
Routing Area Working Group A. Atlas, Ed.
Internet-Draft M. Konstantynowicz
Intended status: Informational Juniper Networks
Expires: January 5, 2012 G. Enyedi
 A. Csaszar
 Ericsson
 R. White
 M. Shand
 Cisco Systems
 July 4, 2011

An Architecture for IP/LDP Fast-Reroute Using Maximally Redundant Trees
draft-atlas-rtgwg-mrt-frr-architecture-00

Abstract

 As IP and LDP Fast-Reroute are increasingly deployed, the coverage
 limitations of Loop-Free Alternates are seen as a problem that
 requires a straightforward and consistent solution for IP and LDP,
 for unicast and multicast. This draft describes an architecture
 based on redundant backup trees where a single failure can cut a
 point-of-local-repair from the destination only on one of the pair of
 redundant trees.

 One innovative algorithm to compute such topologies is maximally
 disjoint backup trees. Each router can compute its next-hops for
 each pair of maximally disjoint trees rooted at each node in the IGP
 area with computational complexity similar to that required by
 Dijkstra.

 The additional state, address and computation requirements are
 believed to be significantly less than the Not-Via architecture
 requires.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference

Atlas, et al. Expires January 5, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/draft-atlas-rtgwg-mrt-frr-architecture-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft MRT FRR Architecture July 2011

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Atlas, et al. Expires January 5, 2012 [Page 2]

Internet-Draft MRT FRR Architecture July 2011

Table of Contents

1. Introduction . 4
 1.1. Goals for Extending IP Fast-Reroute coverage beyond LFA . 4

2. Maximally Redundant Trees (MRT) 5
2.1. Redundant Trees Overview 5

3. Maximally Redundant Trees (MRT) and Fast-Reroute 6
3.1. Multi-homed Prefixes 7
3.2. Unicast Forwarding with MRT Fast-Reroute 8
3.2.1. IP Unicast Forwarding 8

 3.2.1.1. Protocol Extensions and Considerations: OSPF
 and ISIS . 9

3.2.2. LDP Unicast Forwarding 9
3.2.2.1. Protocol Extensions and Considerations: LDP . . . 10

3.3. Multicast Forwarding with MRT Fast-Reroute 10
3.3.1. Tunneled? Yes . 11
3.3.2. PIM Forwarding . 11
3.3.2.1. Protocol Extensions and Considerations: PIM . . . 12

3.3.3. mLDP Forwarding 12
3.3.4. Live-Live Multicast 13

3.4. MRT Algorithm Open Issues 13
3.4.1. SRLG Protection 14
3.4.2. Common Computation 14

4. Acknowledgements . 14
5. IANA Considerations . 14
6. Security Considerations 14
7. References . 15
7.1. Normative References 15
7.2. Informative References 15

Appendix A. Computing Maximally Redundant Trees 16
 A.1. Simple pair of maximally redundant trees in
 2-connected networks 16

A.2. Non-2-connected networks 18
 A.3. Finding maximally redundant trees in distributed
 environment . 20
 Authors' Addresses . 20

Atlas, et al. Expires January 5, 2012 [Page 3]

Internet-Draft MRT FRR Architecture July 2011

1. Introduction

 There is still work required to completely provide IP and LDP Fast-
 Reroute[RFC5714] for unicast and multicast traffic. This draft
 proposes an architecture to provide 100% coverage.

 Loop-free alternates (LFAs)[RFC5286] provide a useful mechanism for
 link and node protection but getting complete coverage is quite hard.
 [LFARevisited] defines sufficient conditions to determine if a
 network provides link-protecting LFAs and also proves that augmenting
 a network to provide better coverage is NP-hard.
 [I-D.ietf-rtgwg-lfa-applicability] discusses the applicability of LFA
 to different topologies with a focus on common PoP architectures.

 While Not-Via [I-D.ietf-rtgwg-ipfrr-notvia-addresses] is defined as
 an architecture, in practice, it has proved too complicated and
 stateful to spark substantial interest in implementation or
 deployment. Academic implementations [LightweightNotVia] exist and
 have found the address management complexity high (but no
 standardization has been done to reduce this).

 A different approach is needed and that is what is described here.
 It is based on the idea of using disjoint backup topologies as
 realized by Maximally Redundant Trees (described in
 [LightweightNotVia]); the general architecture could also apply to
 future improved redundant tree algorithms.

1.1. Goals for Extending IP Fast-Reroute coverage beyond LFA

 Any scheme proposed for extending IPFRR network topology coverage
 beyond LFA, apart from attaining basic IPFRR properties, should also
 aim to achieve the following usability goals:

 o ensure maximum physically feasible link and node disjointness
 regardless of topology,

 o automatically compute backup next-hops based on the topology
 information distributed by link-state IGP,

 o do not require any signaling in the case of failure and use pre-
 programmed backup next-hops for forwarding,

 o introduce minimal amount of additional addressing and state on
 routers,

 o enable gradual introduction of the new scheme and backward
 compatibility,

https://datatracker.ietf.org/doc/html/rfc5286

Atlas, et al. Expires January 5, 2012 [Page 4]

Internet-Draft MRT FRR Architecture July 2011

 o and do not impose requirements for external computation.

2. Maximally Redundant Trees (MRT)

 In the last few years, there's been substantial research on how to
 compute and use redundant trees. Redundant trees are directed
 spanning trees that provide disjoint paths towards their common root.
 These redundant trees only exist and provide link protection if the
 network is 2-edge-connected and node protection if the network is
 2-vertex-connected. Such connectiveness may not be the case in real
 networks, either due to architecture or due to a previous failure.
 The work on maximally redundant trees has added three useful pieces
 that make them ready for use in a real network.

 o Computable when network isn't 2-edge or 2-vertex connected: The
 maximally redundant trees are computed so that only the cut-edges
 or cut-vertices are shared between the multiple trees.

 o Algorithm is based on a common network topology database. No
 messaging as has been suggested in other work is necessary.

 o An algorithm [MRTLinear] is given that allows a router to compute
 its next-hops on each pair of maximally redundant trees to each
 node in the network in O(e) time - or O(e + n log n), if
 Dijkstra is used instead of BFS.

 There is, of course, significantly more in the literature related to
 redundant trees and even fast-reroute, but the formulation of the
 Maximally Redundant Trees (MRT) algorithm makes it very well suited
 to use in routers.

 A known disadvantage of MRT, and redundant trees in general, is that
 the trees do not necessarily provide shortest detour paths. The use
 of SPF in tree-building and some heuristics can improve this, but the
 length of the alternate paths is topology-dependent. Providing
 shortest detour paths would require failure-specific detour paths
 such as in [I-D.ietf-rtgwg-ipfrr-notvia-addresses], but the state-
 reduction advantage of MRT lies in the detour being established per
 destination (root) instead of per destination AND per failure.

 A simple but not optimal way of computing maximally redundant trees
 is described in Appendix A.

2.1. Redundant Trees Overview

 In graph theory, a pair of maximally redundant trees are a pair of
 directed spanning trees of an directed graph with a common root node

Atlas, et al. Expires January 5, 2012 [Page 5]

Internet-Draft MRT FRR Architecture July 2011

 (this root can be any node of the graph), such that the two paths
 along the two trees to the root from any other node are as edge-
 disjoint and as vertex-disjoint as it is possible. It is known that
 such trees can be found in any connected networks for any selected
 root. A pair of trees for the graph depicted in Figure 1 is shown in
 Figure 2 considering "r" as the root.

 e---d i
 / / \ /|
 r---c f--g |
 \ \ / \|
 a---b j

 Figure 1: A non-2-connected network

 e---d i e---d i
 / /| / \ |
 r c f--g | r---c f--g |
 \ \ / | \ \|
 a---b j a---b j

 Figure 2: The two maximally redundant trees rooted at node "r".

 The two paths along the two trees to a given root of a 2-connected
 graph are node-disjoint, while in any non-2-connected graph, only the
 cut-vertices and cut-edges can be contained by both of the paths. As
 an example consider the trees depicted in Figure 2. Here, the two
 paths from e.g. node "b" to "r" are node-disjoint (since there are
 such two paths), and the two paths from e.g. node "i" to "r" have
 only node "f" and "g" and link "f-g" in common.

3. Maximally Redundant Trees (MRT) and Fast-Reroute

 In normal IGP routing, each router has its shortest-path-tree to all
 destinations. From the perspective of a particular destination, D,
 this looks like a reverse SPT (rSPT). To use maximally redundant
 trees, in addition, each destination D has two maximally redundant
 trees associated with it; by convention these will be called the red
 and blue redundant trees.

 Redundant trees are practical to maintain redundancy even after a
 single link or node failure. If a pair of maximally redundant trees
 is computed rooted at each node, all the nodes remain reachable along
 one of the trees in the case of a single link or node failure.

 When there is a link or node failure affecting the rSPT, each node

Atlas, et al. Expires January 5, 2012 [Page 6]

Internet-Draft MRT FRR Architecture July 2011

 will still have a path via one of the redundant trees to reach the
 destination D. Consider a simple 5-node ring (S--A--B--D--C--S), with
 traffic sent from sources S and C to destination D. In this case, if
 the link C->D fails, then C can forward traffic along the blue
 redundant tree to reach D. Of course, if the link S->C fails, then S
 can simply use its LFA of A.

 In a failure free network, packets are forwarded along the shortest
 path tree as done today. However, if forwarding the packet fails at
 a node, the router detecting the failure locally reroutes the packet
 along the blue MRT. If forwarding the packet along the blue MRT
 fails again, the packet is forwarded along the red MRT. If there is
 only a single link or node failure, the packet must get to the root
 along either of the trees. Therefore if forwarding along the red MRT
 fails, either multiple failures occurred, or the single failure split
 the network into two, and packets must be dropped.

 The above logic gives the following basic rules for unicast use of
 maximally redundant trees and fast-reroute when failure of the
 primary is detected are:

 1. If there is an node-protecting LFA, use it.

 2. Otherwise, if only link-protection is acceptable and there is a
 link-protecting LFA, use it.

 3. Otherwise, if the blue MRT next-hop shouldn't fail with the
 primary, send traffic along the blue MRT next-hop.

 4. Otherwise, if the red MRT next-hop shouldn't fail with the
 primary, send traffic along the red MRT next-hop.

 5. If traffic is received on the blue redundant tree and the
 appropriate next-hop is not available, then send the traffic on
 the red redundant tree.

 6. If traffic is received on the red redundant tree and the
 appropriate next-hop is not available, discard it.

3.1. Multi-homed Prefixes

 One advantage of LFAs that would be good to preserve is the ability
 to protect multi-homed prefixes against ABR failure. For instance,
 if a prefix from the backbone is available via both ABR A and ABR B,
 if A fails, then the traffic should be redirected to B. This can also
 be done for backups via MRT.

 If there exist multiple multi-homed prefixes that share the same

Atlas, et al. Expires January 5, 2012 [Page 7]

Internet-Draft MRT FRR Architecture July 2011

 connectivity and the difference in metrics to those routers, then a
 single proxy-node can be used to represent the set. In addition to
 computing the pair of MRTs associated with each router destination D
 in the area, a pair of MRTs can be computed for each such proxy-node
 to fully protect against ABR failure.

3.2. Unicast Forwarding with MRT Fast-Reroute

 With LFA, there is no need to tunnel unicast traffic, whether IP or
 LDP. The traffic is simply sent to an alternate. The behavior with
 MRT Fast-Reroute is different depending upon whether IP or LDP
 unicast traffic is considered.

 Logically, one could use the same IP address or LDP FEC and then also
 use 2 bits to express the topology to use. The topology options are
 (00) IGP/SPT, (01) blue MRT, (10) red MRT. Unfortunately, there just
 aren't 2 spare bits available in the IPv4 or IPv6 header. This has
 different consequences for IP and LDP because LDP can just add a
 topology label on top or take 2 spare bits from the label space.

3.2.1. IP Unicast Forwarding

 For IP, there is no currently practical alternative except tunneling.
 The tunnel egress can be the original destination in the area, the
 next-next-hop, etc.. If the tunnel egress is the original
 destination router, then the traffic remains on the redundant tree
 with sub-optimal routing. If the tunnel egress is the next-next-hop,
 then protection of multi-homed prefixes and node-failure for ABRs is
 not available.

 In either case, each router that supports MRT fast-reroute would need
 to announce two additional loopback addresses and their associated
 MRT color. Those addresses are used as destination addresses for
 MRT-blue and MRT-red IP tunnels respectively. They allow the transit
 nodes to identify the traffic as being forwarded along either MRT-
 blue or MRT-red tree topology to reach the tunnel destination.
 Announcements of these two additional loopback addresses per router
 with their MRT color requires IGP extensions.

 IP packets could be tunneled via LDP. This has the advantage that
 more routers can do line-rate encapsulation and decapsulation. If
 tunneled via LDP, naturally one of the LDP unicast forwarding options
 would need to be used. It would be possible to use just a LDP
 Topology-Identifier label on top of the IP packet; if done, this
 would avoid any need to allocate or signal additional IP addreses and
 is particularly interesting for multi-homed prefixes.

 For proxy-nodes associated with one or more multi-homed prefixes, the

Atlas, et al. Expires January 5, 2012 [Page 8]

Internet-Draft MRT FRR Architecture July 2011

 problem is harder because there is no router associated with the
 proxy-node, so its loopbacks can't be known or used. In this case,
 each router attached to the proxy-node could announce two common IP
 addresses with their associated MRT colors. This would require
 configuration as well as the previously mentioned IGP extensions.
 Similarly, in the LDP case, two additional FEC bindings could be
 announced.

3.2.1.1. Protocol Extensions and Considerations: OSPF and ISIS

 This captures an initial understanding of what may need to be
 specified.

 o Capabilities: Does a router support MRT? Does the router do MRT
 tunneling with LDP or IP or GRE or...?

 o Topology Association: A router needs to advertise a loopback and
 associate it with an MRT whether blue or red. Additional
 flexibility for future uses would be good.

 o Proxy-nodes for Multi-homed Prefixes: We need a way to advertise
 common addresses with MRT for multi-homed prefixes' proxy-nodes.
 Currently, those proxy-nodes aren't named or considered.

 o Algorithm-specific Commonalities: In specifying the exact details
 for a common algorithm, there may be tie-breakers that are better
 done based on configuration than just using Router ID.

 As with LFA, it is expected that OSPF Virtual Links will not be
 supported.

3.2.2. LDP Unicast Forwarding

 For LDP, it is very desirable to avoid tunneling because, for at
 least node protection, this requires knowledge of remote LDP label
 mappings. There are two different mechanisms that could be used.

 1. Create Topology-Identification Labels: Use the label-stacking
 ability of MPLS and specify only two additional labels - one for
 each associated MRT color - by a new FEC type. When sending a
 packet onto an MTR, first swap the LDP label and then push the
 topology-identification label for that MTR color. When receiving
 a packet with a topology-identification label, pop it and use it
 to guide the next-hop selection in combination with the next
 label in the stack; then swap the remaining label, if
 appropriate, and push the topology-identification label for the
 next-hop. This has minimal usage of additional labels, memory
 and LDP communication. It does increase the size of packets and

Atlas, et al. Expires January 5, 2012 [Page 9]

Internet-Draft MRT FRR Architecture July 2011

 the complexity of the required label operations and look-ups.

 2. Encode Topology in Labels: In addition to sending a single label
 for a FEC, a router would provide two additional labels with
 their associated MRT colors. This is simple, but reduces the
 label space for other uses. It also increases the memory to
 store the labels and the communication required by LDP.

 Note that with LDP unicast forwarding, regardless of whether
 topology-identification label or encoding topology in label is used,
 no additional loopbacks per router are required as are required in
 the IP unicast forwarding case. This is because LDP labels are used
 on a hop-by-hop basis to identify MRT-blue and MRT-red forwarding
 trees.

3.2.2.1. Protocol Extensions and Considerations: LDP

 This captures an initial understanding of what may need to be
 specified.

 1. Topology-Identification Labels: Define a new FEC type that
 describes the topology for MRT and the associated MRT color.

 2. Specify Topology in Label: When sending a Label Mapping, have the
 ability to send a Label TLV and multiple Topology-Label TLVs.
 The Topology-Label TLV would specify MRT and the associated MRT
 color.

3.3. Multicast Forwarding with MRT Fast-Reroute

 There are several basic issues with doing Fast-Reroute for multicast
 traffic, whether the alternates used are LFA or MRT. They are given
 below:

 1. The Point-of-Local-Repair (PLR) does not know the set of next-
 next-hops in the multicast tree.

 2. For mLDP, the PLR does not know the appropriate labels to use for
 the next-next-hops in the multicast tree.

 3. The Merge Point (MP) does not know upon what interface to expect
 backup traffic. For LFAs, this is a particular issue since the
 LFA selected by a PLR is known only to that PLR.

 There are also issues about how to manage traffic.

Atlas, et al. Expires January 5, 2012 [Page 10]

Internet-Draft MRT FRR Architecture July 2011

 a. When should the PLR stop sending traffic on the alternate? Based
 upon a configurable time-out is the most general answer. For
 PIM, an explicit Withdraw or Backup Withdraw could be sent, but
 they could always be lost and are not reliable. For mLDP, even
 if the PLR is known, for node-protection, there is no targeted
 LDP session and so no way for the MP to explicitly withdraw the
 label that was implicitly learned by the PLR.

 b. Can anything be done about traffic missed due to different
 latencies along new primary and alternate/old primary trees? If
 a router is willing and able to examine traffic from both the
 alternate and new primary, perhaps the full set of packets could
 be assured. This requires more investigation, but such an option
 would be at most optional. A router could also continue to
 accept traffic from both the old alternate and the new primary
 for a period longer than the expected difference in latency, but
 this comes with a possible doubling of traffic during that
 period.

3.3.1. Tunneled? Yes

 The disadvantages of tunneling unicast traffic do not fully translate
 to those for multicast. With MRT fast-reroute, IP unicast traffic is
 tunneled. With mLDP, in the suggested extensions (later), along with
 learning the next-next-hops on the multicast tree, the associated
 labels can be learned so there is no need for targeted sessions.

 If multicast traffic is not tunneled along the alternates, then there
 is the question of what happens when unencapsulated backup traffic
 intersects the normal multicast tree before reaching the MPs.
 Resolving this is likely to introduce significant complexity and
 state into the routers, with the only gain being the avoidance of a
 tunnel.

 Therefore, tunneling for IP and mLDP multicast traffic along the
 selected alternates is required. This means all replication is done
 by the PLR.

3.3.2. PIM Forwarding

 For node-protection, the merge points would be the next-next-hops in
 the tree. For a PLR to learn them, additional PIM Join Attributes
 [I-D.ietf-pim-mtid] need to be defined to specify the set of next-
 hops from which the sending node has received Joins. For link-
 protection, of course a PLR knows the routers that have sent it
 Joins.

 An MP must know the interface that alternate traffic should be

Atlas, et al. Expires January 5, 2012 [Page 11]

Internet-Draft MRT FRR Architecture July 2011

 accepted from. To do this, a new Upstream Backup Join would be added
 to PIM. This Upstream Backup Join would be sent by the PLR to MPs.
 If the PLR has selected an LFA for a MP, then the PLR tunnels the
 Upstream Backup Join to the MP via the LFA. If the PLR will use MRT,
 then the PLR must send two Upstream Backup Joins - one transmited via
 the blue MRT and one transmited via the red MRT; these will also be
 tunneled via LDP or IP as is configured in the network.

 The Upstream Backup Join will specify the PLR, the MP, the (S, G),
 and the alternate details (e.g. LFA with neighbor address, blue MRT,
 red MRT). If desired, the alternate topology could be used to verify
 the incoming interface appropriately via a tree-appropriate RPF
 check. Upon receiving the Upstream Backup Join, the MP will accept
 specified multicast traffic from the LFA backup neighbour, blue or
 red MRT respectively.

3.3.2.1. Protocol Extensions and Considerations: PIM

 This captures an initial understanding of what may need to be
 specified. This is focusing on PIM Sparse mode.

 o Capabilities: New Hello Option Capabilities to indicate the
 ability to understand the new Join Attributes and Upstream Backup
 Join.

 o Next-Hops: Need a new Join Attribute[I-D.ietf-pim-mtid] to send
 the next-hops to the PLR. This list could be updated and sent
 upstream every time it changes.

 o Upstream Backup Join

3.3.3. mLDP Forwarding

 As in PIM, in mLDP[I-D.ietf-mpls-ldp-p2mp] a mechanism must be added
 so that the PLR can learn the next-next-hops. The PLR also needs to
 learn the associated label-bindings. This can be done via a new P2MP
 Child Data Object. This object would include the primary loopback of
 an LSR that has provided labels for the FEC to the sending LSR along
 with the label specified. Multiple P2MP Child Data Objects could be
 included in a P2MP Label Mapping; only those specified in the most
 recent P2MP Label Mapping should be stored and used.

 This will provide the PLR with the MPs and their associated labels.
 The MPs will accept traffic received with that label from any
 interface, so no signaling is required before the alternates are
 used.

 Traffic sent out each alternate will be tunneled with a destination

Atlas, et al. Expires January 5, 2012 [Page 12]

Internet-Draft MRT FRR Architecture July 2011

 of the MP.

3.3.4. Live-Live Multicast

 In MoFRR [I-D.karan-mofrr], the idea of joining both a primary and a
 secondary tree is introduced with the requirement that the primary
 and secondary trees be link and node disjoint. This works well for
 networks where there are dual-planes, as explained in
 [I-D.karan-mofrr]. For other networks, it may still be desirable to
 have two disjoint multicast trees and allow a receiver to join both
 and make its own decision about what to do.

 MRT allows this, but would require minor extensions to PIM or mLDP.
 The pair of maximally redundant trees is rooted at the multicast
 group source S. IF asymmetric link costs aren't a concern, then the
 same set of next-hops (previous-hops in this case) could be used as
 is used for MRT fast-reroute. The extension to PIM would be to
 specify which MRT tree is being joined - so instead of specifying
 join(S,G), it would specify join(S,G, MRT red) or join(S,G, MRT
 blue). Similarly, a new P2MP FEC with Tree Identifier Element would
 need to be defined; it would include the topology to be used which
 could be IGP, MRT red, or MRT blue.

 The receiver would still need to detect failures and handle traffic
 discarding as is specified in [I-D.karan-mofrr].

3.4. MRT Algorithm Open Issues

 The MTR algorithm as given in [MRTLinear] handles most of the issues
 that occur in real networks, but there are a few aspects that need to
 be considered and factored in.

 o Broadcast Interfaces: While a broadcast interface can simply be
 represented as a pseudo-node in the graph, the rules for handling
 it given that there is a requirement to provide node-protection as
 well as link-protection need to be defined.

 o Parallel Links: It is quite common to have parallel links in a
 real network. In the case where node-disjoint paths are possible,
 the parallel links just introduce the possibility of multiple
 next-hops along the MTR. In the case where node-disjoint paths
 aren't possible, having the ability to use parallel links is
 important.

 o Improved Paths in MTRs: In the tree-building, it should be
 straightforward to use SPF instead of BFS. There are additional
 heuristics in the Finding Multiple Maximally Redundant Trees in
 Linear Time paper that should be evaluated for realistic benefits.

Atlas, et al. Expires January 5, 2012 [Page 13]

Internet-Draft MRT FRR Architecture July 2011

 o Asymmetric Link Costs: The tree-building must consider that links
 may have asymmetric costs.

 o Administratively Unavailable Links and Nodes: With the standard
 need to avoid a flag day, not all routers may participate in MTR
 and those that aren't must not be used in an MTR. Additionally,
 links can be overloaded or administratively specified as not
 available just as is considered with LFA. Such links may not be
 used in the MTR.

 o ECMP: Consider the ability to use multiple equal-cost paths in
 building the MRT to get additional capacity along the MRT.

3.4.1. SRLG Protection

 As shown in Appendix A, a straightforward way to build two redundant
 trees involves taking a link from a ready node to a non-ready node to
 provide one path and then determining the shortest-path back to a
 ready node that doesn't include that ready node. Creating similar
 redundancy with arbitrarily placed Shared-Risk Link Groups is still a
 challenging open problem.

3.4.2. Common Computation

 In the MTR algorithm, there are some places where decisions are made
 as to which link to use next, which neighbor to consider, etc. The
 exact rules to follow and a detailed algorithm with example need to
 be provided. Ideally, there would be reference pseudo-code.

4. Acknowledgements

 The authors would like to thank Hannes Gredler, Robert Kebler, Ted
 Qian, Kishore Tiruveedhula, Santosh Esale, Nitin Bahadur, Harish
 Sitaraman and Raveendra Torvi for their suggestions and review.

5. IANA Considerations

 This doument includes no request to IANA.

6. Security Considerations

 This architecture is not currently believed to introduce new security
 concerns.

Atlas, et al. Expires January 5, 2012 [Page 14]

Internet-Draft MRT FRR Architecture July 2011

7. References

7.1. Normative References

 [I-D.ietf-mpls-ldp-p2mp]
 Minei, I., Wijnands, I., Kompella, K., and B. Thomas,
 "Label Distribution Protocol Extensions for Point-to-
 Multipoint and Multipoint-to-Multipoint Label Switched
 Paths", draft-ietf-mpls-ldp-p2mp-14 (work in progress),
 June 2011.

 [I-D.ietf-pim-mtid]
 Cai, Y. and H. Ou, "PIM Multi-Topology ID (MT-ID) Join
 Attribute", draft-ietf-pim-mtid-08 (work in progress),
 June 2011.

 [I-D.karan-mofrr]
 Karan, A., Filsfils, C., Farinacci, D., Decraene, B.,
 Leymann, N., and T. Telkamp, "Multicast only Fast Re-
 Route", draft-karan-mofrr-01 (work in progress),
 March 2011.

 [RFC5286] Atlas, A. and A. Zinin, "Basic Specification for IP Fast
 Reroute: Loop-Free Alternates", RFC 5286, September 2008.

 [RFC5714] Shand, M. and S. Bryant, "IP Fast Reroute Framework",
RFC 5714, January 2010.

7.2. Informative References

 [I-D.ietf-rtgwg-ipfrr-notvia-addresses]
 Shand, M., Bryant, S., and S. Previdi, "IP Fast Reroute
 Using Not-via Addresses",

draft-ietf-rtgwg-ipfrr-notvia-addresses-07 (work in
 progress), April 2011.

 [I-D.ietf-rtgwg-lfa-applicability]
 Filsfils, C., Francois, P., Shand, M., Decraene, B.,
 Uttaro, J., Leymann, N., and M. Horneffer, "LFA
 applicability in SP networks",

draft-ietf-rtgwg-lfa-applicability-02 (work in progress),
 May 2011.

 [LFARevisited]
 Retvari, G., Tapolcai, J., Enyedi, G., and A. Csaszar, "IP
 Fast ReRoute: Loop Free Alternates Revisited", Proceedings
 of IEEE INFOCOM , 2011, <http://opti.tmit.bme.hu/

~tapolcai/papers/retvari2011lfa_infocom.pdf>.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-p2mp-14
https://datatracker.ietf.org/doc/html/draft-ietf-pim-mtid-08
https://datatracker.ietf.org/doc/html/draft-karan-mofrr-01
https://datatracker.ietf.org/doc/html/rfc5286
https://datatracker.ietf.org/doc/html/rfc5714
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-ipfrr-notvia-addresses-07
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-lfa-applicability-02
http://opti.tmit.bme.hu/~tapolcai/papers/retvari2011lfa_infocom.pdf
http://opti.tmit.bme.hu/~tapolcai/papers/retvari2011lfa_infocom.pdf

Atlas, et al. Expires January 5, 2012 [Page 15]

Internet-Draft MRT FRR Architecture July 2011

 [LightweightNotVia]
 Enyedi, G., Retvari, G., Szilagyi, P., and A. Csaszar, "IP
 Fast ReRoute: Lightweight Not-Via without Additional
 Addresses", Proceedings of IEEE INFOCOM , 2009,
 <http://mycite.omikk.bme.hu/doc/71691.pdf>.

 [MRTLinear]
 Enyedi, G., Retvari, G., and A. Csaszar, "On Finding
 Maximally Redundant Trees in Strictly Linear Time", IEEE
 Symposium on Computers and Comunications (ISCC) , 2009,
 <http://opti.tmit.bme.hu/~enyedi/ipfrr/

distMaxRedTree.pdf>.

 [Maintaining Colored Trees]
 "Maintaining colored trees for disjoint multipath routing
 under node failures", IEEE/AC Transactions on
 Networking vol. 17, no. 1, pp. 346-359, 2009, <http://

citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.138.6025&rep=rep1&type=pdf>.

Appendix A. Computing Maximally Redundant Trees

 This is possible but not optimal way to compute maximally redundant
 trees. It is included to provide some intuition about how the
 maximally redundant trees are built.

 In Appendix A.1, we describe how to handle a network that is
 2-connected. Then that is assumption is relaxed and finally how to
 handle distributed computation to obtain the same trees is given.

A.1. Simple pair of maximally redundant trees in 2-connected networks

 Finding a simple pair of maximally redundant trees in a 2-connected
 network is straightforward. We call a node "ready", if it was
 already added to the trees. Initially, the only ready node is the
 common root (node r in the sequel).

 When we have at least one node x in the network, which is not ready,
 find two node-disjoint paths from x either to r or to two distinct
 ready nodes. Since the network is 2-connected, there are always two
 node-disjoint paths from x to r. It is possible that one or both of
 these paths reaches another ready node sooner than r, in which case
 we have the two node-disjoint paths to distinct nodes. Combining the
 directed links of these paths makes up an *ear*.

http://mycite.omikk.bme.hu/doc/71691.pdf
http://opti.tmit.bme.hu/~enyedi/ipfrr/distMaxRedTree.pdf
http://opti.tmit.bme.hu/~enyedi/ipfrr/distMaxRedTree.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.6025&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.6025&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.6025&rep=rep1&type=pdf

Atlas, et al. Expires January 5, 2012 [Page 16]

Internet-Draft MRT FRR Architecture July 2011

 x---a
 \
 b
 |
 c
 /
 y---d

 Figure 3: An *ear* connected to node x and y (x and y are ready).

 Let x and y be the two ready endpoints of an ear, and first suppose
 that they are different nodes and none of them is r. Note that both
 x and y are in the two trees (since they are "ready") and if x is an
 ancestor of y in the first tree (x is on the path from y to r), then
 x cannot be the ancestor of y along the second tree at the same time.
 Thus, it is safe to connect the nodes of the freshly found ear to x
 in the first tree and to y in the second tree, if either x is an
 ancestor of y in the first tree, or y is an ancestor of x in the
 second tree. Considering the example in Figure 3, this means that
 links d-c-b-a-x should be added to the first tree, and a-b-c-d-y
 should be added to the second one.

 In the case, when either x=r or y=r or when neither x is an ancestor
 of y nor y is an ancestor of x in any of the trees, the endpoints are
 not firmly bound to one of the trees, it is only important to put the
 links to one endpoint in one of the trees and put the links towards
 the other endpoint to the other tree. In our example this means that
 either d-c-b-a-x or a-b-c-d-y could be added to the first tree.
 Naturally, then the other endpoint must be selected for the second
 tree.

 In some cases, we need to construct such (maximally) redundant trees,
 where there is only one edge entering to the root on one of the
 trees. This makes the root a leaf in that tree. To achieve this, we
 can add the ear to the second tree through r only if both endpoints
 are r. Moreover, we need to select an ear with different endpoints
 when it is possible (it is always possible except for the first ear,
 if the network is 2-connected).

 Finding an ear is relatively simple and can be done in different
 ways. Probably the simplest way is to find a ready node q (q is not
 the root) with a non-ready neighbor w, (virtually) remove q from the
 topology, and to find a path from w to r; since the network is 2-
 connected, such a path either reaches r, or reach another ready node.
 Moreover, when only r is ready such a node q does not exist, so we
 select one of r's neighbors as w, and remove not r but the link
 between them.

Atlas, et al. Expires January 5, 2012 [Page 17]

Internet-Draft MRT FRR Architecture July 2011

 e---d
 / / \
 r---c f
 \ \ /
 a---b

 Figure 4: A 2-connected network

 e---d e---d
 / / \
 r c f r---c f
 \ \ / \
 a---b a---b

 Figure 5: The two maximally redundant trees found in the network
 depicted in previous figure.

 Now, a simple example is in order. Consider the network depicted in
 Figure 4, and suppose that the common root is node r. We have only r
 in the trees, so we select one of its neighbors, let it be a, remove
 the link between them, and select a path (let it be the shortest one)
 from a to r; this path is a-b-c-r, so the ear is r-a-b-c-r. Since
 both endpoints of the ear are r, selecting the right tree is not
 important, e.g., we can add c-b-a-r to the first tree, and a-b-c-r to
 the second one Figure 5. This way, r, a, b and c form the set of
 "ready" nodes. From the ready set, c and d are not the root and have
 non-ready neighbors. Let us select, e.g., c. The shortest path from
 d to r when c is removed is d-e-r, so we have ear c-d-e-r, we add
 d-e-r to the first tree and e-d-c to the second one (recall that we
 do not want to create a new neighbor for r in the second tree).
 Finally, the last non-ready node is f, and the ear is b-f-d. Since
 neither is b an ancestor of d nor is d an ancestor of b in any of the
 trees, we can connect f to the trees in both ways. E.g., add f-b to
 the first tree, and f-d to the second one.

A.2. Non-2-connected networks

 When, however, the network is not 2-connected, it is not always
 possible to find a pair of node-disjoint paths from any node x to
 root r, which makes our previous algorithm unable to find the trees.
 However, while the network is connected, it is made up by 2-connected
 components bordered by "cut-vertices" (naturally, some of these
 components may contain only one node). A node is a cut-vertex, if
 removing that node splits the network into two.

 A simple algorithm to find the components and the cut-vertices can be
 to (virtually) remove each vertex one by one, and check connectivity

Atlas, et al. Expires January 5, 2012 [Page 18]

Internet-Draft MRT FRR Architecture July 2011

 with BFS or DFS. Moreover, nodes a and b are in the same 2-connected
 component, if a remains reachable from b after removing any single
 node. Note that linear time algorithms do exist that find both the
 2-connected components and the cut-vertices.

 Now, we can build up redundant trees in each component. In
 components containing r, the root of such trees must be r.
 Otherwise, in the remaining components the root must be the last node
 in the component along a path to the root. Recall, that this must be
 a cut-vertex, so it is the same for each path emanating from that
 component.

 At this point, we are ready, if there is no cut-edge in the network.
 However, if some 2-connected components are connected by a cut-edge,
 we must add that edge to both of the trees.

 e---d i
 / / \ /|
 r---c f--g |
 \ \ / \|
 a---b j

 Figure 6: Non-2-connected network

 e---d i e---d i
 / /| / \ |
 r c f--g | r---c f--g |
 \ \ / | \ \|
 a---b j a---b j

 Figure 7: The two maximally redundant trees found in the network
 depicted previously.

 As an example consider the network depicted in Figure 6. Observe
 that now we have two 2-connected components, one contains r, a, b, c,
 d, e, f and the other contains g, i, j. Moreover, these components
 have no common node, they are connected with a cut-edge.

 Finding the trees in the component containing r is already described;
 these trees are the same as previously. Moreover, the other
 component is a cycle, so it will be covered by a single ear. Finally
 we must add link f-g to both of the trees, to get the trees depicted
 in Figure 7.

Atlas, et al. Expires January 5, 2012 [Page 19]

Internet-Draft MRT FRR Architecture July 2011

A.3. Finding maximally redundant trees in distributed environment

 If we need to compute exactly the same maximally redundant trees at
 each of the routers, consistency needs to be ensured by tie-breaking
 mechanisms. Observe that the previous algorithm has multiple choices
 when it selects how to connect nodes to the trees when only r is
 ready, how to select ready node q and non-ready node w for a later
 ear and when neither of the endpoints is an ancestor of the other
 one.

 All of the previous decision points can be handled in a consistent
 fashion. E.g., the first ear should be connected in such a way, that
 the neighbor of r with the lowest ID must be directly connected to r
 in the first tree. Moreover, later we should choose ready router
 with non-ready neighbor as q and its non-ready neighbor with the
 lowest ID as w. Finally, when neither of the endpoint is an ancestor
 of the other one, connect the ear to the endpoint with the lower ID
 in the first tree.

Authors' Addresses

 Alia Atlas (editor)
 Juniper Networks
 10 Technology Park Drive
 Westford, MA 01886
 USA

 Email: akatlas@juniper.net

 Maciek Konstantynowicz
 Juniper Networks

 Email: maciek@juniper.net

 Gabor Sandor Enyedi
 Ericsson
 Irinyi utca 4-10
 Budapest 1117
 Hungary

 Email: Gabor.Sandor.Enyedi@ericsson.com

Atlas, et al. Expires January 5, 2012 [Page 20]

Internet-Draft MRT FRR Architecture July 2011

 Andras Csaszar
 Ericsson
 Irinyi J ut 4-10
 Budapest 1117
 Hungary

 Email: Andras.Csaszar@ericsson.com

 Russ White
 Cisco Systems

 Email: russwh@cisco.com

 Mike Shand
 Cisco Systems

 Email: mshand@cisco.com

Atlas, et al. Expires January 5, 2012 [Page 21]

