
Internet Engineering Task Force A. Biswas
Internet-Draft NetApp, Inc.
Intended status: Standards Track May 26, 2010
Expires: November 27, 2010

Support for Stronger Error Detection Codes in TCP for Jumbo Frames
draft-anumita-tcpm-stronger-checksum-00

Abstract

 There is a class of data serving protocols and applications that
 cannot tolerate undetected data corruption on the wire. Data
 corruption could occur at the source in software, in the network
 interface card, out on the link, on intermediate routers or at the
 destination network interface card or node. The Ethernet CRC and the
 16-bit checksum in the TCP/UDP headers are used to detect data
 errors. Most applications rely on these checksums to detect data
 corruptions and do not use any checksums or CRC checks at their
 level. Research has shown that the TCP/UDP checksums are catching a
 significant number of errors, however, the research suggests that one
 packet in 10 billion will have an error that goes undetected for
 Ethernet MTU frames (MTU of 1500). Under certain situations, "bad"
 hosts can introduce undetected errors at a much higher frequency and
 order. With the use of Jumbo frames on the rise, and therefore more
 data bits on the wire that could be corrupted, the current 16-bit
 TCP/UDP checksum, or the Ethernet 32-bit CRC are simply not
 sufficient for detecting errors. This document specifies a proposal
 to use stronger checksum algorithms for TCP Jumbo Frames for IPv4 and
 IPv6 networks. The Castagnoli CRC 32C algorithm used in iSCSI and
 SCTP is proposed as the error detection code of choice.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 27, 2010.

Biswas Expires November 27, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Stronger TCP Error Detection May 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Conventions . 4

2. Calculating the CRC-32C value 4
3. Negotiating the use of CRC 32C 6
4. IPv6 Considerations . 8
5. Conclusions and Acknowledgements 8
6. IANA Considerations . 9
7. Security Considerations 9
8. References . 9
8.1. Normative References 9
8.2. Informative References 9

 Author's Address . 10

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Biswas Expires November 27, 2010 [Page 2]

Internet-Draft Stronger TCP Error Detection May 2010

1. Introduction

 There is a class of data serving applications that host business and
 financial data. Detecting and recovering from data corruption is
 paramount to the success of this class of applications. Data
 corruption can occur while data is transiting from the source to a
 desired destination. Data can get corrupted right at the source due
 to software errors, within the network interface card, out on the
 wire or link, in intermediate routers and at the destination network
 interface or node. Link errors are detected using the Ethernet 32-
 bit CRC. Node or router errors are detected using the 16-bit
 checksum in the transport headers of TCP and UDP. Most applications
 do not have built-in error detection capability and typically rely on
 the checksums in the underlying networking layers. Stone et al.
 [Stone] have recommended applications employ their own checksums to
 detect errors that go undetected by lower levels. They have made
 this recommendation for the standard Ethernet MTU. They have done so
 considering situations where a "bad" host can introduce undetected
 errors at a much higher frequency and order. It must also be said
 that the physical layer already does encodings with bit error
 rates(BER) of 10^-12 to 10^-14 and therefore the current checksum
 algorithms may be sufficient. However, stronger checksumming
 accounts for the cases where noisy hardware, bad cables can introduce
 noise at a much higher frequency and order. It is also to be noted
 that increasing speed of the physical medium (to 40G and 100G) can
 also lead to higher BER.

 Another dynamic, very much in the rise is the use and deployment of
 Jumbo Frames. Jumbo Frames reduce per packet overheads significantly
 and are a cheap way of improving the performance of bulk data
 applications. Combining the use of Jumbo frames with noisy physical
 medium increases the risk of undetected bit errors as there simply
 are more bits that can get corrupted. This is rather concerning as
 business and financial data typically are transported over the
 network using file access based protocols like NFS, CIFS, HTTP over
 TCP.

 The strength of the Ethernet CRC checksum and the 16-bit Transport
 checksum has been found to reduce for data segments that are larger
 than the standard Ethernet MTU. Koopman et. al. [Koopman] have
 explored a number of CRC polynomials as well as the polynomial used
 in the Ethernet CRC calculation. They have measured the
 effectiveness of these CRC polynomials for different data word
 lengths, where a data word is a bit stream from 64 bits to 128 Kbits.
 These data word lengths cover lengths equivalent to Ethernet MTUs and
 Jumbo frames and also frame lengths larger than Jumbo frames. They
 found that the Castagnoli polynomial x^32 + x^28 + x^27 + x^26 + x^25
 + x^23 + x^22 + x^20 + x^19 + x^18 + x^14 + x^13 + x^11 + x^10 + x^9

Biswas Expires November 27, 2010 [Page 3]

Internet-Draft Stronger TCP Error Detection May 2010

 + x^8 + x^6 + x^0 represented as the 32-bit code 0x8F6E37A0 bests
 other CRC polynomials for Jumbo frames and larger segments. This
 polynomial has been adopted by the iSCSI and SCTP standards. It is
 to be noted that this polynomial is represented as the 32-bit code
 0x11EDC6F41 in SCTP in accordance to the convention adopted for bit-
 ordering at the transport-level, i.e., bit-ordering for mapping SCTP
 messages to polynomials is that bytes are taken most significant
 first, but within each bytes, bits are taken least-significant first.

 Given the ubiquity of TCP, it is the layer where we can introduce
 stronger error detection capability without duplicating the effort in
 higher layers. TCP options provide an easy path to introduce
 stronger checksum without hindering interoperability. TCP options
 allow a TCP stack supporting a TCP option to interoperate seamlessly
 with a TCP stack that does not support the new TCP option (RFC 1122
 [RFC1122] requires the interoperability in Section 4.2.2.5).

 This document proposes that the use of the Castagnoli polynomial,
 also known as the CRC 32C as the "checksum" of choice for TCP
 protocol. Other summation based checksum algorithms like Fletcher
 and Adler's algorithm were evaluated in RFC 3385 [RFC3385] and found
 to behave substanially worse than CRCs and hence are not considered
 in this proposal.

 By standardizing a stronger checksum at the TCP level, we can quickly
 drive the offloading of this checksum to NIC hardware, just as the
 16-bit TCP checksum is offloaded by most NIC vendors today.
 Offloading computation to hardware allows us to get rid of the in-
 software computation overheads of stronger checksum algorithms.

 Another positive effect of implementing strong TCP checksumming is
 that this will drive the rapid adoption of 9K Jumbo frames and make
 it considerably easier to consider even larger Jumbo Frames.

1.1. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Calculating the CRC-32C value

 The 16-bit TCP checksum does a checksum of the TCP header and
 payload. It also includes the pseudo header values of Source
 Address, Destination Address, Protocol and TCP Length. The addition
 of the bytes of a pseudo header into a summation based checksum
 algorithm is simpler than the inclusion of the bytes of a pseudo

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc3385
https://datatracker.ietf.org/doc/html/rfc3385
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Biswas Expires November 27, 2010 [Page 4]

Internet-Draft Stronger TCP Error Detection May 2010

 header into a CRC computation. This is because a CRC computation
 assumes a contiguous bit stream when translating the bit stream to a
 polynomial for doing the polynomial division. The psuedo header was
 added to the TCP checksum computation in order to detect errors
 introduced in one of the IP header fields that could possibly cause
 the packet to be sent to an incorrect destination. These fields also
 get included in the IP header checksum. The intent was to include
 them in two separate checksums for better data integrity. One can
 question the need for including the pseudo-header fields twice. The
 pseudo-header currently get included thrice if one considers the fact
 that the Ethernet CRC is computed over the entire Ethernet frame and
 Ethernet is ubiquitous today. So for the purposes of this draft, all
 the fields used in the current TCP checksum except the pseudo-header
 must be included in the CRC-32c calculation. If this draft's
 proposal is accepted for standardization, IETF may elect to add back
 the pseudo-header into the CRC-32C calculation or add only a smaller
 subset of the fields. But it is to be noted that in this proposal we
 do have room to consider changes like this without disrupting current
 installations.

 It may also be questionable whether one needs to compute the 16-bit
 TCP checksum if the new TCP checksum option is present. To avoid a
 chicken and egg problem, this document proposes that the 16-bit
 checksum field be zeroed out and included in the CRC 32C checksum as
 part of the TCP header bit stream. The standardization process may
 choose a different approach and decide to do both the 16-bit TCP
 checksum and the CRC 32C checksum, in which case, a method will need
 to be defined as to the order of checksumming and the fields used in
 each of the checksum computations.

 This document also recommends the use of the CRC-32C when the
 negotiated Maximum Segment Size (MSS) value is equal or greater than
 8948 bytes (excluding frame and TCPIP header bytes), the most common
 Jumbo Frame size, but does not explicitly recommend the use of CRC-
 32C for standard Ethernet MTU frames.

 The CRC-32C MAY be used even for regular Ethernet MTU frames also if
 the application so desires for stricter data integrity checking,
 since CRC-32C can detect more independent bit errors than Ethernet
 CRC for Ethernet MTU sized packets. The use of CRC-32C can be made
 settable by the application, by providing a socket option to the
 application. The provision for an application to enable/disable the
 use of the new checksum option is left as an API detail of the
 particular TCP/IP socket layer implementation.

 The following section describes two possible approaches to
 negotiating the proposed 32-bit TCP checksum. The common thread in
 the two approaches is the use of TCP options to negotiate the use of

Biswas Expires November 27, 2010 [Page 5]

Internet-Draft Stronger TCP Error Detection May 2010

 this checksum during the connection setup phase. Once the connection
 is setup, all subsequent packets sent during the connection transfer
 phase MUST carry the stronger checksum except as described below.

 It is also possible that Path MTU discovery causes a connection to
 reduce the negotiated MSS value post connection establishment. So,
 during connection establishment, an MSS equal or greater than 9K
 might have been negotiated along with stronger TCP checksumming, and
 then later the MSS reduced to be equal to the discovered path MTU.
 If the reduced MSS value is equal or less than an Ethernet MSS
 (typically 1460 without other TCP options), then the TCP end point
 that reduced its MTU may choose to NOT send the TCP checksum option
 in subsequent data packets. The peer must then rely on the 16-bit
 TCP checksum for end to end data integrity which is okay since the
 Ethernet CRC has comparable data integrity checking capability for
 Ethernet sized packets.

 Now, let us discuss the method for computing the CRC 32c value:

 The CRC computation uses polynomial division. The TCP header and
 payload is mapped to a polynomial and the CRC is calculated by
 dividing the bit stream with the CRC 32C polynomial. Stone et. al.
 in Appendix B of RFC 4960 [RFC4960] describe a convention for mapping
 the bytes of the bit stream into the polynomial. The same MUST be
 adopted for TCP transport too.

3. Negotiating the use of CRC 32C

 There are two possible approaches to negotiating the proposed CRC 32C
 checksum during the TCP connection setup phase.

 o A new TCP option

 o Using the TCP Alternate Checksum Data Option

 The first approach introduces a new TCP option to be negotiated by
 TCP endpoints during the connection setup phase. It will be of the
 same format as other defined TCP options and will have Type, Length
 and Value fields. A new type will be requested from IANA. The
 length field will be the sum total length of the new TCP checksum
 option which is 6 bytes. The value field will hold the 32-bit CRC
 32C checksum.

 If either one of the peers does not add this option to its TCP
 options list in its SYN segment, the CRC-32C checksum must not be
 used by the other peer. Most TCP implementations are written to
 process the TCP options they recognize and ignore unknown options on

https://datatracker.ietf.org/doc/html/rfc4960#appendix-B
https://datatracker.ietf.org/doc/html/rfc4960

Biswas Expires November 27, 2010 [Page 6]

Internet-Draft Stronger TCP Error Detection May 2010

 SYN segments so an endpoint that supports the new TCP option can
 interoperate with an endpoint that does not support the proposed TCP
 option.

 Since we have seen that the 16-bit TCP checksum is insufficient for
 detecting multiple independent errors for Jumbo frames, this proposal
 says that a peer supporting this option MUST send the new TCP
 checksum option if its link MTU is equal or greather than 9K.
 However, if the remote peer does not recognize the new option, the
 initiating peer MUST NOT use this TCP extension for the connection
 transfer phase. If the remote peer recognizes the option and also
 has a Maximum Segment Size equal to the peer's advertised MSS or a
 minimum MSS of 9K, it MUST respond with the TCP checksum option.
 Every subsequent packet from both peers must include this option in
 the TCP header. The extra overhead for adding this option is minimal
 for Jumbo frame sized segments and the higher data integrity pays for
 itself.

 Note that all TCP control packets sent after succesfully negotiating
 this TCP option may carry this TCP option also, although this draft
 does not mandate it.

 TCP CRC Checksum Option.

 +----------+------------+----------------------------+
 | Kind = X | Length = 6 | Value = 4 bytes of CRC 32C |
 |----------+------------+----------------------------+

 .

 Figure 1

 The second approach utilizes a pair of existing TCP options called
 the "TCP Alternate Checksum Options" specified in RFC 1146 [RFC1146].
 The current checksum types specified by that option are TCP checksum,
 8-bit Fletcher's algorithm and 16-bit Fletcher's algorithm. A new
 checksum type can be added to this list for CRC-32C checksums. The
 negotiation rules for selecting the checksum type would follow the
 rules described in RFC1146. That is, if both SYN segments carry the
 Alternate Checksum Request option, and both specify the same
 algorithm, that algorithm must be used for the remainder of the
 connection. Otherwise, the standard TCP checksum must be used for
 the entire connection.

 Once the CRC 32C checksum algorithm is negotiated, the TCP Alternate
 Checksum Data Option is sent whose data will equal 4 bytes for the
 CRC-32C checksum.

https://datatracker.ietf.org/doc/html/rfc1146
https://datatracker.ietf.org/doc/html/rfc1146
https://datatracker.ietf.org/doc/html/rfc1146

Biswas Expires November 27, 2010 [Page 7]

Internet-Draft Stronger TCP Error Detection May 2010

 TCP Alternate Checksum Request Option
 +-----------+------------+-----------------+
 | Kind = 14 | Length = 3 | Value = CRC-32C |
 |-----------+------------+-----------------+

 Here the value for CRC32C would need to be defined, and may possibly
 be the next undefined value '3', following the definitions for 8-bit
 and 16-bit fletcher's algorithms.

 TCP Alternate Checksum Data Option
 +-----------+------------+--------------------------------+
 | Kind = 15 | Length = 6 | Value = CRC-32C computed value |
 |-----------+------------+--------------------------------+

 The TCP Alternate Checksum Data Option must be sent only during the
 connection transfer and tear down phase. Again, the 16-bit TCP
 checksum field must be zeroed out before computing the 32-bit CRC 32C
 code.

 One or more padding bytes may be used when sending any of the above
 options to align to a 4 or 8 byte boundary for faster parsing on both
 32-bit and 64-bit machines.

 At this stage of draft development, the author is evaluating and
 seeking inputs for both approaches.

4. IPv6 Considerations

 The TCP extension for CRC 32C can be applied equally to IPv4 and
 IPv6. The pseudo header for IPv6 includes 128 bit source and
 destination addresses. This pseudo header, the TCP header and
 payload MUST be included in the CRC 32C checksum of a TCP/IPv6
 segment as there is no IPv6 header checksum.

5. Conclusions and Acknowledgements

 This document proposes the use of stronger error detection codes for
 TCP connections sending Jumbo Frames. It does not provide a solution
 for UDP based applications. I would also like to thank Tom Kessler
 (kessler@netapp.com) for his review comments. He specifically
 pointed out his concerns about the safety of TCP checksum + Ethernet
 CRC at 40G and 100G speeds with even 9K jumbo frames. He also
 provided information on the Intel instruction set that can be used to
 speed up CRC-32c computation. Special thanks to Janet Takami
 (jtakami@netapp.com) for her comments as well as for pointing out
 that there is no IPv6 header checksum and so the pseudo header must

Biswas Expires November 27, 2010 [Page 8]

Internet-Draft Stronger TCP Error Detection May 2010

 be included in the CRC 32c checksum.

6. IANA Considerations

 This memo includes a request to IANA for a new Type Number for the
 new TCP Checksum Option if we do not go with the TCP Alternate
 Checksum Option. If we go with the TCP Alternate Checksum option,
 then a new checksum type will need to be defined for CRC 32C,
 probably after the defined values for Fletcher's 8-bit and 16-bit
 algorithm types.

7. Security Considerations

 The CRC 32C codes can detect unintentional changes to data such as
 those caused by noise. If an attacker changes the data, it can also
 change the error-detection code to match the changed data. Hence,
 these codes are not intended for security purposes.

8. References

8.1. Normative References

 [RFC1122] IETF, "Requirements for Internet Hosts -- Communication
 Layers", October 1989.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

8.2. Informative References

 [Koopman] Koopman, P., "32-Bit Cyclic Redundancy Codes for Internet
 Applications", 2002.

 [Stone] Stone, J., Partridge, C., "When the CRC and TCP Checksum
 Disagree"

 [RFC1146] Zweig, J., Partridge, C., "TCP Alternate Checksum Options"
 March 1990.

 [RFC3385] Sheinwald, D., et. al. "Internet Protocol Small Computer
 System Interface (iSCSI) Cyclic Redundance Check (CRC)/
 Checksum Considerations", September 2002.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
 September 2007.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Biswas Expires November 27, 2010 [Page 9]

Internet-Draft Stronger TCP Error Detection May 2010

 July 2003.

Author's Address

 Anumita Biswas
 NetApp, Inc.
 495, E. Java Dr
 Sunnyvale, CA 95054
 USA

 Phone: +14088223204
 Email: anumita.biswas@netapp.com

Biswas Expires November 27, 2010 [Page 10]

