
Internet Engineering Task Force Arifumi Matsumoto
INTERNET DRAFT Kenji Fujikawa
 Yasuo Okabe
 Kyoto University
 23 June 2003

Basic Socket API Extensions for LIN6 End-to-End Multihoming

 <draft-arifumi-lin6-multihome-api-00.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet- Drafts.

 Internet-Drafts are draft documents, valid for a maximum of six
 months, and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document describes a method for multihoming support in
 application layer. We extend the basic socket API(Application
 Programming Interface) and propose some new interfaces for
 multihoming. Multihoming nodes are expected to have multiple
 addresses. The existing socket APIs, however, are not designed to
 manipulate multiple addresses in a connection. Proposed APIs help an
 application to handle multiple addresses, to avoid connection failure
 and to do load-balancing possibly. Right now, the proposed APIs are
 for LIN6 nodes, one of the mobile protocols. This is because LIN6's
 addressing architecture, which is called "8+8", is very friendly and
 consistent with multihoming. In this document, we propose a host-
 based multihoming solution and which is called end-to-end
 multihoming. In end-to-end multihoming, a fault-tolerant connection

Arifumi Expires 23 December 2003 [Page 1]

https://datatracker.ietf.org/doc/html/draft-arifumi-lin6-multihome-api-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

draft-arifumi-lin6-multihome-api-00.txt 23 June 2003

 can be achieved relying not on routers but on the pair of end-nodes
 only.

1. Introduction

 This document describes a method of host-based multihoming, which is
 implemented in the application layer. We extend the basic socket
 interface for IPv6[RFC2553] and propose some new interfaces for
 multihoming. Multihoming nodes are expected to have multiple
 addresses. The existing socket APIs, however, are not designed to
 manipulate multiple addresses in a connection. Proposed APIs make
 multiple addresses visible to an application and help an application
 to handle multiple addresses, to avoid connection failure and to do
 load-balancing possibly.

 Right now, the proposed APIs are for LIN6 nodes only. LIN6(Location
 Independent Network Architectur for IPv6)[LIN6], which is developed
 by M. Ishiyama, M. Kunishi and F. Teraoka, is one of the mobile
 network protocols. LIN6 is more efficient and simpler than other
 existing mobile network protocols are and this is mainly because of
 its addressing architecture. In LIN6 an IPv6 address is divided into
 two parts, ``locator'' and ``identifier,'' and DNS and ``Mapping
 Agents'' are used for the mapping of an identifier and its locators.
 This LIN6's addressing architecture is called "8+8", and is very
 friendly and consistent with multihoming. In this document, we
 propose a host-based multihoming solution, which is called end-to-end
 multihoming[E2E], combined with LIN6 mobile protocol. In end-to-end
 multihoming, a fault-tolerant connection can be achieved relying not
 on routers but on the pair of end-nodes only.

 On a LIN6 node, an existing application can be executed without any
 modifications to the application itself. Even if a node is multihomed
 and has multiple addresses, however, existing applications don't
 benefit from having multiple up-stream access lines. With our APIs,
 you can make an application that actively make use of multihoming.

 Although our APIs are such capable and easy to use, it is nonsense to
 remake all the existing applications in order to deploy multihoming.
 In case of TCP, the detection and avoidance of connection failure can
 be implemented in the transport layer by ack packet's timeout and so
 on. In case of UDP, however, it is nealy impossible to do the same in
 the transport layer. Those processes have to be done in the
 application layer. Thus, our APIs are mainly suitable for making
 multihome-ready UDP applications. Now we are planning to implement
 improved TCP for end-to-end multihoming.

 This memo describes LIN6 protocol overview, our C language APIs

https://datatracker.ietf.org/doc/html/draft-arifumi-lin6-multihome-api-00.txt

Arifumi Expires 23 December 2003 [Page 2]

draft-arifumi-lin6-multihome-api-00.txt 23 June 2003

 specification, an example of how to use the API in order to write an
 multihoming-capable applications and some notes on the deployment of
 this multihoming method.

2. LIN6 Protocol Overview

 In conventional network architectures including IPv4 and IPv6, the
 network address of a node denotes both its identity and its location.
 In LIN6 architecture, we divide a 128bit-long IPv6 address into two
 parts. The first half is called ``locator'' and the second half
 ``identifier''. A locator only depicts a location and an identifier
 only depicts an identity. A LIN6 node can identify a corresponding
 node by examining only the second half of an IP address. This is
 independent of the first half, which may be changed when the node
 moves.

 The separation of an IP address also makes it possible to support
 multihoming without any inconsistency. A LIN6 node located in the
 multihomed network has multiple global locators. Even if an network
 trouble occurred on one link, a corresponding LIN6 node detects it
 and can resume communication by using another locator and another
 link. In this method, a fault-tolerant connection is achieved relying
 only on the pair of end-nodes, not on routers. We call this method
 ``end-to-end multihoming.''

3. Multihoming Support for LIN6

 When a LIN6 node moves and detects its movement (changing of its
 locator), the node sends a location update message packet to its
 corresponding nodes and can continue to communicate seamlessly. On
 the other hand, when a network trouble occurred between two nodes,
 the connection will be lost, even if one or both nodes are
 multihomed.

 In such a case, a node is expected to detect network troubles by some
 error packets such as ICMP Host Unreach or by acknowledgement
 timeout. By changing destination or source locator, the traffic
 possibly circumvents the point of failure and hopefully the
 connection can be resumed. Especially when a node is located under
 those sites whose site exit routers perform policy routing based on
 the outgoing packet's source address, changing the source locate is
 more meaningful. In the LIN6 addressing architecture, a host is
 identified by only the latter half of its address, thus a connection
 is identified by only the latter half of the source address and the
 destination addresse. Therefore a LIN6 node can change a destination
 locator and a source locator even when a connection is established.

https://datatracker.ietf.org/doc/html/draft-arifumi-lin6-multihome-api-00.txt

Arifumi Expires 23 December 2003 [Page 3]

draft-arifumi-lin6-multihome-api-00.txt 23 June 2003

 These processes of detecting errors and changing locators is expected
 to be implemented in an application or in the transport layer. The
 existing socket APIs, however, are not designed to manipulate
 multiple addresses in a connection. Thus, we design new APIs to write
 an multihome-ready application. Proposed APIs make multiple addresses
 visible to an application and help an application to handle multiple
 addresses, to avoid connection failure and to do load- balancing
 possibly.

 Note that on a LIN6 node, an existing application can be executed
 without any modifications to the application itself. Even if a node
 is multihomed and has multiple addresses, however, existing
 applications don't benefit from having multiple up-stream access
 lines. With our APIs, you can make an application that actively make
 use of multihoming.

3.1. API Overview

 The main newly designed APIs are listed below.

 o socket()
 We define a new address family "AF_ALIN6" and a new protocol family
 "PF_ALIN6". If you specify "PF_ALIN6" for socket()'s protocol
 family, you will get multihome-ready socket and you can manipulate
 foreign and local locators through the socket. PF_ALIN6 socket is
 available for IPPROTO_TCP and IPPROTO_UDP.

 o getaddrinfo2()
 This API returns locators of a specified corresponding node by
 making a query to the node's Mapping Agent. This is an extented
 form of the exisiting socket library function getaddrinfo().
 Getaddrinfo2() performs the functionality of getaddrinfo(), name-
 to-address translation, and also aquires an identifier-to-locators
 mapping if the latter half of the IPv6 address is an LIN6
 identifier. The return value is not a linked list of struct
 addrinfo, but a linked list of struct addrinfo2, described below,
 which includes target node's locators.

 struct addrinfo2 {
 int ai_flags; /* AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST */
 int ai_family; /* PF_XXX */
 int ai_socktype; /* SOCK_XXX */
 struct sockaddr *ai_addr; /* binary address */
 ...
 size_t ai_ntloc; /* number of target locator */
 struct lin6_prefix* ai_tloc; /* target locators */
 };

https://datatracker.ietf.org/doc/html/draft-arifumi-lin6-multihome-api-00.txt

Arifumi Expires 23 December 2003 [Page 4]

draft-arifumi-lin6-multihome-api-00.txt 23 June 2003

 ai_tloc is the pointer to the first entry of the locator array.
 ai_ntloc is the number of entries in the array.

 o getsockopt()/setsockopt()
 We define new options for getsockopt() and setsockopt(). These
 socket APIs are used for get and set options on sockets. We
 introduce new options LIN6_LOCALADDROPTS, LIN6_FOREIGNADDROPTS,
 LIN6_LOCALLOCATOR and LIN6_FOREIGNLOCATOR to manipulate socket
 behavior and to get/set the locator of the protocol control
 block(PCB) in the kernel. When a connection error is detected an
 application can try another locator by using the setsockopt() with
 the option LIN6_FOREIGNLOCATOR and an new locator of the target
 host.

 Next, we show the programming example below.

3.2. Simple Example.

3.2.1 Establishment of an Connection

 After getting corresponder's locators by getaddrinfo2(), this example
 applicaton below tries to connect to an acquired address.
 Getaddrinfo2() returns a pointer to a linked list of struct
 addrinfo2. If the address family specified in the returned struct
 addrinfo2 is AF_ALIN6, there may be multiple locators in it. This
 application tries to connect to the corresponding node using each
 locator until connection establishment succeeds.

 struct addrinfo2 hints, *res, *res0;
 struct sockaddr_lin6 slin6;
 int error, sock;
 int ntloc;

 /* name to address resolution */
 memset(&hints, 0, sizeof(hints));
 hints.ai_family = PF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;
 error = getaddrinfo2("mob.foo","http", &hints,&res0);
 if (error) {
 errx(1, "%s", gai_strerror(error));
 /*NOTREACHED*/
 }

 /* look for valid address */
 sock = -1;
 for(res = res0; res; res = res->ai_next) {
 sock = socket(res->ai_family, res->ai_socktype,

https://datatracker.ietf.org/doc/html/draft-arifumi-lin6-multihome-api-00.txt

Arifumi Expires 23 December 2003 [Page 5]

draft-arifumi-lin6-multihome-api-00.txt 23 June 2003

 res->ai_protocol);
 if (sock < 0)
 continue;

 if (res->ai_family==AF_ALIN6) {
 memcpy(&slin6, res->ai_addr, sizeof(slin6));
 ntloc = ai_ntloc;
 for(i=0;i<res->ai_ntloc;i++) {
 /* try each target locator */
 bcopy(res->ai_tloc[i], slin6.slin6_locator,
 sizeof(struct locator));
 if (connect(sock, (struct sockaddr*)&slin6,
 res->ai_addrlen)==0)
 goto connected:
 }
 sock = -1;
 } else {
 ntloc = 0;
 if (connect(sock,res->ai_addr, res->ai_addrlen) < 0) {
 close(sock);
 sock = -1;
 }
 break;
 }
 }
 if (sock < 0)
 err(1);
 freeaddrinfo(res0);

 connected:
 freeaddrinfo2(res0);
 }

3.2.2 Connection Recovery

 After the connection establishment this application may catch some
 error signals caused by ICMP Error Message. This application tries
 another locator acquired before if available and tries to continue
 connection.

 void sig_handler(int sig) {
 /* error signal handler */
 if (ntloc>0) {
 /* change locator */
 if (setsockopt(sock, IPPROTO_IPV6, LIN6_FOREIGNLOCATOR,
 ai_tloc[++i], sizeof(struct lin6_prefix)) < 0) {
 ...

https://datatracker.ietf.org/doc/html/draft-arifumi-lin6-multihome-api-00.txt

Arifumi Expires 23 December 2003 [Page 6]

draft-arifumi-lin6-multihome-api-00.txt 23 June 2003

 }
 }
 }

4. Deployment Considerations

 Although our APIs are such capable and easy to use, it is nonsense to
 propose to remake all the existing applications in order to deploy
 multihoming. In case of TCP, the detection and avoidance of
 connection failure can be achieved in the transport layer by ack
 packet's timeout and so on. In case of UDP, however, it is nealy
 impossible to do the same in the transport layer. Those processes
 have to be done in the application layer. Thus, our APIs are mainly
 suitable for making multihome-ready UDP applications.

 We have already implemented this multihoming method for UDP. Now we
 are planning to implement reliable transport protocol for end-to-end
 multihoming. This can be a modification to the existing transport
 protocol TCP or adoption of a brand new transport protocol, such as
 SCTP[RFC2960].

5. Acknowledgement

 Thanks to the many people who made suggestions and provided feedback
 to this document, including: Fumio Teraoka, Masahiro Ishiyama,
 Masataka Ohta, Mitsunobu Kunishi and members and staffs in okabe
 laboratory and minoh laboratory.

6. References

 [LIN6] M. Ishiyama, M. Kunishi, K. Uehara, H.Esaki, F. Teraoka,
 ``LINA: A New Approach to Mobility Support in Wide Area Networks,''
 IEICE Trans. Communications, Vol E84-B, No 8, Aug 2001, pp.2076-2086.

 [E2E] M. Ohta, ``The Architecture of End to End Multihoming,''
 Internet-draft, IETF (Nov 2002),

draft-ohta-e2e-multihoming-03.txt.

 [RFC2553] R. Gilligan, S. Thomson, J. Bound, W. Stevens, ``Basic
 Socket Interface Extensions for IPv6 ,'' RFC2553, IETF (Mar 1999).

 [RFC2960] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.
 Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, V. Paxson,
 ``Stream Control Transmission Protocol,`` RFC2960, IETF (Oct 2000).

https://datatracker.ietf.org/doc/html/draft-arifumi-lin6-multihome-api-00.txt
https://datatracker.ietf.org/doc/html/draft-ohta-e2e-multihoming-03.txt
https://datatracker.ietf.org/doc/html/rfc2553
https://datatracker.ietf.org/doc/html/rfc2960

Arifumi Expires 23 December 2003 [Page 7]

draft-arifumi-lin6-multihome-api-00.txt 23 June 2003

7. Authors' Addresses

 Arifumi Matsumoto
 Graduate School of Informatics
 Kyoto University
 Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 JAPAN
 Tel: +81 75-753-7468
 Fax: +81 75-753-7472
 Email: arifumi@net.ist.i.kyoto-u.ac.jp

 Kenji Fujikawa
 Graduate School of Informatics
 Kyoto University
 Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 JAPAN
 Tel: +81 75-753-7468
 Fax: +81 75-753-7472
 Email: fujikawa@real-internet.org

 Yasuo Okabe
 Integrated information Network System
 Kyoto University
 Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 JAPAN
 Tel: +81 75-753-7468
 Fax: +81 75-753-7472
 Email: okabe@i.kyoto-u.ac.jp

https://datatracker.ietf.org/doc/html/draft-arifumi-lin6-multihome-api-00.txt

Arifumi Expires 23 December 2003 [Page 8]

