
 NUMEX ^ NUMEX | /* Exponentiation */
 -NUMEX
 (NUMEX) |
 NUMBER |
 NUMVARIABLE

 FLOATEX: FLOATEX + FLOATEX | /* Floating point operations */
 FLOATEX - FLOATEX |
 FLOATEX * FLOATEX |
 FLOATEX / FLOATEX |
 FLOATEX ^ FLOATEX | /* Exponentiation */
 -FLOATEX
 (FLOATEX) |
 FLOAT |
 FLOATVARIABLE

 NUMBER: [0-9]+
 FLOAT: {NUMBER} "." {NUMBER}
 STRING: [a-zA-Z][a-zA-Z0-9_]*
 VSTRING: [a-zA-Z0-9][a-zA-Z0-9_]*
 DQUOTE: \"
 LITERALSTRING: DQUOTE (([^\"\n])|(\\[.\n]))* DQUOTE
 VARIABLE: "$"VSTRING
 NUMVARIABLE: "@"VSTRING
 FLOATVARIABLE: "&"VSTRING

 The numeric operation precedence is (higher to lower) ^, (*, /, %),
 (+, -). Operators of equal precedence are evaluated left-to-right.
 REGEXP refers to the POSIX 1003.2 regular expression syntax and
 semantics. Single-backslash ("\") elimination must be performed on
 LITERALSTRINGs (e.g., "\ac" becomes "ac"). If an ACTION-PREDICATE
 field is empty, it always evaluates to TRUE. A division (or modulo)
 by zero cause the enclosing boolean expression to evaluate to false.
 String operations (including regexps) can be case-sensitive or
 case-insensitive, specified as a run-time option.

3. ACTION ENVIRONMENTS

 Trusted actions to be evaluated by KeyNote are described by a
 collection of attribute/value pairs called the Action Environment.
 An action environment is passed to the KeyNote system as part of
 each query and provides the values of the variables used by
 assertion predicates.

 The action environment specifies a collection of values of named
 attributes. The attributes may be examined as variables by KeyNote

 trust predicates.

 The exact format for specifying an action environment is determined
 by the particular KeyNote implementation. In general, an

Blaze/Feigenbaum/Keromytis expires in six months [Page 5]

DRAFT KeyNote April 1998

 environment may be thought of as a list of assignments to
 variables:

 ATTRIBUTE1=VALUE1
 ATTRIBUTE2=VALUE2
 ...

 If an action environment attribute is not defined, it MUST
 evaluate to the empty string (if accessed as a string) or the
 value zero (if accessed as an integer or a float).

 An attribute that is accessed as an integer (by prepending the "@"
 sign) MUST contain only digits. Similarly, an attribute that is
 accessed as a float (through the "&" sign) MUST consist entirely of
 digits and at most one period. In both cases if the attribute
 contains any illegal character, the returned value MUST be zero.

 Only one attribute, called "$ACTION_SIGNERS", is mandatory. This
 attribute lists the key or keys associated with the action
 environment (e.g., signer of the message whose trust is being
 evaluated by KeyNote). The $ACTION_SIGNERS attribute is used to
 provide the initial keys to match against the KEY-PREDICATEs.

 In most cases, the $ACTION_SIGNERS attribute will consist of a
 single public key (of the ALG:LEN:VAL form specified in the previous
 section):

 $ACTION_SIGNERS="dsa:12:abcdef123456"

 If an action is associated with more than one key, the
 ACTION_SIGNERS attribute may contain a comma-separated list of keys.

 $ACTION_SIGNERS="dsa:20:123400000123abd12212,
 rsa:28:ab34781acc01923cdeff232ff232"

 The names of all other attributes in the action environment are not
 specified by KeyNote but must be agreed upon by the writers of any
 policies and credentials that are to cooperate in a KeyNote query
 evaluation. By convention, the name of the application domain in
 which environment attributes should be interpreted is specified in
 the attribute APP_DOMAIN. The IANA will provide a registry of
 reserved APP_DOMAIN names with the names and meanings of the
 attributes they use. Note that an attribute with a particular name
 may have different meanings in different application domains. Note
 that the use of the registry is optional; a policy or credential
 may depend on any attribute names used by the credentials to which
 trust is deferred.

 For example, an email application might reserve the APP_DOMAIN

 "RFC822-EMAIL" and might use the following attributes:

 $ADDRESS (the email address of a message's sender)

Blaze/Feigenbaum/Keromytis expires in six months [Page 6]

https://datatracker.ietf.org/doc/html/rfc822

DRAFT KeyNote April 1998

 $NAME (the human name of the message sender)
 $ORGANIZATION (the organization name).

 The values of these attributes may be derived in the obvious way
 from the email message headers.

 Note that RFC822-EMAIL is simply a hypothetical example; such a
 name may or may not appear in the actual registry with these or
 different attributes. (Indeed, we recognize that the reality of
 email security is considerably more complex than this example
 suggests.)

4. KeyNote Action Evaluation

 This section describes the semantics of KeyNote action evaluation.
 An implementation is free to use any algorithm that provides
 equivalent semantics.

 Initialization:

 The variable $App_Domain is assigned the name of the
 application (e.g., "RFC822-EMAIL").

 The keys that authenticate the request for a trusted action are
 assigned to the variable $Action_Signers.

 The rest of the action environment attributes are placed in their
 respective variables.

 The time of day MAY be placed in the variables $GMTTimeOfDay and
 $LocalTimeOfDay, using the format YYYYMMDDHHMMSS (e.g.,
 19980307191512).

 Any other implementation-dependent variables and their bindings are
 also created at this step.

 For each KeyNote assertion passed to the evaluation engine, the
 following steps are taken:

 The ACTION-PREDICATE expression is evaluated. If the result is
 boolean TRUE, and the key expression in the KEY-PREDICATE
 field is also true, the request is approved. Otherwise, it is
 rejected.

 The KEY-PREDICATE field public-key expression is evaluated as
 follows:

 Let the key expression contain public key PK_i. A boolean

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

 variable `PK_i' corresponds to this key.

 If there is no assertion in which PK_i is the SIGNER, then the

Blaze/Feigenbaum/Keromytis expires in six months [Page 7]

DRAFT KeyNote April 1998

 boolean variable `PK_i' is false.

 If there is at least one assertion in which PK_i is
 the source, then the boolean variable `PK_i' is true
 if and only if at least one of those assertions is true.

 For a request to be approved, there must exist a directed graph
 of KeyNote assertions rooted at a POLICY assertion of the
 evaluator that evaluates to TRUE. If such a directed graph cannot
 be constructed, the request is denied for lack of authorization.
 Delegation of some authorization from key A to a set of keys B is
 expressed as an assertion with key A in the SIGNER field, key set B
 in the KEY-PREDICATE field, and the authorization delegated encoded
 in the ACTION-PREDICATE field. How the expression digraph is
 constructed is implementation-dependent, in particular because
 different implementations may use different algorithms for
 optimizing the graph construction.

5. Examples

 In the interest of readability, these examples use much shorter
 keys than would ordinarily be used. Note that the "SIGNATURE"
 fields in these examples do not represent the result of any real
 signature calculation.

 1. TRADITIONAL CA / EMAIL

 A. A policy unconditionally delegating trust to the holder of RSA
 key abc123:

 KEYNOTE-VERSION: 1
 SIGNER: policy
 KEY-PREDICATE: rsa-sha1-pkcsX:6:abc123
 ACTION-PREDICATE: true

 B. A credential assertion in which RSA Key abc123 trusts either
 RSA key 4401ff92 or DSA key d1234f to perform actions in which
 the "app_domain" is "rfc822-email", where the "address" matches
 the regular expression "^.*@keynote\.research\.att\.com$". In
 other words, abc123 trusts 4401ff92 and d1234f as certification
 authorities for the keynote.research.att.com domain.

 KEYNOTE-VERSION: 1
 LOCAL-INIT: TRUSTED_PARTY1="dsa-sha1-pkcsX:8:4401" + "ff92",
 TRUSTED_PARTY2="rsa-sha1-pkcsX:6:d1234f"
 SIGNER: rsa-sha1-pkcsX:6:abc123
 KEY-PREDICATE: $TRUSTED_PARTY1 || $TRUSTED_PARTY2
 ACTION-PREDICATE: ($app_domain == "RFC822-EMAIL") &&

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

 ($address ~=
 "^.*@keynote\\.research\\.att\\.com$")
 SIGNATURE: rsa-md5-pkcsX:8:213354f9

Blaze/Feigenbaum/Keromytis expires in six months [Page 8]

DRAFT KeyNote April 1998

 C. A certificate credential for a specific user, issued by one of
 the certification authorities above:

 KEYNOTE-VERSION: 1
 SIGNER: dsa-sha1-pkcsX:8:4401ff92
 KEY-PREDICATE: dsa-sha1-pkcsX:8:12340987
 ACTION-PREDICATE: (($app_domain == "RFC822-EMAIL") &&
 ($name == "M. Blaze" || $name == "") &&
 ($address ==
 "mab@keynote.research.att.com"))
 SIGNATURE: dsa-sha1-pkcsX:8:ab23487

 D. Another certificate credential for a specific user, issued by
 one of the certification authorities above. This one allows
 three different keys to sign as jf@keynote.research.att.com
 (each with a different crypto algorithm). Three credentials
 in one:

 KEYNOTE-VERSION: 1
 SIGNER: dsa-sha1-pkcsX:8:4401ff92=
 KEY-PREDICATE: dsa-sha1-pkcsX:6:abc991 ||
 rsa-sha1-pkcsX:6:cde773 ||
 rsa-md5-pkcsX:6:fd091a
 ACTION-PREDICATE: (($app_domain == "RFC822-EMAIL") &&
 ($name == "J. Feigenbaum" || $name == "") &&
 ($address == "jf@keynote.research.att.com"))
 SIGNATURE: dsa-sha1-pkcsX:8:8912aa

 Observe that under policy A and credentials B, C and D, the
 following action environments are accepted:

 $action_signer = "dsa-sha1-pkcsX:8:12340987"
 $app_domain = "RFC822-EMAIL"
 $address = "mab@keynote.research.att.com"

 and

 $action_signer = "dsa-sha1-pkcsX:8:12340987"
 $app_domain = "RFC822-EMAIL"
 $address = "mab@keynote.research.att.com"
 $name = "M. Blaze"

 while the following are not accepted:

 $action_signer = "dsa-sha1-pkcsX:8:12340987"
 $app_domain = "RFC822-EMAIL"
 $address = "angelos@dsl.cis.upenn.edu"

 and

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

 $action_signer = "dsa-sha1-pkcsX:6:abc991"
 $app_domain = "RFC822-EMAIL"

Blaze/Feigenbaum/Keromytis expires in six months [Page 9]

https://datatracker.ietf.org/doc/html/rfc822

DRAFT KeyNote April 1998

 $address = "mab@keynote.research.att.com"
 $name = "M. Blaze"

 and

 $action_signer = "dsa-sha1-pkcsX:8:12340987"
 $app_domain = "RFC822-EMAIL"
 $address = "mab@keynote.research.att.com"
 $name = "J. Feigenbaum"

 E. Here's a credential that does not allow delegation to another
 key:

 KEYNOTE-VERSION: 1
 LOCAL-INIT: KEY1="dsa-sha1-pkcsX:6:fde995"
 SIGNER: dsa-sha1-pkcsX:8:4401ff92
 KEY-PREDICATE: $KEY1
 ACTION-PREDICATE:($app_domain="RFC822-EMAIL") &&
 ($action_signers=$KEY1) &&
 ($name == "A. Keromytis" ||
 $name == "") &&
 ($address ==
 "angelos@keynote.research.att.com")
 SIGNATURE: dsa-sha1-pkcsX:8:fed121ab

 Now, even if we add a credential:

 KEYNOTE-VERSION: 1
 SIGNER: dsa-sha1-pkcsX:6:fde995
 KEY-PREDICATE: dsa-sha1-pkcsX:8:bad22bad
 ACTION-PREDICATE: true
 SIGNATURE: dsa-sha1-pkcsX:6:973cc1

 we still won't accept this action environment:

 $action_signer = "dsa-sha1-pkcsX:8:bad22bad"
 $app_domain = "RFC822-EMAIL"
 $address = "angelos@keynote.research.att.com"
 $name = "A. Keromytis"

 Although, of course, we would accept:

 $action_signer = "dsa-sha1-pkcsX:6:fde995"
 $app_domain = "RFC822-EMAIL"
 $address = "angelos@keynote.research.att.com"
 $name = "A. Keromytis"

 but not:

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

 $action_signer = "dsa-sha1-pkcsX:6:fde995"
 $app_domain = "RFC822-EMAIL"
 $address = "angelos@keynote.research.at.com"
 $name = "Matt Blaze"

Blaze/Feigenbaum/Keromytis expires in six months [Page 10]

https://datatracker.ietf.org/doc/html/rfc822

DRAFT KeyNote April 1998

 2. WORKFLOW/ELECTRONIC COMMERCE

 F. A policy that delegates authority for the "SPEND" application
 domain to RSA key babe12 when @dollars is less than
 10000.

 KEYNOTE-VERSION: 1
 SIGNER: policy
 KEY-PREDICATE: rsa-sha1-pkcsX:6:babe12
 ACTION-PREDICATE: ($app_domain="SPEND") && (@dollars < 10000)

 G. RSA key babe12 requires the signature of at least 2
 signers, one of which must be DSA key feed1234 in the
 "SPEND" application when @dollars is less than 5000

 KEYNOTE-VERSION: 1
 SIGNER: rsa-sha1-pkcsX:6:babe12
 KEY-PREDICATE: dsa-sha1-pkcsX:8:feed1234 &&
 (rsa-sha1-pkcsX:6:abc113 ||
 dsa-sha1-pkcsX:6:bcd987 ||
 dsa-sha1-pkcsX:6:cde333 ||
 dsa-sha1-pkcsX:6:def975 ||
 dsa-sha1-pkcsX:6:978add)
 ACTION-PREDICATE: ($app_domain="SPEND") &&
 (@dollars < 5000)
 SIGNATURE: rsa-sha1-pkcsX:6:9867a1

 H. Any two signers if @dollars < 1000:

 KEYNOTE-VERSION: 1
 SIGNER: policy
 KEY-PREDICATE: 2-of(dsa-sha1-pkcsX:8:feed1234:,
 rsa-sha1-pkcsX:6:abc113,
 dsa-sha1-pkcsX:6:bcd987,
 dsa-sha1-pkcsX:6:cde333,
 dsa-sha1-pkcsX:6:def975,
 dsa-sha1-pkcsX:6:978add)
 ACTION-PREDICATE: ($app_domain="SPEND") &&
 (@dollars < 1000)

 I. As above, but only one signer required if @dollars < 100.

 KEYNOTE-VERSION: 1
 SIGNER: rsa-sha1-pkcsX:6:babe12
 KEY-PREDICATE: (dsa-sha1-pkcsX:8:feed1234 ||
 rsa-sha1-pkcsX:6:abc123 ||
 dsa-sha1-pkcsX:6:bcd987 ||
 dsa-sha1-pkcsX:6:cde333 ||
 dsa-sha1-pkcsX:6:def975 ||

 dsa-sha1-pkcsX:6:978add)
 ACTION-PREDICATE: ($app_domain="SPEND") &&
 (@dollars < 100)

Blaze/Feigenbaum/Keromytis expires in six months [Page 11]

DRAFT KeyNote April 1998

 SIGNATURE: rsa-sha1-pkcsX:6:786123

 Under policies F and H, and credentials G and I, we accept:

 $action_signer = "dsa-sha1-pkcsX:6:978add"
 $app_domain = "SPEND"
 @dollars = 45
 $unmentioned_variable="whatever"

 and

 $action_signer = "rsa-sha1-pkcsX:6:abc123,
 dsa-sha1-pkcsX:8:cde333"
 $app_domain = "SPEND"
 @dollars = 550

 and

 $action_signer = "dsa-sha1-pkcsX:8:feed1234,
 dsa-sha1-pkcsX:6:cde333"
 $app_domain = "SPEND"
 @dollars = 2500

 and

 $action_signer = "rsa-sha1-pkcsX:8:babe12"
 $app_domain = "SPEND"
 @dollars = 2000

 However, the following are not accepted:

 $action_signer = "dsa-sha1-pkcsX:6:def975"
 $app_domain = "SPEND"
 @dollars = 550

 and

 $action_signer = "dsa-sha1-pkcsX:8:cde333,
 dsa-sha1-pkcsX:8:978add"
 $app_domain = "SPEND"
 @dollars = 2500

 3. COMMAND AND CONTROL AUTHORIZATION

 J. A policy that at least two signers are required to authorize
 the launch of missiles against London or Moscow.

 KEYNOTE-VERSION: 1

 SIGNER: policy
 KEY-PREDICATE: 2-of(dsa-sha1-pkcsX:8:badfeed1,
 rsa-sha1-pkcsX:8:ff123ad3,

Blaze/Feigenbaum/Keromytis expires in six months [Page 12]

DRAFT KeyNote April 1998

 dsa-sha1-pkcsX:8:198714fd,
 dsa-sha1-pkcsX:8:a1984cde,
 dsa-sha1-pkcsX:6:975135)
 ACTION-PREDICATE: ($app_domain="NUKE") &&
 ($action="launch") &&
 ($delivery_system="missile") &&
 (($target="moscow") || ($target="london"))

6. Trust Management Architecture

 KeyNote provides a simple mechanism for describing security policy
 and representing credentials. It differs from traditional
 certification systems in that the security model is based on
 binding keys to predicates that describe what the key is authorized
 by policy to do, rather than on resolving names. The
 infrastructure and architecture to support a KeyNote system is
 therefore rather different than that for a name-based certification
 scheme. The KeyNote trust-management architecture is based on that
 of PolicyMaker [BFL96].

 It is important to understand the separation between the
 responsibilities of the KeyNote system and those of the application
 and other support infrastructure. A KeyNote evaluator will
 determine, based on policy and credential assertions, whether a
 proposed action is permitted according to policy. The usefulness
 of this determination depends on a number of factors. First, the
 action environment attributes and the assignment of their values
 must reflect accurately the security requirements of the
 application. Identifying the attributes to include in the action
 environment is perhaps the most important task in integrating
 KeyNote into new applications. Second, the policy of the
 application must be correct and well-formed. In particular, trust
 must be deferred only to keys and for predicates that should, in
 fact, be trusted by the application. Finally, KeyNote does not
 directly enforce policy; it only provides advice to the
 applications that call it. KeyNote assumes that the application
 itself is trusted and that the policy assertions are correct.
 Nothing prevents an application from submitting misleading
 assertions to KeyNote, or from ignoring KeyNote altogether.

 It is also up to the application (or some service outside KeyNote)
 to select the appropriate credentials and policy assertions with
 which to run a particular query. Note that even if inappropriate
 credentials are provided to KeyNote, this cannot result in the
 approval of an illegal action environment (as long as the policy
 assertions are correct and the the action environment itself is
 correctly passed to KeyNote). KeyNote is monotonic; adding an

 assertion to a query can never result in a query being rejected if
 it would have been accepted without the assertion. Omitting
 credentials may, of course, result in legal action environments
 being disallowed. Selecting appropriate credentials (e.g., from a

Blaze/Feigenbaum/Keromytis expires in six months [Page 13]

DRAFT KeyNote April 1998

 distributed database or "key server") is outside the scope of
 KeyNote itself, and may properly be handled by the remote client
 making a request, by the local machine verifying the request, or by
 a network-based service, depending on the application.

 In addition, KeyNote does not itself provide credential revocation
 services, although credentials can be written to expire after some
 date by including a date test in the predicate. Applications that
 require credential revocation can use KeyNote to help specify and
 implement revocation policies. A future draft will address
 expiration and revocation services in KeyNote.

 Observe that KeyNote adopts an almost opposite approach from that
 of a general-purpose name-based certification scheme. In
 name-based schemes (such as X.509), the infrastructure aims to
 provide a common application-independent certificate, with each
 application left to develop its own mechanism to interpret the
 security semantics of the name. KeyNote, on the other hand, aims
 to provide a common, application-independent mechanism for use with
 application-specific credentials and policies. Each application
 (or class of applications) will develop its own set of attributes,
 with application-specific credentials and policies created to
 operate on them.

 Nevertheless, it is possible to take advantage of an existing
 general-purpose name-based infrastructure but still use KeyNote to
 specify policy and trust in some applications. If an X.509 [X509],
 PGP [Zim95], or SDSI [LR97] -based certificate distribution
 infrastructure provides reliable bindings between names and keys,
 these certificates can be converted to KeyNote assertions that
 verify that an appropriate action environment attribute has the
 correct name. Policy assertions can be used to specify the X.509,
 PGP, or SDSI certification authorities that are trusted for various
 kinds of names, etc.

 Because KeyNote is designed to support a variety of applications,
 several different application interfaces to a KeyNote
 implementation are possible. In the simplest, a KeyNote evaluator
 would exist as a stand-alone application, with other applications
 calling it as needed. KeyNote might also be implemented as a
 library to which applications are linked. Finally, a KeyNote
 implementation might run as a local trusted service, with local
 applications communicating their queries via some interprocess
 communication mechanism.

7. Security Considerations

 This draft discusses a trust-management system for public-key
 infrastructures. The draft is itself concerned with a security
 mechanism.

Blaze/Feigenbaum/Keromytis expires in six months [Page 14]

DRAFT KeyNote April 1998

 References

 [BFL96] M. Blaze, J. Feigenbaum, J. Lacy, Decentralized Trust
 Management, 1996 IEEE Conference on Privacy and Security,
 Oakland, 1996.

 [LR97] B. Lampson, R. Rivest, SDSI - Simple Distributed System
 Infrastructure, Draft, 1997.

 [Zim95] P. Zimmermann, PGP User's Manual, 1995.

 [Bra97] S. Bradner, Key words for use in RFCs to Indicate
 Requirement Level, RFC 2119, March 1997.

 [X509] CCITT, Recommendation X.509: The Directory Authentication
 Framework, December 1988.

 [SPKI] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
 T. Ylonen, SPKI Certificate Theory, Work in Progress,

http://www.clark.net/pub/cme/theory.txt

 Contacts

 Comments about this document should be discussed on the spki@c2.net
 mailing list.

 Questions about this document can also be directed to:

 Matt Blaze
 AT&T Labs - Research
 180 Park Avenue
 Florham Park, New Jersey 07932

 mab@research.att.com

 Joan Feigenbaum
 AT&T Labs - Research
 180 Park Avenue
 Florham Park, New Jersey 07932

 jf@research.att.com

 Angelos D. Keromytis
 Distributed Systems Lab
 CIS Department, University of Pennsylvania
 200 S. 33rd Street
 Philadelphia, Pennsylvania 19104-6389

 angelos@dsl.cis.upenn.edu

https://datatracker.ietf.org/doc/html/rfc2119
http://www.clark.net/pub/cme/theory.txt

Blaze/Feigenbaum/Keromytis expires in six months [Page 15]

