
Network Working Group A. Romanov
Internet-Draft Juniper Networks
Expires: March 15, 2004 September 15, 2003

Some Considerations for SNMP Agent Developers
draft-aromanov-snmp-hiqa-06

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on March 15, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 SNMP is a ubiquitous protocol. Many software developers working in
 the embedded space develop or interface with MIB handlers and SNMP
 agents one way or another. Often these developers are unfamiliar
 with SNMP standards and overlook a number of subtle points. This
 document will provide a list of steps and rules to avoid common
 problems in order to develop a high quality SNMP agent.

IESG Note

 This document represents the opinions of the author. It has not been
 widely reviewed in the IETF. Publication of this document does not
 mean endorsement by the IESG or the IETF (or SNMP) community.

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Romanov Expires March 15, 2004 [Page 1]

Internet-Draft SNMP Agent Considerations September 2003

Table of Contents

1. Overview . 3
2. Index Processing Issues 3
2.1 Index Processing for Get and Set Requests 3
2.2 Index Processing for GetNext and GetBulk Requests 4
3. Issues Related to Set-Request Processing 5
3.1 Consistency Checking . 5
3.2 Miscellaneous Set Request Issues 7
4. Agent Design Issues . 7
5. Intellectual Property . 8
6. Security Considerations 8

 References . 9
 Author's Address . 10

A. GetNext and GetBulk Request Index Processing Examples 10
A.1 Processing Integer Index 10
A.2 Processing IP Address Index 12
A.3 Processing Non-IMPLIED String Index 14
A.4 Putting It All Together 19
B. Acknowledgments . 21

 Full Copyright Statement 22

Romanov Expires March 15, 2004 [Page 2]

Internet-Draft SNMP Agent Considerations September 2003

1. Overview

 The goal of this memo is to facilitate development of SNMP agents in
 the context of SNMP agent frameworks. Modern SNMP agent frameworks
 are mature and they provide a good base to build a high-quality
 agent. These frameworks relieve an application developer from the
 bulk of the work related to the protocol transaction handling.
 However, there are still issues that have to be taken care of by an
 application developer. Unfortunately, there is widespread
 misunderstanding of some of the fine issues in this area. Moreover,
 there are new companies entering SNMP framework business, companies
 that develop their own frameworks and numerous companies that do deep
 modifications of existing frameworks. Often, even the most
 experienced developers miss or disregard one or more of the issues
 addressed in this memo.

2. Index Processing Issues

 An SNMP instance is identified by an Object Identifier representing
 the object name appended with a sequence of sub-identifiers (sub-IDs)
 representing the index of the instance (we will call it an `index
 sequence') [RFC2578]. In most cases it is left to the MIB developer
 to find a variable instance matching an index sequence.

 Often it is done in a simple straightforward way: for every row in
 the table the agent converts values of index variables into index
 sequence and then chooses the best matching entry, if any. The
 advantage of this method is that it avoids most if not all of the
 index processing pitfalls discussed below. However, there are
 performance and functionality trade-offs associated with this method.
 So, most implementors choose another method, where the index sequence
 is first converted into a set of index variables and then these
 values are used as a search criterion in the instance database. The
 rest of this section is devoted to a discussion of issues associated
 with the latter method.

2.1 Index Processing for Get and Set Requests

 Fortunately, few problems arise in this area. The first thing to do
 is to check the length of the index sequence and if it is
 inconsistent with the required length, `noSuchInstance' (`noCreation'
 if it is Set request) must be a result of the operation. If
 `IMPLIED' keyword is present in the INDEX clause then a string and
 and object identifier of size N are encoded as N sub-IDs. When this
 key word is not present, the length of the string/object identifier
 is encoded as the first sub-ID of the index sequence. We will call
 such string- and object identifier-valued indexes 'non-IMPLIED'
 throughout this document. The value sub-ID representing the length

https://datatracker.ietf.org/doc/html/rfc2578

Romanov Expires March 15, 2004 [Page 3]

Internet-Draft SNMP Agent Considerations September 2003

 of string/object identifier must be checked against overall length of
 the index sequence too.

 Second, the range of an sub-ID (0-4294967295) may be wider than the
 range of the variable it is being mapped into. For example, the
 range of integers used for index components is 0-2147483647, while
 the range of IP address components and the range of string components
 is 0-255. So, sub-ID 4123456789 indicates a non-existent integer
 indexed instance, index sequence 1.2.345.4 indicates a non-existent
 instance indexed by an IP address or IP mask and index sequence
 4.65.66.670.68 indicates a non-existent instance indexed by a non-
 IMPLIED string. In all cases of incorrect range `noSuchInstance'
 (`noCreation') must be the result of the operation.

 So, index processing for Get and Set Requests is simple: check the
 length of the index sequence, check the range of every sub-ID, and in
 case of any problems return `noSuchInstance' (`noCreation').

2.2 Index Processing for GetNext and GetBulk Requests

 A properly implemented SNMP agent does not assume that a Network
 Management Station (NMS) will necessarily provide an index sequence
 in a GetNextRequest-PDU or GetBulkRequest-PDU that specifies an
 actual or potential object instance. For example, when using the TCP
 MIB to find the first remote host connected to a particular local TCP
 port, an NMS application might submit a GetNextRequest-PDU with a
 partial index containing only the local address and local port. It
 seems reasonable to start from general principles and then apply them
 to the particular cases of various index specifications.

 1. If the index sequence is longer than a properly formed one, it
 must be truncated. For example, if MIB variable is indexed by an
 IP address, then the first instance after 1.2.3.4 and the first
 instance after 1.2.3.4.5.6.7.8 are the same instance.

 2. If the index sequence is shorter than the length of a properly
 formed one,

 (a) pad the index sequence with zeros and then

 (b) check whether an instance exists that exactly matched the
 padded index sequence. For example, if the MIB variable is
 indexed by an IP address, then the first instance after 1.2.3 is
 1.2.3.0 if such instance exists. Skipping step (b) is a very
 popular bug.

 3. Perform sub-ID range checking, it must start at the end of index
 sequence and progress towards its beginning. If the supplied

Romanov Expires March 15, 2004 [Page 4]

Internet-Draft SNMP Agent Considerations September 2003

 index sequence contains a sub-ID, which is greater than the limit
 imposed by underlying application variable, then

 (a) if this sub-ID is the first one in the index sequence advance
 to the next object in the MIB view; otherwise

 (b) if previous sub-ID is greater or equal to the limit move to
 the previous sub-ID and start processing from the step (a);
 otherwise

 (c) increment the previous sub-ID, truncate index sequence
 starting from the current sub-ID and then go to step 2 above.

Appendix A contains index processing examples for the most popular
 cases.

3. Issues Related to Set-Request Processing

3.1 Consistency Checking

 Unfortunately, there is a lot of confusion in the developer community
 with regard to the practical requirements of the depth and
 sophistication of consistency checking. Some developers assume that
 the standard requires that an agent should be able to verify
 consistency of every combination of variables that would fit into
 biggest SetRequest-PDU. Naturally, they feel that this is an
 absolutely unrealistic requirement and they resort to completely
 ignoring it. Others simply do best effort consistency checking, with
 the actual meaning of 'best effort' varying markedly from product to
 product and even from MIB to MIB within the same product. Some
 companies build their own agent frameworks that impose severe
 restrictions on the ability of an agent to do effective consistency
 checking and some companies build agent frameworks that waste
 resources providing capabilities far beyond practical necessity. In
 many cases an agent fails to complain if it receives a SetRequest-PDU
 that is more complicated than it is designed to process.

 Actually, the standard simply requires that

 (a) agent check consistency of every variable in the PDU vs. the
 current managed device status and other variables in the PDU;

 (b) if agent is unable to determine consistency (e.g., if the PDU has
 too many variables for a particular agent implementation to analyze)
 then 'genErr' should be returned. [RFC3416].

 The actual requirements on consistency checking abilities imposed by
 the standard are left to the developer, i.e., as in many other cases,

https://datatracker.ietf.org/doc/html/rfc3416

Romanov Expires March 15, 2004 [Page 5]

Internet-Draft SNMP Agent Considerations September 2003

 the standard relies on the marketplace instead of specifying precise
 level. For example if a developer aims too low, there will be
 problems with managing a device in the field and hence a considerable
 marketplace pressure to rectify the situation; and if a developer
 aims too high, it will negatively affect time to market and
 development costs.

 In practical terms, the standards do not allow implementing an SNMP
 agent accepting only one variable per SetRequest-PDU. It is not
 explicitly prohibited by protocol operations [RFC3416], however, all
 SNMP agents have to implement the SNMPv2-MIB [RFC3418]. This MIB
 contains a TestAndIncr [RFC2579] variable snmpSetSerialNo.
 TestAndIncr objects (often called spin-locks) are intended to control
 access to other objects, so they have to be present and processed in
 the PDU together with the variables that they control access to.

 To avoid further confusion, it seems reasonable to explicitly spell
 out the requirement for the "minimal" implementation of an SNMP
 agent:

 (a) an agent must be able to properly check consistency of the
 following combination of variables (regardless of their order in the
 PDU) at least: (1) snmpSetSerialNo, (2) any variable, and (3) any
 combination of spin-lock variables associated with the above
 variable, if any;

 (b) an agent must return `genErr' if the complexity of the
 SetRequest-PDU exceeds the agent's ability to perform consistency
 checking: e.g. if the PDU contains any other variable. If an agent
 is not able to check consistency of a full row in the conceptual
 table it should use`createAndWait' method of row creation.

 A minimal implementation, though valid, is very limiting in many
 practical cases. The market place is the ultimate judge, but in most
 practical cases the "reasonable" implementation of an SNMP agent will
 suffice. Such an implementation should support row creation with
 `createAndGo' and it should provide consistency checking extended at
 least to the variables belonging to a single row in the conceptual
 table. This reasonable implementation provides substantial
 additional benefits, with minimal efforts comparing to minimal
 implementation. This level is well supported by practically all
 available agent frameworks.

 Nothing prevents a developer from exceeding this reasonable
 implementation level. Let us call such implementations "advanced".
 Also, it is perfectly legal to mix various levels of implementations
 within the same agent.

https://datatracker.ietf.org/doc/html/rfc3416
https://datatracker.ietf.org/doc/html/rfc3418
https://datatracker.ietf.org/doc/html/rfc2579

Romanov Expires March 15, 2004 [Page 6]

Internet-Draft SNMP Agent Considerations September 2003

 Organizations developing or customizing SNMP agent frameworks have to
 be very careful to select an appropriate maximum implementation level
 to be supported by the framework. For example, if a framework
 supports only a minimal implementation, it will be hardly possible to
 implement legacy MIBs with tables without RowStatus component.

 Also, there is an often-overlooked issue mostly related to the
 consistency checking in advanced implementations. There are always a
 number of managed system parameters where consistency checking,
 resource allocation and/or undo operations are practically impossible
 to accomplish with 100% level of reliability. Fortunately, as a rule
 these operations are inherently atomic and the failure does not
 change the management system state. Consistency checks for these
 cases should not allow these variables to be mixed with any other non
 spin-lock variables, so the dangerous operation would rely on
 inherent atomicity instead of checking.

3.2 Miscellaneous Set Request Issues

 The intended use of `createAndWait' and `notInService' RowStatus
 values is to create and manipulate very long rows. Otherwise, they
 do not provide any additional value, so reasonable and advanced
 implementations of an SNMP agent may choose not to support these
 values for MIBs with rows of normal length. Naturally, a minimal
 implementation must support 'createAndWait'.

 An SNMP agent should not ever find itself in the situation where it
 will return `undoFailed'.

4. Agent Design Issues

 There are a number of design issues to be considered. It may require
 a separate memo to discuss each of them in detail. This memo will be
 limited to a brief listing of often overlooked items.

 1. The spectrum and frequency of requests issued by NMSs are
 unpredictable and there is always the possibility of NMS bugs,
 which can result in excessive load on the SNMP agent. It is
 essential to run SNMP agents as a low priority thread or to take
 other steps to prevent SNMP agent activities from affecting
 managed system performance. This is also a major security issue,
 see below.

 2. There is a popular design that links rows in the GetNext order
 and also puts them into a hash table to provide fast access to
 the current row. It works perfectly well for Get and Set
 operations and it also works fine for many GetNext cases, when
 the index sequence exactly matches an existing row. However, an

Romanov Expires March 15, 2004 [Page 7]

Internet-Draft SNMP Agent Considerations September 2003

 NMS is under no obligation to provide index of an existing
 instance as an index sequence, so in some cases a long linear
 search is unavoidable. So it is important to take some
 precautions to guarantee that long linear searches will not
 impact managed system performance (e.g., along the lines of item
 (1) above).

 3. On systems with memory protection, it is advisable to map tables
 into read-only shared memory, because user space-kernel space
 transitions are very expensive. Again along the lines of the
 item (1) above, kernel transactions should be limited only to the
 area where it is absolutely essential: namely Set requests.

 4. Often, it is desirable to provide a common backend for various
 management interfaces (SNMP, WEB, CORBA, CLI, etc.). It is
 surprisingly popular to select an SNMP agent as such a backend.
 Experience shows that in reality it is a very poor choice of
 management system design, unless the managed device is a truly
 trivial one.

5. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in [RFC2028]. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

6. Security Considerations

 SNMPv3 security specifically does not protect against denial of
 service attacks [RFC3414], so SNMPv3 entities are relatively
 vulnerable to these attacks: in most configurations NMSs make a

https://datatracker.ietf.org/doc/html/rfc2028
https://datatracker.ietf.org/doc/html/rfc3414

Romanov Expires March 15, 2004 [Page 8]

Internet-Draft SNMP Agent Considerations September 2003

 substantial use of insecure communications to convey essential
 information, agent allows pretty significant replay window, which
 could be exploited to overload the managed system with requests.
 Using complex instance level granularity access greatly aggravates
 the situation.

 The author recommends to strictly follow recommendation to implement
 SNMP as low priority thread in order to eliminate vulnerabilities
 associated with the denial of service attacks exploiting replay
 windows. For the same purpose the author recommends that an agent
 start any Set request with processing of the snmpSetSerialNo if it is
 present in the PDU. Although not related to the agent side, it is
 important to remember that every NMS issuing a Set request without
 snmpSetSerialNo exposes an agent to a possible denial of service
 attack.

 Also, SNMPv3 agent security configuration is a complex matter, even
 minor imperfection in the agent's security configuration may expose
 the managed system to the inappropriate level of the risk.

 The author recommends to have a built-in possibility to start an
 agent in `high-security mode' where it will drop all insecure
 communications delivered to it and will never emit an insecure
 communication on its own, regardless of its configuration parameters.

References

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 McCloghrie, K., Rose, M. and S. Waldbusser, "Structure of
 Management Information Version 2 (SMIv2)", STD 58, RFC

2578, April 1999.

 [RFC3416] Presuhn, R., "Version 2 of the Protocol Operations for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC

3416, December 2002.

 [RFC3418] Presuhn, R., "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC

3418, December 2002.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 McCloghrie, K., Rose, M. and S. Waldbusser, "Textual
 Conventions for SMIv2", STD 58, RFC 2579, April 1999.

 [RFC2028] Hovey, R. and S. Bradner, "The Organizations Involved in
 the IETF Standards Process", BCP 11, RFC 2028, October
 1996.

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc3416
https://datatracker.ietf.org/doc/html/rfc3416
https://datatracker.ietf.org/doc/html/rfc3418
https://datatracker.ietf.org/doc/html/rfc3418
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/bcp11
https://datatracker.ietf.org/doc/html/rfc2028

Romanov Expires March 15, 2004 [Page 9]

Internet-Draft SNMP Agent Considerations September 2003

 [RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

 [RFC2012] McCloghrie, K., "SNMPv2 Management Information Base for
 the Transmission Control Protocol using SMIv2", RFC 2012,
 November 1996.

Author's Address

 Aleksey Romanov
 Juniper Networks, Inc.
 10 Technology Park Drive
 Westford, MA 01886
 US

 EMail: aromanov@juniper.net

Appendix A. GetNext and GetBulk Request Index Processing Examples

A.1 Processing Integer Index

 Below is a function that converts a part of an index sequence into an
 integer. This function converts the sub-ID located at offset `off'
 in a fully formed index sequence, an index sequence supplied by the
 NMS is represented by `indexSequence' and `indexSequenceLength'.
 Note that `off' could be greater that or equal to
 `indexSequenceLength'. If the fully formed index sequence does not
 end with the integer in question (i.e., contains other index
 components beyond it), it is quite possible that processing of the
 next index component will require that the current sub-IDs be
 incremented; in that case `inBump' will be set to a non-zero value.
 The maximum acceptable value is passed as `maxIntVal'. The converted
 integer will be placed into `intVal'. If it is necessary to probe
 for an exactly matching instance before the converted value can be
 used, `checkExact' will be set to a non-zero value. This function
 returns a non-zero value if the previous sub-ID (i.e., the prefix of
 the index being converted) has to be incremented.

 int
 nextprocSubid2Int(const uint32 *indexSequence,
 int indexSequenceLength,
 int off, int inBump,
 int32 maxIntVal, int32 *intVal,
 int *checkExact)
 {

https://datatracker.ietf.org/doc/html/rfc3414
https://datatracker.ietf.org/doc/html/rfc2012

Romanov Expires March 15, 2004 [Page 10]

Internet-Draft SNMP Agent Considerations September 2003

 uint32 subidVal;

 assert(indexSequence != NULL ||
 indexSequenceLength == 0);
 assert(indexSequenceLength >= 0);
 assert(off >= 0);
 assert(indexSequenceLength > (off+1) || !inBump);
 assert(maxIntVal >= 0);
 assert(intVal != NULL);
 assert(checkExact != NULL);

 if(off >= indexSequenceLength)
 {
 /* Index sequence is short */
 assert(inBump == 0);
 *intVal = 0;
 *checkExact = 1;
 return 0;
 }

 subidVal = indexSequence[off];
 if(subidVal > (uint32)maxIntVal ||
 (inBump && subidVal == (uint32)maxIntVal))
 {
 /* Sub-ID is out of range */
 *intVal = 0;
 *checkExact = 1;

 return 1;
 }

 if(inBump)
 {
 *intVal = subidVal + 1;
 }
 else
 {
 *intVal = subidVal;
 }

 *checkExact = 0;
 return 0;
 }

Romanov Expires March 15, 2004 [Page 11]

Internet-Draft SNMP Agent Considerations September 2003

A.2 Processing IP Address Index

 Below is a function that converts a part of an index sequence into an
 IP address. This function converts sub-IDs starting at offset `off'
 in a fully formed index sequence, an index sequence supplied by the
 NMS is represented by `indexSequence' and `indexSequenceLength'.
 Note that `off' could be greater than or equal to
 'indexSequenceLength'. If the fully formed index sequence does not
 end with the IP address in question (i.e., contains other index
 components beyond it), it is quite possible that processing of the
 next index component will require to increment the last sub-ID
 representing the IP address; in that case `inBump' will be non-zero.
 The converted IP address (in host order) will be placed into
 `addrVal'. If it is necessary to probe for an exactly matching
 instance before the converted value can be used, `checkExact' will be
 set to a non-zero value. This function returns a non-zero value if
 the previous sub-IDs (i.e., the prefix of the index being converted)
 has to be incremented.

 int
 nextprocSubid2IpAddr(const uint32 *indexSequence,
 int indexSequenceLength,
 int off, int inBump,
 uint32 *addrVal,
 int *checkExact)
 {
 const uint32 *subid, *first, *last;
 uint32 tmp;
 int exact;

 assert(indexSequence != NULL ||
 indexSequenceLength == 0);
 assert(indexSequenceLength >= 0);
 assert(off >= 0);
 assert(indexSequenceLength > (off + 5) || !inBump);
 assert(addrVal != NULL);
 assert(checkExact != NULL);

 if(off >= indexSequenceLength)
 {
 /* Index sequence is short */
 assert(inBump == 0);
 *addrVal = 0;
 *checkExact = 1;
 return 0;
 }

Romanov Expires March 15, 2004 [Page 12]

Internet-Draft SNMP Agent Considerations September 2003

 first = &indexSequence[off];

 exact = 0;

 if(indexSequenceLength >= (off + 4))
 {
 /* We have full address specified */
 last = &indexSequence[off+3];
 }
 else
 {
 assert(!inBump);
 last = &indexSequence[indexSequenceLength-1];
 exact = 1;
 }

 tmp = 0;

 for(subid=last; subid>=first; subid--)
 {
 if(*subid > 255 || (inBump && *subid == 255))
 {
 if(subid == first)
 {
 *addrVal = 0;
 *checkExact = 1;
 return 1;
 }

 tmp = 0;
 exact = 1;
 inBump = 1;

 continue;
 }

 if(inBump)
 {
 tmp += (((*subid) + 1) <<
 8*(3 - (subid - first)));
 inBump = 0;
 }
 else
 {
 tmp += ((*subid) <<
 8*(3 - (subid - first)));
 }
 }

Romanov Expires March 15, 2004 [Page 13]

Internet-Draft SNMP Agent Considerations September 2003

 assert(!inBump);

 *addrVal = tmp;
 *checkExact = exact;

 return 0;
 }

A.3 Processing Non-IMPLIED String Index

 The first element of this index is the length of the string, so "bb"
 would go before "aaa", which may be counterintuitive for developers
 accustomed to lexicographic string ordering.

 If the non-IMPLIED string is not the last component of an index, a
 program has to perform an additional step, in order to determine
 presence and location of the next component in an index sequence.
 The function below checks sub-IDs located at offset `off' in a fully
 formed index sequence, an index sequence supplied by the NMS is
 represented by `indexSequence' and `indexSequenceLength'. Note that
 `off' could be greater than or equal to `indexSequenceLength'. The
 limit on the string length is passed as `maxStringLength'. If the
 next element is present in the index sequence this function will
 return a non-zero value and the its offset will be passed in
 `nextVarOff'.

 int
 nextprocSubid2StrCheck(const uint32 *indexSequence,
 int indexSequenceLength,
 int off, int maxStringLength,
 int *nextVarOff)
 {
 assert(indexSequence != NULL ||
 indexSequenceLength == 0);
 assert(indexSequenceLength >= 0);
 assert(off >= 0);
 assert(maxStringLength > 0);
 assert(nextVarOff != NULL);

 if(off >= indexSequenceLength)
 {
 /* There is not enough sub-IDs even for the
 string not speaking about next value */
 return 0;
 }

Romanov Expires March 15, 2004 [Page 14]

Internet-Draft SNMP Agent Considerations September 2003

 if(maxStringLength > 128)
 {
 /* There is no point to deal with
 strings longer than the whole name
 length limit imposed by protocol */
 maxStringLength = 128;
 }

 if(indexSequence[off] > maxStringLength)
 {
 /* We will have to bump anyway so
 the presence or absence of the next
 component is irrelevant */
 return 0;
 }

 /* Next component has to be checked */
 *nextVarOff = off + 1 + indexSequence[off];
 return 1;
 }

 Below is a function that converts a part of an index sequence into an
 array of unsigned characters. This function converts sub-IDs located
 at offset `off' in a fully formed index sequence, an index sequence
 supplied by the NMS is represented by `indexSequence' and
 `indexSequenceLength'. Note that `off' could be greater than or
 equal to `indexSequenceLength'. If the fully formed index sequence
 does not end with the sequence in question (i.e., contains other
 index components beyond it), it is quite possible that processing of
 the next index component will require to increment the last sub-IDs
 representing the string; in that case `inBump' will be non-zero.
 The converted string will be placed into `stringVal', the length of
 available buffer is passed as `maxStringLength', and the length of
 processed string is placed into `stringLength'. If it is necessary
 to probe for an exactly matching instance before the converted value
 can be used, `checkExact' will be set to a non-zero value. This
 function returns a non-zero value if the previous sub-ID (i.e., the
 prefix of the index being converted) has to be incremented.

 int
 nextprocSubid2Str(const uint32 *indexSequence,
 int indexSequenceLength,
 int off, int inBump,
 int maxStringLength,
 int *stringLength,
 uint8* stringVal,
 int *checkExact)

Romanov Expires March 15, 2004 [Page 15]

Internet-Draft SNMP Agent Considerations September 2003

 {
 const uint32 *subid, *first, *last;
 int len;
 uint8 *s, *resetStart;

 assert(indexSequence != NULL ||
 indexSequenceLength == 0);
 assert(indexSequenceLength >= 0);
 assert(off >= 0);
 assert(maxStringLength >= 0);
 assert(stringLength != NULL);
 assert(stringVal != NULL);
 assert(checkExact != NULL);

 if(off >= indexSequenceLength)
 {
 /* Index sequence is short */
 *stringLength = 0;
 *checkExact = 1;
 return 0;
 }

 if(maxStringLength > 128)
 {
 /* There is no point to deal with
 strings longer than the whole name
 length limit imposed by protocol */
 maxStringLength = 128;
 }

 len = (int)indexSequence[off];

 if(inBump && len == 0)
 {
 if(maxStringLength == 0)
 {
 *stringLength = 0;
 *checkExact = 1;
 return 1;
 }

 *stringLength = 1;
 stringVal[0] = 0;
 *checkExact = 1;
 return 0;
 }

 if(len == 0)

Romanov Expires March 15, 2004 [Page 16]

Internet-Draft SNMP Agent Considerations September 2003

 {
 /* Empty string */
 *stringLength = 0;
 *checkExact = 0;
 return 0;
 }

 if(len > (uint32)maxStringLength)
 {
 /* Length component indicates length which is too big */
 *stringLength = 0;
 *checkExact = 1;
 return 1;
 }

 off++;

 if(off == indexSequenceLength)
 {
 /* Only length is present */
 memset(stringVal, 0, len);
 *stringLength = len;
 *checkExact = 1;
 return 0;
 }

 first = &indexSequence[off];

 if(indexSequenceLength >= (off + len))
 {
 /* We have full string provided */
 last = &indexSequence[off+len-1];
 resetStart = NULL;
 }
 else
 {
 /* Not a full string */
 assert(inBump == 0);
 last = &indexSequence[indexSequenceLength-1];
 resetStart = stringVal + (indexSequenceLength
 - off);
 }

 for(subid=last,s=stringVal+(last - first);
 subid>=first; subid--,s--)
 {
 assert((s - stringVal) == (subid - first));

Romanov Expires March 15, 2004 [Page 17]

Internet-Draft SNMP Agent Considerations September 2003

 if(*subid > 255 || (inBump && *subid == 255))
 {
 resetStart = s;
 inBump = 1;

 continue;
 }

 if(inBump)
 {
 *s = (uint8) ((*subid) + 1);
 inBump = 0;
 }
 else
 {
 *s = (uint8)(*subid);
 }
 }

 if(inBump)
 {
 if(len == maxStringLength)
 {
 *stringLength = 0;
 *checkExact = 1;
 return 1;
 }

 len++;

 memset(stringVal, 0, len);

 *stringLength = len;
 *checkExact = 1;
 return 0;
 }

 *stringLength = len;

 if(resetStart != NULL)
 {
 assert((resetStart - stringVal) < len);
 memset(resetStart, 0,
 (len - (resetStart - stringVal)));
 *checkExact = 1;
 }
 else
 {

Romanov Expires March 15, 2004 [Page 18]

Internet-Draft SNMP Agent Considerations September 2003

 *checkExact = 0;
 }

 return 0;
 }

A.4 Putting It All Together

 Consider an example of tcpConnTable, it is indexed by
 tcpConnLocalAddress, tcpConnLocalPort, tcpConnRemAddress and
 tcpConnRemPort where the corresponding index sequence offsets are 0,
 4, 6, and 10 [RFC2012]

 int
 nextTcpTableEntry(const uint32 *indexSequence,
 int indexSequenceLength,
 struct tcpTableEntry *e)
 {
 int ret, bump, exact, curExact;
 int32 localPort, remotePort;
 uint32 localAddr, remoteAddr;

 exact = 0;

 bump = nextprocSubid2Int(indexSequence,
 indexSequenceLength, 10,
 0, 0xffff, &remotePort,
 &curExact);

 if(curExact)
 {
 exact = 1;
 }

 bump = nextprocSubid2IpAddr(indexSequence,
 indexSequenceLength, 6,
 bump, &remoteAddr,
 &curExact);
 if(curExact)
 {
 exact = 1;
 remotePort = 0;
 }

 bump = nextprocSubid2Int(indexSequence,
 indexSequenceLength, 4,

https://datatracker.ietf.org/doc/html/rfc2012

Romanov Expires March 15, 2004 [Page 19]

Internet-Draft SNMP Agent Considerations September 2003

 bump, 0xffff,
 &localPort, &curExact);
 if(curExact)
 {
 exact = 1;
 remotePort = 0;
 remoteAddr = 0;
 }

 bump = nextprocSubid2IpAddr(indexSequence,
 indexSequenceLength, 0,
 bump, &localAddr,
 &curExact);
 if(bump)
 {
 return NOTFOUND;
 }

 if(curExact)
 {
 exact = 1;
 remotePort = 0;
 remoteAddr = 0;
 localPort = 0;
 }

 ret = NOTFOUND;

 if(exact)
 {
 ret = retrieveTcpConnection(localAddr,
 localPort,
 remoteAddr,
 remotePort, e);
 }

 if(ret == NOTFOUND)
 {
 ret = retrieveNextTcpConnection(localAddr,
 localPort,
 remoteAddr,
 remotePort,
 e);
 }

 return ret;
 }

Romanov Expires March 15, 2004 [Page 20]

Internet-Draft SNMP Agent Considerations September 2003

Appendix B. Acknowledgments

 Author is grateful to C.M.Heard and J.Perreault for thoughtful review
 and essential improvements incorporated in this memo. Author is
 deeply thankful to M.Rose for XML specifications and tools used to
 write this memo.

Romanov Expires March 15, 2004 [Page 21]

Internet-Draft SNMP Agent Considerations September 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Romanov Expires March 15, 2004 [Page 22]

