
Network Working Group T. Aura
Internet-Draft Aalto University
Intended status: Standards Track M. Sethi
Expires: August 11, 2016 Ericsson
 February 8, 2016

Nimble out-of-band authentication for EAP (EAP-NOOB)
draft-aura-eap-noob-00

Abstract

 Extensible Authentication Protocol (EAP) [RFC3748] provides support
 for multiple authentication methods. This document defines the EAP-
 NOOB authentication method for nimble out-of-band (OOB)
 authentication and key derivation. This EAP method is intended for
 bootstrapping all kinds of Internet-of-Things (IoT) devices that have
 a minimal user interface and no pre-configured authentication
 credentials. The method makes use of a user-assisted one-directional
 OOB channel between the peer device and authentication server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 11, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Aura & Sethi Expires August 11, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft EAP-NOOB February 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 4
3. EAP-NOOB protocol . 4
3.1. Protocol overview . 4
3.2. Protocol messages and sequences 7
3.2.1. Initial Exchange 8
3.2.2. OOB Step . 9
3.2.3. Completion Exchange 10
3.2.4. Waiting Exchange 11

3.3. Message data items 12
3.4. Fast reconnect and rekeying 17
3.4.1. Reconnect Exchange 17
3.4.2. User reset . 19

3.5. Key derivation . 20
3.6. Error handling . 21
3.6.1. Invalid messages 22
3.6.2. Unwanted peer . 22
3.6.3. State mismatch 23
3.6.4. Negotiation failure 23
3.6.5. Cryptographic verification failure 23

4. IANA Considerations . 24
4.1. Cryptosuites . 24
4.2. Error codes . 25
4.3. Domain name reservation considerations 25

5. Security considerations 26
5.1. Authentication principle 26
5.2. Identifying and naming peer devices 27
5.3. Downgrading threats 29
5.4. EAP security claims 29

6. References . 31
6.1. Normative references 31
6.2. Informative references 32

Appendix A. Exchanges and events per state 33
Appendix B. TODO list . 34

 Authors' Addresses . 35

1. Introduction

 This document describes a method for registration, authentication and
 key derivation for network-connected ubiquitous computing devices,
 such as consumer and enterprise appliances that are part of the

Aura & Sethi Expires August 11, 2016 [Page 2]

Internet-Draft EAP-NOOB February 2016

 Internet of Things (IoT). These devices may be off-the-shelf
 hardware that is sold and distributed without any prior registration
 or credential-provisioning process. Thus, the device registration in
 a server database, ownership of the device, and the authentication
 credentials for both network access and application-level security
 must all be established at the time of the device deployment.
 Furthermore, many such devices have only limited user interfaces that
 could be used for their configuration. Often, the interfaces are
 limited to either only input (e.g. camera) or output (e.g. display
 screen). The device configuration is made more challenging by the
 fact that the devices may exist in large numbers or may have to be
 deployed or re-configured nimbly based on user needs.

 More specifically, the devices may have the following
 characteristics:

 o no pre-established relation with a specific server or user,

 o no pre-provisioned device identifier or authentication
 credentials,

 o limited user interface and configuration capabilities.

 Many proprietary OOB configuration methods exits for specific IoT
 devices. The goal of this specification is to provide an open
 standard and a generic protocol for bootstrapping the security of
 network-connected appliances, such as displays, printers, speaker,
 and cameras. The security bootstrapping in this specification makes
 use of a user-assisted out-of-band (OOB) channel. The security is
 based on the assumption that attackers are not able to observe or
 modify the messages conveyed through the OOB channel. We follow the
 common approach of performing a Diffie-Hellman key exchange over the
 insecure network and authenticating the established key with the help
 of the OOB channel in order to prevent man-in-the-middle (MitM)
 attacks.

 The solution presented here is intended for devices that have either
 an input or output interface, such as a camera or display screen,
 which is able to send or receive dynamically generated messages of
 tens of bytes in length. Naturally, this solution may not be
 appropriate for very small sensors or actuators that have no user
 interface at all. We also assume that the OOB channel is at least
 partly automated (e.g. camera scanning a bar code) and, thus, there
 is no need to absolutely minimize the length of the data transferred
 through the OOB channel. This differs, for example, from Bluetooth
 simple pairing [SimplePairing], where it is critical to minimize the
 length of the manually transferred or compared codes. Since the OOB
 messages are dynamically generated, we do not support static printed

Aura & Sethi Expires August 11, 2016 [Page 3]

Internet-Draft EAP-NOOB February 2016

 registration codes. This also prevents attacks where a static secret
 code would be leaked.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In addition, this document frequently uses the following terms as
 they have been defined in [RFC5216]:

 authenticator The entity initiating EAP authentication.

 peer The entity that responds to the authenticator. In
 [IEEE-802.1X], this entity is known as the Supplicant.

 server The entity that terminates the EAP authentication method with
 the peer. In the case where no backend authentication server
 is used, the EAP server is part of the authenticator. In the
 case where the authenticator operates in pass-through mode, the
 EAP server is located on the backend authentication server.

3. EAP-NOOB protocol

 This section defines the EAP-NOOB protocol. The protocol is a
 generalized version of the original idea presented by Sethi et al.
 [Sethi14].

3.1. Protocol overview

 One EAP-NOOB protocol execution spans multiple EAP exchanges. This
 is necessary to leave time for the OOB message to be delivered, as
 will be explained below.

 The overall protocol starts with the Initial Exchange, in which the
 server allocates an identifier to the peer, and the server and peer
 negotiate the protocol version and cryptosuite (i.e. cryptographic
 algorithm suite), exchange nonces and perform an Elliptic Curve
 Diffie-Hellman (ECDH) key exchange. The user-assisted OOB Step then
 takes place. This step involves only one out-of-band message either
 from the peer to the server or from the server to the peer. While
 waiting for the OOB Step action, the peer MAY probe the server by
 reconnecting to it with EAP-NOOB. If the OOB Step has already taken
 place, the probe leads to the Completion Exchange, which completes
 the mutual authentication and key confirmation. On the other hand,
 if the OOB Step has not yet taken place, the probe leads to the
 Waiting Exchange, and the peer will perform another probe after a

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5216

Aura & Sethi Expires August 11, 2016 [Page 4]

Internet-Draft EAP-NOOB February 2016

 server-defined minimum waiting time. The Initial Exchange and
 Waiting Exchange always end in EAP-Failure, while the Completion
 Exchange may result in EAP-Success. Once the peer and server have
 performed a successful Completion Exchange, both parties store the
 created association in persistent storage, and the OOB Step is not
 repeated. Thereafter, creation of new temporal keys, ECDH rekeying,
 and updates of cryptographic algorithms can be achieved with the
 Reconnect Exchange.

 Figure 1 shows the association state machine, which is the same for
 the server and for the peer. When the client initiates the EAP-NOOB
 method, the server chooses the ensuing message exchange based on the
 combination of the server and peer states. The EAP server and peer
 are initially in the Unregistered state, in which no state
 information needs to be stored. Before a successful Completion
 Exchange, the server-peer association state is ephemeral in both the
 server and peer (ephemeral states 0..2) , and either party may cause
 the protocol to fall back to the Initial Exchange. After the
 Completion Exchange has resulted in EAP-Success, the association
 state becomes persistent (persistent states 3..4), and only user
 reset or accidental failure can cause the return of the server or the
 peer to the ephemeral states and to the Initial Exchange.

Aura & Sethi Expires August 11, 2016 [Page 5]

Internet-Draft EAP-NOOB February 2016

 OOB Output, Initial Exchange,
 or Waiting Exchange
 .-----.
 | v
 .------------------. Initial .------------------.
 | | Exchange | |
 .->| 0. Unregistered |---------------->|1. Waiting for OOB|
 | | | | |
 | '------------------' '------------------'
 | | | ^
 User Reset Completion | | |
 | Exchange | OOB Initial
 |<-------. .<------------------------' Input Exchange
 | | | | |
 | | v v |
 | .------------------. Completion .------------------.
 | | | Exchange | |
 | | 4. Registered |<----------------| 2. OOB Received |
 | | | | |
 | '------------------' '------------------'
 | | ^
 | | |
 | Timeout / Reconnect
 | Failure Exchange
 | | |
 | v |
 | .-----------------.
 | | |
 '--| 3. Reconnecting |
 | |
 '-----------------'

 Figure 1: EAP-NOOB server-peer association state machine

 The server MUST NOT repeat the OOB Step with the same peer except if
 the association with the peer is explicitly reset by the user or lost
 due to failure of the persistent storage. In particular, once the
 association has entered the Registered state, the server MUST NOT
 delete the association or go back to states 0-2 without explicit user
 approval. Similarly, the peer MUST NOT repeat the OOB Step unless
 the user explicitly deletes the association with the server or resets
 it to the Unregistered state. However, it can happen that the client
 accidentally loses its persistent state and reconnects to the server
 without a previously allocated peer identifier. In that case, the
 server MUST treat the peer as a new peer. The server MAY use
 auxiliary information, such as the PeerInfo field received in the
 Initial Exchange, to detect such multiple association of the same

Aura & Sethi Expires August 11, 2016 [Page 6]

Internet-Draft EAP-NOOB February 2016

 peer. However, it MUST NOT automatically delete associations because
 there is no secure way of verifying that the two peers are the same
 physical device.

 A special feature of the EAP-NOOB method is that the server is not
 assumed to have any a-priori knowledge of the peer. Therefore, the
 peer initially uses the generic identity string "noob@eap-noob.net"
 as the NAI. The server then allocates a server-specific identifier
 to the peer. The network access identifier NAI is a concatenation of
 the server-allocated peer identifier and the generic suffix "@eap-
 noob.net". This suffix serves two purposes: firstly, it tells the
 server that the peer supports and expects the EAP-NOOB method and,
 secondly, it allows routing of the EAP-NOOB sessions to a specific
 authentication server in the AAA architecture.

 EAP-NOOB is an unusual EAP method in that the peer has to connect to
 the server two or more times before it can receive EAP-Success. The
 reason is that, while EAP allows delays between the request-response
 pairs, e.g. for repeated password entry, the user delays in OOB
 authentication can be much longer than in password trials. In
 particular, EAP-NOOB supports also peers or servers with no input
 capability in the user interface. Since these output-only parties
 cannot be told to perform the protocol at the right moment, they have
 to perform the initial exchange opportunistically and hope for the
 OOB Step to take place within a timeout period, which is why the
 timeout needs to be several minutes rather than seconds. For
 example, consider a printer (peer) from which the OOB message is
 printed as a bar code on paper and then scanned with a camera phone
 and communicated to the server. To support such devices and slow OOB
 channels, the peer in EAP-NOOB first contacts the server in the
 Initial Exchange, then disconnects for some time, and later continues
 with the Waiting and Completion Exchanges.

3.2. Protocol messages and sequences

 This section defines the EAP-NOOB exchanges. The protocol messages
 communicated and the data members in each message are listed in the
 diagrams below.

 Each EAP-NOOB exchange begins with the authenticator sending an EAP-
 Request/Identity packet to the peer. From this point on, the EAP
 conversation occurs between the server and the peer, and the
 authenticator acts as a pass-through device. The peer responds to
 the authenticator with an EAP-Response/Identity packet, containing
 the network access identifier (NAI). The peer MUST compose the NAI
 as defined in Section 3.3. Essentially, if the peer has no previous
 peer identifier (PeerId), it uses the fixed NAI string "noob@eap-
 noob.net", and if it has received a PeerId from the server, it

Aura & Sethi Expires August 11, 2016 [Page 7]

Internet-Draft EAP-NOOB February 2016

 creates the NAI by concatenating the PeerId, a state indicator "+sX",
 and the fixed suffix string "@eap-noob.net".

 After receiving the NAI, the server chooses the EAP-NOOB exchange,
 i.e. the ensuing message sequence, based on the combination of the
 client and server states. The client recognizes the exchange based
 on the message type field (Type) of the EAP-NOOB request received
 from the server. The available exchanges are defined in the
 following subsections. Each exchange comprises one or two EAP
 requests-response pairs and ends in either EAP-Failure, indicating
 that authentication is not (yet) successful, or in EAP-Success.

3.2.1. Initial Exchange

 Upon receiving the EAP-Response/Identity from the peer, if either the
 peer or the server is in the Unregistered (0) state and the other is
 in one of the ephemeral states (0..2), the server chooses the Initial
 Exchange.

 The Initial Exchange comprises two EAP-NOOB request-response pairs,
 one for version, algorithm and parameter negotiation and the other
 for the ECDH key exchange. The first EAP-NOOB request (Type=1) from
 the server contains a newly allocated PeerId for the peer, regardless
 of the username part of the received NAI. The server also sends in
 the request a list of protocol versions supported (Vers),
 cryptosuites (Cryptosuites), an indicator of the OOB channel
 directions supported by the server (Dirs), and a ServerInfo object.
 The peer chooses one of the versions and cryptosuites. The peer
 sends a response (Type=1) with the selected protocol version (Verp),
 the received PeerId, the selected cryptosuite (Cryptosuitep), an
 indicator of the OOB channel directions supported by the peer (Dirp),
 and a PeerInfo object. In the second EAP-NOOB request and response
 (Type=2), the server and peer exchange the public components of their
 ECDH keys and nonces (PKs,Ns,PKp,Np). The ECDH keys MUST be based on
 the negotiated cryptosuite. The Initial Exchange ends with EAP-
 Failure from the server because the authentication cannot yet be
 completed.

 At the conclusion of the Initial Exchange, both the server and the
 peer move to the Waiting for OOB (1) state.

Aura & Sethi Expires August 11, 2016 [Page 8]

Internet-Draft EAP-NOOB February 2016

 EAP Peer EAP Server
 | |
 |<----------- EAP-Request/Identity -| |
 | |
 | |
 |------------ EAP-Response/Identity -------------->|
 | (NAI=noob|PeerId+sX@eap-noob.net) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=1,Vers,PeerId,Cryptosuites,Dirs,ServerInfo)|
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=1,Verp,PeerId,Cryptosuitep,Dirp,PeerInfo) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=2,PeerId,PKs,Ns) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=2,PeerId,PKp,Np) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

 Figure 2: Initial Exchange

3.2.2. OOB Step

 The OOB Step, shown as OOB Output and OOB Input in Figure 1, takes
 place after the Initial Exchange. Depending on the direction
 negotiated, the peer or the server outputs the OOB message containing
 the PeerId, the secret nonce Noob, and the cryptographic fingerprint
 Hoob, as defined in Section 3.3. This message is then delivered to
 the other party via a user-assisted OOB channel. The details of the
 OOB channel are defined by the application. The receiver of the OOB
 message MUST compare the received value of the fingerprint Hoob with
 a value that it computes locally.

 Even though not recommended (see Section 3.3), this specification
 allows both directions to be negotiated. In this case, both sides
 SHOULD output the OOB message, and it is up to the user to deliver
 one of them.

Aura & Sethi Expires August 11, 2016 [Page 9]

Internet-Draft EAP-NOOB February 2016

 EAP Peer EAP Server
 | |
 |=================OOB=============================>|
 | (PeerId,Noob,Hoob) |
 | |

 Figure 3: OOB Step, from peer to EAP server

 EAP Peer EAP Server
 | |
 |<================OOB==============================|
 | (PeerId,Noob,Hoob) |
 | |

 Figure 4: OOB Step, from EAP server to peer

3.2.3. Completion Exchange

 After the Initial Exchange, if both the server the peer support the
 peer-to-server direction for the OOB channel, the peer SHOULD
 initiate the EAP-NOOB method again after an applications-specific
 waiting time in order to probe for completion of the OOB Step. Also,
 if both sides support the server-to-peer direction of the OOB
 exchange and the peer receives the OOB message, it SHOULD initiate
 the EAP-NOOB method immediately. Once server receives the EAP-
 Response/Identity, if one of the server and peer is in the OOB
 Received (2) state and the other is in the Waiting for OOB (1) or OOB
 Received (2) state, the OOB Step has taken place and the server
 SHOULD continue with the Completion Exchange.

 The Completion Exchange comprises one EAP-NOOB request-response pair
 (Type=4). In these messages, the server and peer exchange message
 authentication codes. Both sides MUST compute the keys Kms and Kmp
 as defined in Section 3.5 and the message authentication codes MACs
 and MACp as defined in Section 3.3. Both sides MUST compare the
 received message authentication code with a locally computed value.
 If the EAP server finds that it has received the correct value of
 MACp, the Completion Exchange ends in EAP-Success; otherwise, in EAP-
 Failure.

 While it is not expected to occur in practice, poor user interface
 design could lead to two OOB messages delivered simultaneously, one
 from the peer to the server and the other from the server to the
 peer. The server detects this event by observing that both the
 server and peer are in the OOB Received state (2). In that case, the

Aura & Sethi Expires August 11, 2016 [Page 10]

Internet-Draft EAP-NOOB February 2016

 server MUST behave as if only the server-to-peer message was
 delivered.

 After successful Completion Exchange, both the server and the peer
 move to the Registered (4) state.

 EAP Peer EAP Server
 | |
 |<----------- EAP-Request/Identity -| |
 | |
 | |
 |------------ EAP-Response/Identity -------------->|
 | (NAI=PeerId+sX@eap-noob.net) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=4,PeerId,MACs) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=4,PeerId,MACp) |
 | |
 | |
 |<----------- EAP-Success -------------------------|
 | |

 Figure 5: Completion Exchange

3.2.4. Waiting Exchange

 As explained in Section 3.2.3, if both the server and the peer
 support the peer-to-server direction for the OOB channel, the peer
 will probe the server for completion of the OOB Step. If both the
 server and client states are Waiting for OOB (1), the server will
 continue with the Waiting Exchange (message Type=3). The only
 purpose of this exchange is to indicate to the peer that the server
 has not yet received a peer-to-server OOB message.

 In order to limit the rate at which peers probe the server, the
 server sends to the peer a minimum time to wait before probing the
 server again. The peer MUST wait at least the server-specified
 minimum waiting time in seconds (MinSleep) before initiating EAP
 again with the same server. If the server omits the MinSleep field
 from the request, the peer SHOULD wait for an application-specified
 minimum time.

Aura & Sethi Expires August 11, 2016 [Page 11]

Internet-Draft EAP-NOOB February 2016

 EAP Peer EAP Server
 | |
 |<----------- EAP-Request/Identity -| |
 | |
 | |
 |------------ EAP-Response/Identity -------------->|
 | (NAI=PeerId+s1@eap-noob.net) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=3,PeerId,[MinSleep]) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=3,PeerId) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

 Figure 6: Waiting Exchange

3.3. Message data items

 Table 1 defines the data items in the protocol messages. The in-band
 messages are formatted as JSON objects [RFC7159] in UTF-8 encoding.
 The member names are in the left-hand column of table.

 +------------------+--+
 | Data field | Description |
 +------------------+--+
Vers,Verp	EAP-NOOB protocol versions supported by the
	EAP server, and the protocol version chosen by
	the peer. Vers is a JSON array of unsigned
	integers, and Verp is an unsigned integer.
	Currently, the only defined values are "[1]"
	and "1", respectively.
PeerId	Peer identifier. If the peer does not yet have
	a peer identifier or it does not remember one,
	it uses the NAI "noob@eap-noob.net" in the
	Initial Exchange. The server then assigns an
	identifier to the peer and sends it in the
	first server-to-peer request of the Initial
	Exchange. The assigned identifier is ephemeral
	until a successful Completion Exchange takes
	place. Thereafter, the peer identifier becomes
	permanent until the user resets the peer and

https://datatracker.ietf.org/doc/html/rfc7159

Aura & Sethi Expires August 11, 2016 [Page 12]

Internet-Draft EAP-NOOB February 2016

	the server. Resetting the server means
	deleting the association for the peer from the
	server database. The peer identifier MUST
	follow the syntax of the utf8-username
	specified in [RFC7542]; however, it MUST NOT
	exceed 60 bytes in length and MUST NOT contain
	the character '+'. The server MUST generate
	the identifiers in such a way that they do not
	repeat and cannot be guessed by the peer or
	third parties beforehand. One way to generate
	the identifiers is to choose a random 40-digit
	lower-case hexadecimal string.
Peer State "+sX"	This part of the NAI informs the server about
	the peer state. The server uses this
	information together with the server state to
	decide on the type of the exchange and, thus,
	of the type of the next EAP-Request. The peer
	appends the peer state to the PeerId to form
	the username part of the NAI. (Sending it in
	the EAP-Response/Identity message avoids an
	additional round trip for querying the peer
	state.) If the peer is in state 0, it MUST use
	the NAI "noob@eap-noob.net"; otherwise, the
	peer MUST create the NAI as the concatenation
	of the PeerId, the string "+s", a single digit
	indicating the state of the peer, and the
	string "@eap-noob.net".
Type	EAP-NOOB message type. The type is an integer
	in the range 0..6. EAP-NOOB requests and the
	corresponding responses share the same type
	value.
PKs, PKp	The public components of the ECDH keys of the
	server and peer. PKs and PKp are sent in the
	JSON Web Key (JWK) format [RFC7517].
Cryptosuites,	The identifiers of cryptosuites supported by
Cryptosuitep	the server and of the cryptosuite selected by
	the peer. The format is specified in Section
	4.1.
Dirs, Dirp	OOB channel directions supported by the server
	and the peer. The possible values are 1=peer-
	to-server, 2=server-to-peer, 3=both
	directions. Endpoints that are general-purpose
	computers or online services SHOULD support

https://datatracker.ietf.org/doc/html/rfc7542
https://datatracker.ietf.org/doc/html/rfc7517

Aura & Sethi Expires August 11, 2016 [Page 13]

Internet-Draft EAP-NOOB February 2016

	both directions. IoT devices with a limited
	user interface will mostly support only one
	direction. If the negotiated value is 3, the
	user may be presented with two OOB messages,
	one for each direction, even though the user
	needs to deliver only one of them. Since this
	can be confusing to the user, it RECOMMENDED
	that the peer selects value 1 or 2. The EAP-
	NOOB protocol itself is designed to cope also
	with selected value 3, in which case it uses
	the first delivered OOB message. In the
	unlikely case of simultaneously delivered OOB
	messages, the protocol prioritizes the server-
	to-peer direction.
Ns, Np	Nonces for the Initial Exchange.
ServerInfo	This field contains information about the
	server to be passed from the EAP method to the
	application layer in the peer. The content of
	this field is specific to the application. It
	could include, for example, the network name
	and server name or a Uniform Resource Locator
	(URL) [RFC1738] or some other information that
	helps the user to deliver the OOB message to
	the server through the out-of-band channel.
PeerInfo	This field contains information about the peer
	to be passed from the EAP method to the
	application layer in the server. The content
	of this field is specific to the application.
	It could include, for example, the peer make,
	model and serial number that helps the user to
	distinguish between devices and to deliver the
	OOB message to the correct peer through the
	out-of-band channel.
MinSleep	The number of seconds for which peer MUST NOT
	start a new execution of the EAP-NOOB method
	with the authenticator, unless the peer is
	reset by the user. The server can use this
	field to limit the rate at which peers probe
	it for the completion of the OOB Step.
	MinSleep is an unsigned integer in the range
	0..3600.
Noob	Secret nonce sent through the OOB channel and
	used for the session key derivation. The party

https://datatracker.ietf.org/doc/html/rfc1738

Aura & Sethi Expires August 11, 2016 [Page 14]

Internet-Draft EAP-NOOB February 2016

	that received the OOB message uses this secret
	in the Completion Exchange to authenticate the
	exchanged key to the party that sent the OOB
	message.
Hoob	Cryptographic fingerprint (i.e. hash value)
	computed from all the parameters exchanged in
	the Initial Exchange and in the OOB message.
	Receiving this fingerprint over the OOB
	channel guarantees the integrity of the key
	exchange and parameter negotiation. Hence, it
	authenticates the exchanged key to the party
	that receives the OOB message.
Ns2, Np2	Nonces for the Reconnect Exchange.
MACs, MACp	Message authentication codes for mutual
	authentication, key confirmation, and
	integrity check on the exchanged information.
	The input to the HMAC is defined below, and
	the key for the HMAC is defined in Section
	3.5.
PKs2, PKp2	The public components of the ECDH keys of the
	server and peer. These MUST be present if a
	new cryptosuite was negotiated. Otherwise,
	either party may omit the field. PKs2 and PKp2
	are sent in the JSON Web Key (JWK) format
	[RFC7517].
MACs2, MACp2	Message authentication codes for mutual
	authentication, key confirmation, and
	integrity check on the Reconnect Exchange. The
	input to the HMAC is defined below, and the
	key for the HMAC is defined in Section 3.5.
 +------------------+--+

 Table 1: Message data items

 All nonces (Ns, Np, Ns2, Np2, Noob) are 16-byte fresh random byte
 strings generated by the party that sends the message.

 The fingerprint Hoob is computed with the hash function specified in
 the negotiated cryptosuite and truncated to the 16 leftmost bytes of
 the output. The message authentication codes (MACs, MACp, MACs2,
 MACp2) are computed with the HMAC function [RFC2104] based on the

https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc2104

Aura & Sethi Expires August 11, 2016 [Page 15]

Internet-Draft EAP-NOOB February 2016

 same cryptographic hash function and truncated to the 16 leftmost
 bytes of the output.

 The inputs to the hash function for computing the fingerprint Hoob
 and to the HMAC for computing MACs, MACp, MACs2 and MACp2 are JSON
 arrays containing a fixed number (15) of members. The array member
 values MUST be copied to the array verbatim from the in-band
 messages, and space characters or whitespace MUST NOT be added
 anywhere in the JSON structure.

 The inputs for computing the fingerprint and message authentication
 codes are the following:

 Hoob = H(Dir,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,Cryptos
 uitepp,Dirp,PeerInfo,PKs,Ns,PKp,Np,Noob).

 MACs = HMAC(Kms; 2,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,C
 ryptosuitep,Dirp,PeerInfo,PKs,Ns,PKp,Np,Noob).

 MACp = HMAC(Kmp; 1,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,C
 ryptosuitep,Dirp,PeerInfo,PKs,Ns,PKp,Np,Noob).

 MACs2 = HMAC(Kms2; 2,Vers,Verp,PeerId,Cryptosuites,"",[ServerInfo]
 ,Cryptosuitep,"",[PeerInfo],[PKs2],Ns2,[PKp2],Np2,"")

 MACp2 = HMAC(Kmp2; 1,Vers,Verp,PeerId,Cryptosuites,"",[ServerInfo]
 ,Cryptosuitep,"",[PeerInfo],[PKs2],Ns2,[PKp2],Np2,"")

 Missing input values are represented by empty strings "" in the
 array. The values indicated with "" are always empty strings. The
 values in brackets MUST be included if they were exchanged in the
 same Reconnect Exchange; otherwise these values are replaced by empty
 strings "".

 The parameter Dir indicates the direction in which the OOB message
 containing the Noob value is being sent (1=peer-to-server, 2=server-
 to-peer). This field in needed to prevent the user from accidentally
 delivering the OOB message back to its originator in the rare cases
 where both OOB directions have been negotiated. The keys for the
 HMACs are defined in the following section.

 The nonces (Ns, Np, Ns2, Np2) and message authentication codes (MACs,
 MACp, MACs2, MACp2) in the in-band messages and in the cryptographic
 function inputs MUST be base64url encoded [RFC4648]. The values Noob
 and Hoob in the OOB channel MAY also be base64url encoded, if that is
 appropriate for the application and the used OOB channel.

https://datatracker.ietf.org/doc/html/rfc4648

Aura & Sethi Expires August 11, 2016 [Page 16]

Internet-Draft EAP-NOOB February 2016

 The ServerInfo and PeerInfo are JSON object with UFT-8 encoding. The
 length of each encoded object as a byte arrays MUST NOT exceed 500
 bytes. The format and semantics of these objects MUST be defined by
 the application that uses the EAP-NOOB method.

3.4. Fast reconnect and rekeying

 EAP-NOOB implements Fast Reconnect ([RFC3748], section 7.2.1) that
 avoids repeated use of the user-assisted OOB channel. For this
 reason, the EAP server and peer store the session state in persistent
 memory after a successful Completion Exchange. This persistent data,
 called "persistent EAP-NOOB association", MUST include at least the
 following data: PeerId, negotiated cryptosuite, Kms, Kmp, and Kz.
 The last three are shared keys used internally by EAP-NOOB for
 rekeying in the Reconnect Exchange. When a persistent EAP-NOOB
 association exists, the EAP server and peer are in the Registered
 state (4) or Reconnecting state (3), as shown in Figure 1.

 The rekeying and Reconnect Exchange may be needed for several
 reasons. A timeout, software or hardware failure, or user action may
 cause the EAP server, peer or authenticator to lose its non-
 persistent state data such as master keys. Change in the supported
 cryptosuites in the EAP server or peer may also cause the need for a
 new key exchange. When the EAP server or peer detects such an event,
 it MUST change from the Registered to Reconnecting state. The EAP-
 NOOB method will then perform the Reconnect Exchange next time when
 EAP is triggered. Thus, the difference between the Registered state
 and Reconnecting state is that, in the Reconnecting state, some of
 the non-persistent data related to the EAP-NOOB association between
 the EAP server and peer may be lost or stale, and a new key exchange
 is needed.

3.4.1. Reconnect Exchange

 The server chooses the Reconnect Exchange when peer is in the
 Reconnecting (3) state and the server itself is in the Registered (4)
 or Reconnecting (3) state. The peer MUST NOT initiate EAP-NOOB when
 the peer is in Registered state.

 The Reconnect Exchange comprises two EAP-NOOB request-response pairs,
 one for algorithm and parameter negotiation and the other for the key
 exchange. In the first request and response (Type=5) the server and
 peer negotiate a cryptosuite in the same way as in the Initial
 Exchange. The messages MAY also contain PeerInfo and ServerInfo
 objects. In the second request and response (Type=6), the server and
 peer exchange the public components of ECDH keys and nonces
 (PKs2,Ns2,PKp2,Np2). The server ECDH key MUST be fresh, i.e. not

https://datatracker.ietf.org/doc/html/rfc3748#section-7.2.1

Aura & Sethi Expires August 11, 2016 [Page 17]

Internet-Draft EAP-NOOB February 2016

 previously used with the same peer, and the client ECDH key SHOULD be
 fresh, i.e. not previously used.

 However, if the negotiated cryptosuite is the same as previously, the
 server MAY refuse to perform a new ECDH exchange by omitting PKs2,
 and the peer MAY refuse by omitting PKp2. If the server omits PKs2,
 it is RECOMMENDED that the peer also omits PKp2, as it will not be
 used in any case. When one or both public keys are not present, the
 new master keys are derived from the fresh nonces and the previously
 established shared key Kz, as defined in Section 3.5. The security
 property lost by refusing the ECDH exchange is forward secrecy.

 The server and client MAY send updated ServerInfo and PeerInfo
 objects in the Reconnect Exchange. If there is no update to the
 values, they SHOULD omit this information from the messages.

 Both sides MUST compare the received message authentication code with
 a locally computed value. If the EAP server finds that it has
 received the correct value of MACp2, the Reconnect Exchange ends in
 EAP-Success; otherwise, in EAP-Failure.

 After successful Reconnect Exchange, both the server and the peer
 move to the Registered (4) state. If a new ECHD key exchange was
 performed, they also update the persistent EAP-NOOB association with
 the changed values.

Aura & Sethi Expires August 11, 2016 [Page 18]

Internet-Draft EAP-NOOB February 2016

 EAP Peer EAP Server
 | |
 |<----------- EAP-Request/Identity -| |
 | |
 | |
 |------------ EAP-Response/Identity -------------->|
 | (NAI=PeerId+s3@eap-noob.net) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=5,PeerId,Cryptosuites,[ServerInfo]) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=5,PeerId,Cryptosuitep,[PeerInfo]) |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=6,PeerId,[PKs2,]Ns2,MACs2) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=6,PeerId,[PKp2,]Np2,MACp2) |
 | |
 | |
 |<----------- EAP-Success -------------------------|
 | |

 Figure 7: Reconnect Exchange

3.4.2. User reset

 As shown in the association state machine in Figure 1, the only
 specified way for the association to return from the Registered state
 (4) to the Unregistered state (0) is through user-initiated reset.
 After the reset, a new OOB message will be needed to establish a new
 association between the EAP server and peer. Typical situations in
 which the user reset is required are when the other side has
 accidentally lost the persistent EAP-NOOB association data, or when
 the peer device is decommissioned.

 The server could detect that the peer is in the Registered or
 Reconnecting state but the server itself is in one of the ephemeral
 states 0..2 (including situations where the server does not recognize
 the PeerId). In this case, effort should be made to recover the
 persistent server state, for example, from a backup storage -
 especially if many peer devices are similarly affected. If that is
 not possible, the EAP server SHOULD log the error or notify an

Aura & Sethi Expires August 11, 2016 [Page 19]

Internet-Draft EAP-NOOB February 2016

 administrator. The only way to continue from such a situation is by
 having the user reset the peer device.

 On the other hand, if the peer is in any of the ephemeral states
 0..2, including the Unregistered state, the server will treat the
 peer as a new peer device and allocate a new PeerId to it. The
 PeerInfo can be used by the administrator as a clue to which physical
 device has lost its state. However, there is no secure way of
 matching the "new" peer with the old PeerId without repeating the OOB
 step. This situation will be resolved when the user performs the OOB
 step and, thus, identifies the physical peer device. The server user
 interface SHOULD support situations where the "new" peer is actually
 a previously registered peer that has been reset by a user or has
 otherwise lost the persistent EAP-NOOB association data and needs to
 be merged with the old peer data in the server.

3.5. Key derivation

 The EAP output values MSK and EMSK are derived with the Elliptic
 Curve Diffie-Hellman (ECDH) algorithm. In the terminology of the
 NIST specification [NIST-DH], we use a C(2, 0, ECC CDH) scheme, i.e.
 two ephemeral keys and no static keys. The server and peer compute
 the ECDH shared secret Z as defined in section 6.1.2.2 and the secret
 keying material as defined in section 5.8.1 of the NIST
 specification. The hash function H for the Concatenation Key
 Derivation Function is taken from the negotiated cryptosuite.

 The Concatenation Key Derivation Function in the NIST specification
 requires some additional input: AlgorithmID, PartyUInfo, PartyVInfo,
 SuppPubInfo, and SuppPrivInfo. In EAP_NOOB, the AlgorithmID is the
 fixed-length 8-byte ASCII string "EAP-NOOB". When keys are derived
 in the Completion Exchange, PartyUInfo is the nonce Np as a 16-byte
 byte string, and PartyVInfo is the nonce Ns as a 16-byte byte string.
 SuppPubInfo is not allowed in EAP-NOOB; that is, it is not included
 in the input of the key derivation function. In the Completion
 Exchange, SuppPrivInfo is the nonce Noob as a 16-byte byte string.
 When keys are derived in the Reconnect Exchange, the key derivation
 process is the same except for the following differences: PartyUInfo
 is the nonce Np2 as a 16-byte byte string, and PartyVInfo is the
 nonce Ns2 as a 16-byte byte string, and neither SuppPubInfo nor
 SuppPrivInfo is allowed.

 After a successful Completion Exchange, the outputs of the EAP method
 are the following: MSK and EMSK are the bytes 0..63 and 64..127,
 respectively, of the output of the Concatenation Key Derivation
 Function. The 16-byte keys Kms and Kmp and the 32-byte key Kz used
 internally by EAP-NOOB for computing HMAC values are the bytes
 128..143, 144..159, and 160..191, respectively, of the output of the

Aura & Sethi Expires August 11, 2016 [Page 20]

Internet-Draft EAP-NOOB February 2016

 Concatenation Key Derivation Function. EAP server and peer store the
 values Kms, Kmp and Kz in the persistent EAP-NOOB association.

 After a successful Reconnect Exchange, there are two methods for
 deriving the new master keys. The first method is used when ECDH
 public keys were exchanged in the Reconnect Exchange. In this
 method, the outputs of the EAP method are the following: MSK and EMSK
 are the bytes 0..63 and 64..127, respectively, of the output of the
 Concatenation Key Derivation Function. The 32-byte key Kms2 is
 created by concatenating the stored 16-byte Kms value with the bytes
 128..143 of the output of the Concatenation Key Derivation Function.
 The 32-byte key Kmp2 is similarly created by concatenating the stored
 16-byte Kmp value with the bytes 144..159 of the output of the
 Concatenation Key Derivation Function. A new 32-byte key Kz is
 obtained by taking bytes 160..191 of the output of the Concatenation
 Key Derivation Function. EAP server and peer update the value of Kz
 in the persistent EAP-NOOB association.

 The second method is used when no ECDH public keys were exchanged in
 the Reconnect Exchange (or if only one party sent its public key).
 In this method, input Z to the Concatenation Key Derivation Function
 is replaced with the 32-byte key Kz from the persistent EAP-NOOB
 association. This method achieves rekeying without the computational
 cost of the ECDH exchange, but does not provide forward secrecy. In
 this second method, no updates are made to the persistent EAP-NOOB
 association.

3.6. Error handling

 Various error conditions in EAP-NOOB are handled by sending an error
 notification message (type=0) instead of the expected next EAP
 request or response message. Both the EAP server and the peer may
 send the error notification, as shown in Figure 8 and Figure 9.
 After sending or receiving an error notification, the server MUST
 send an EAP-Failure message. The notification MAY contain an
 ErrorInfo field, which is a UTF-8 encoded text string with a maximum
 length of 500 bytes. It is used for sending descriptive information
 about the error, which may be useful for logging and debugging.

Aura & Sethi Expires August 11, 2016 [Page 21]

Internet-Draft EAP-NOOB February 2016

 EAP Peer EAP Server

 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=0,[PeerId],ErrorCode,[ErrorInfo]) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

 Figure 8: Error notification from server to peer

 EAP Peer EAP Server

 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=0,[PeerId],ErrorCode,[ErrorInfo]) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

 Figure 9: Error notification from peer to server

3.6.1. Invalid messages

 If the NAI structure is invalid, the server SHOULD send the error
 code 1001 to the peer. The recipient of an EAP-NOOB request or
 response SHOULD send the following error codes back to the sender:
 1002 if it cannot parse the message as a JSON object or there are
 missing or unrecognized members in the JSON object; 1003 if a data
 field has an invalid value, such as an integer out of range; 1004 if
 the received message type was unexpected; 1005 if the PeerId has an
 unexpected value; and 1006 if the ECDH key is invalid.

3.6.2. Unwanted peer

 The preferred way for the EAP server to rate limit EAP-NOOB
 connections from a peer is to use the MinSleep parameter in the
 Waiting Exchange. However, if the EAP server receives repeated EAP-
 NOOB connections from a peer which apparently should not connect to
 this server, the server MAY indicate that the connections are
 unwanted by sending the error code 2001. The peer MAY refrain from
 reconnecting to the same EAP server and, if possible, both the EAP
 server and peer SHOULD indicate this error condition to the user.

Aura & Sethi Expires August 11, 2016 [Page 22]

Internet-Draft EAP-NOOB February 2016

 However, in order to avoid persistent denial-of-service, the peer is
 not required to stop entirely from reconnecting to the server.

3.6.3. State mismatch

 In the states indicated by "UA" in Figure 10 in Appendix A, user
 action is required to reset the association state or to recover it,
 for example, from backup storage. In those case, the server sends
 the error code 2002 to the peer. If possible, both the EAP server
 and peer SHOULD indicate this error condition to the user.

3.6.4. Negotiation failure

 If there is no matching protocol version, the peer sends the error
 code 3001 to the server. If there is no matching cryptosuite, the
 peer sends the error code 3002 to the server. If there is no
 matching OOB direction, the peer sends the error code 3003 to the
 server. In practice, there is no way of recovering from these errors
 without software or hardware changes. If possible, both the EAP
 server and peer SHOULD indicate these error conditions to the user.

3.6.5. Cryptographic verification failure

 If the EAP server or peer detect an unrecognized PeerId or incorrect
 fingerprint (Hoob) in the OOB message, the recipient SHOULD indicate
 the failure to accept the OOB message to the user. The recipient
 MUST remain in the Waiting for OOB state (1) as if no OOB message was
 received.

 Note that if the OOB message was delivered from the server to the
 peer and the peer does not recognize the PeerId, the likely cause is
 that the user has unintentionally delivered the OOB message to the
 wrong destination. If possible, the peer SHOULD indicate this to the
 user; however, the peer device may not have capability for many
 different error indications and it MAY use the same method or error
 indication as in the case of an incorrect fingerprint.

 The rationale for the above is that the invalid OOB message could
 have been presented to the recipient by mistake or intentionally by a
 malicious party and, thus, it should be ignored in the hope that the
 honest user will soon deliver a correct OOB message.

 If the EAP server or peer detects an incorrect message authentication
 code (MACs, MACp, MACs2, MACp2), it sends the error code 4001 to the
 other side. If this error occurred in the Completion Exchange, both
 sides must remain in the old state as if the failed Completion
 Exchange did not take place. On the other hand, if the error

Aura & Sethi Expires August 11, 2016 [Page 23]

Internet-Draft EAP-NOOB February 2016

 occurred in the Reconnect Exchange, both sides MUST go to the
 Reconnecting state (3).

 The rationale for the above is that the invalid cryptographic
 messages may have been spoofed by a malicious party and, thus, it
 should be ignored. In particular, a spoofed message on the network
 should not force the honest user to perform the OOB step again. In
 practice, however, the error may be caused by other failures, such as
 software errors. For this reason, the EAP server MAY limit the rate
 of peer connections after the above error. Also, there MUST be a way
 for the user to reset the EAP server and peer to the Unregistered
 state (0), so that the OOB step can be repeated.

4. IANA Considerations

 This section provides guidance to the Internet Assigned Numbers
 Authority (IANA) regarding registration of values related to the EAP-
 NOOB protocol, in accordance with [RFC2434].

 The EAP Method Type number for EAP-NOOB needs to be assigned.

 This memo also requires IANA to create new registries as defined in
 the following subsections.

4.1. Cryptosuites

 An EAP server MUST supply one or more suggestions for cryptosuites as
 the Cryptosuites value in the Initial Exchange. They are formatted
 as a JSON array of the identifier integers. Each suite MUST appear
 only once in the array. The cryptosuites MUST be supplied in order
 of priority. Peers MUST supply exactly one suite in the Cryptosuitep
 value, formatted as an identifier integer. The following suites are
 defined by EAP-NOOB:

 +-------------+---+
 | Cryptosuite | Algorithms |
 +-------------+---+
 | 1 | Curve25519 [RFC7748], SHA-256 [RFC6234] |
 +-------------+---+

 Table 2: EAP-NOOB cryptosuites

 Assignment of new values for new cryptosuites MUST be done through
 IANA with "Specification Required" and "IESG Approval" as defined in
 [RFC2434].

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc2434

Aura & Sethi Expires August 11, 2016 [Page 24]

Internet-Draft EAP-NOOB February 2016

4.2. Error codes

 The error codes defined by EAP-NOOB are listed in Table 3.

 +------------+--+
 | Error code | Purpose |
 +------------+--+
 | 1001 | Invalid NAI or peer state |
 | 1002 | Invalid message structure |
 | 1003 | Invalid data |
 | 1004 | Unexpected message type |
 | 1005 | Unexpected peer identifier |
 | 1006 | Invalid ECDH key |
 | 2001 | Unwanted peer |
 | 2002 | State mismatch, user action required |
 | 3001 | No mutually supported protocol version |
 | 3002 | No mutually supported cryptosuite |
 | 3003 | No mutually supported OOB direction |
 | 4001 | MAC verification failure |
 +------------+--+

 Table 3: EAP-NOOB error codes

 Assignment of new error codes MUST be done through IANA with
 "Specification Required" and "IESG Approval" as defined in [RFC2434].

4.3. Domain name reservation considerations

 "eap-noob.net" should be registered as a special-use domain. The
 considerations required by [RFC6761] for registering this special use
 domain name are as follows:

 o Users: Non-admin users are not expected to encounter this name or
 recognize it as special. AAA administrators may need to recognize
 the name.

 o Application Software: Application software is not expected to
 recognize this domain name as special.

 o Name Resolution APIs and Libraries: Name resolution APIs and
 libraries are not expected to recognize this domain name as
 special.

 o Caching DNS Servers: Caching servers are not expected to recognize
 this domain name as special.

 o Authoritative DNS Servers: Authoritative DNS servers MUST respond
 to queries for eap-noob.net with NXDOMAIN.

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc6761

Aura & Sethi Expires August 11, 2016 [Page 25]

Internet-Draft EAP-NOOB February 2016

 o DNS Server Operators: Except for the authoritative DNS server,
 there are no special requirements for the operators.

 o DNS Registries/Registrars: There are no special requirements for
 DNS registrars.

5. Security considerations

 EAP-NOOB is an authentication and key derivation protocol and, thus,
 security considerations can be found in most sections of this
 specification. In the following, we explain the protocol design and
 highlight some other special considerations.

5.1. Authentication principle

 The mutual authentication in EAP-NOOB is based on two separate
 features, both conveyed in the OOB message. The first authentication
 feature is the secret nonce Noob. The peer and server use this
 secret in the Completion Exchange to mutually authenticate the
 session key previously created with ECDH. The message authentication
 codes computed with the secret nonce Noob are alone sufficient for
 authenticating the key exchange. The OOB channel might, however, be
 vulnerable to eavesdropping of the OOB channel, which could lead to
 compromise of the secret nonce, which will then enable a man-in-the-
 middle attack on the in-band channel. This is why we include, as a
 second authentication feature, the integrity-protecting fingerprint
 Hoob in the OOB message. It is typically more difficult to spoof or
 alter messages on the human-assisted OOB channel, such as bar code,
 sound burst or user-transferred URL, than it is to spy on them.

 The security provided by the cryptographic fingerprint is somewhat
 intricate to understand. The party that receives the OOB message
 uses Hoob to verify the integrity of the ECDH exchange. Thus, that
 party can detect man-in-the-middle attacks on the in-band channel.
 The other party, however, is not equally protected because the OOB
 message and fingerprint are sent only in one direction. Some
 protection to the OOB sender is afforded by the fact that the user
 may notice the failure of the association at the OOB receiver and
 therefore reset the OOB sender. Indeed, other device-pairing
 protocols have solved a similar situation by requiring the user to
 confirm to the OOB sender that the association was accepted by the
 OOB-receiver, e.g. by pressing an "accept" button on the sender.
 Since EAP-NOOB was designed to work strictly with one-directional OOB
 communication, it does not rely on such input to the OOB sender.

 To summarize, EAP-NOOB uses the combined protection of the secret
 nonce Noob and the cryptographic fingerprint Hoob, both conveyed in
 the OOB message. The secret nonce Noob alone is sufficient for

Aura & Sethi Expires August 11, 2016 [Page 26]

Internet-Draft EAP-NOOB February 2016

 mutual authentication, unless the attacker can eavesdrop it from the
 OOB channel. If an attacker is able to eavesdrop the secret nonce
 and performs a man-in-the-middle attack on in-band channel, the
 mismatching fingerprint will alert the OOB receiver, which will
 reject the OOB message. In this case, the association will appear to
 be complete only on the OOB sender side. The user in many
 applications will detect this apparently one-sided association
 because the peer device does not appear registered on the server or
 network.

 The expected use cases for EAP-NOOB are ones where it replaces a
 user-entered access credentials. In wireless network access for IoT
 devices, the user-entered credential is often a passphrase, which is
 shared by all the network stations. Like any other EAP-based
 solution, EAP-NOOB establishes a different master secret for each
 peer device, which is obviously more resilient to device compromise
 than a common master secret. Additionally, it is possible to revoke
 the security association for an individual device on the server side.

 Forward secrecy in EAP-NOOB is optional. The Reconnect exchange in
 EAP-NOOB provides forward secrecy only if both the server and peer
 send their fresh ECDH keys. This allows both the server and the peer
 to limit the frequency of the costly computation that is required for
 forward secrecy. The server should make its decision primarily based
 on what it knows about the peer's computational capabilities.

5.2. Identifying and naming peer devices

 EAP-NOOB relies on physical possession or identification of the peer
 device and secure communication between the user and the server. The
 main remaining threat against EAP-NOOB is that the attacker performs
 a man-in-the-middle attack on the in-band channel and, during the
 protocol execution, tricks the user to deliver the OOB message to or
 from the wrong peer. The server will now be associated with that
 wrong peer. Similarly, the attacker could try to trick the user to
 accessing the wrong server in the OOB step. This reliance on user in
 identifying the correct parties is an inherent property of out-of-
 band authentication.

 One mechanism that can be used to mitigate user mistakes is
 certification of trusted servers and peer devices. For example, if
 used together with EAP-NOOB, vendor certificates could prevent
 accidental association with a rogue peer device. Compared to a fully
 certificate-based authentication, EAP-NOOB does not depend on trusted
 third parties and does not require the user to know the identifier of
 the peer device; physical access is sufficient.

Aura & Sethi Expires August 11, 2016 [Page 27]

Internet-Draft EAP-NOOB February 2016

 The user could also accidentally deliver the OOB message to more than
 one peer device. This could, for example, occur if the OOB message
 is a bar code and the peer is a camera: the user could by mistake
 show the bar code first to the wrong camera. Such accidents in EAP-
 NOOB will not enable the wrong camera to compute the master key or to
 opportunistically eavesdrop the communication. This is because the
 wrong peer device would need to have performed a man-in-the middle
 attack on the in-band channel before the accident. In comparison,
 simpler solutions where the master key is transferred to the device
 via the OOB channel would be vulnerable to opportunistic attacks if
 the user mistakenly delivers the master key to more than one device.

 After completion of EAP-NOOB, the server may store the PeerInfo data,
 and the user may use it to identify the peer and its properties, such
 as make and model or serial number. A compromised peer could lie
 about this information in the PeerInfo that it sends to the server.
 If the server stores any information about the peer, it is important
 that this information is approved by the user during or after the OOB
 step. Without rigorous user checking, the PeerInfo is not
 authenticated information and should not be relied on. Therefore, it
 is better to include only minimal information about the peer in
 PeerInfo and to ask the user to name the peer devices. In many
 applications, such as OOB authentication for ad-hoc wireless network
 access, it may be unnecessary to store any names for the peer device.
 Since the user delivering the OOB message will often communicate with
 the server over an authenticated channel, e.g. logging into a secure
 web page, the user identity and user-given name can in those cases be
 reliably stored for the peer device. It is these user identities and
 user-given names that should be later used for access control and
 revocation.

 Another reason to include only minimal information in the PeerInfo is
 potential privacy issues. The PeerInfo field is typically
 transmitted in plaintext between the peer and the authenticator.
 Although the PeerInfo sent by a new, unregistered device will not
 leak any information specifically about the user, it could reveal
 device identifiers and information about other device properties,
 which the user may want to avoid leaking at this point.

 The PeerId value in the protocol is a server-allocated identifier for
 its association with the peer and SHOULD NOT be shown to the user
 because its value is initially ephemeral. Since the PeerId is
 allocated by the server and the scope of the identifier is the single
 server, the so-called identifier squatting attacks, where a malicious
 peer could reserve another peer's identifier, are not possible in
 EAP-NOOB. The server SHOULD assign a random or pseudo-random PeerId
 to each new peer. It SHOULD NOT select the PeerId based on any peer

Aura & Sethi Expires August 11, 2016 [Page 28]

Internet-Draft EAP-NOOB February 2016

 characteristics that it may know, such as the peer's lower-layer
 address.

5.3. Downgrading threats

 The fingerprint Hoob protects all the information exchanged in the
 Initial Exchange, including the cryptosuite negotiation. The message
 authentication codes MACs and MACp also protect the same information.
 The message authentication codes MACs2 and MACp2 protect information
 exchanged during key renegotiation in the Reconnect Exchange. This
 prevents downgrade attacks to weaker cryptosuites as long as the
 possible attacks take more time than the maximum time allowed for the
 EAP-NOOB completion. This is typically the case for recently
 discovered cryptanalytic attacks.

 As an additional precaution, the EAP server and peer SHOULD check for
 downgrading attacks in the Reconnect Exchange. As long as the server
 or peer saves any information about the other party, it SHOULD also
 remember the previously negotiated cryptosuite and not accept
 renegotiation of any cryptosuite that is known to be weaker than the
 previous one (e.g. a deprecated cryptosuite or the same ECDH field
 with a shorter key).

 Integrity of the direction negotiation cannot be verified in the same
 way as the integrity of the cryptosuite negotiation. That is, if the
 OOB channel used in an application is critically insecure in one
 direction, a man-in-the-middle attacker could modify the negotiation
 messages and thereby cause that direction to be used. Applications
 that support OOB messages in both directions SHOULD therefore ensure
 that the OOB channel has sufficiently strong security in both
 directions. While this is a theoretical vulnerability, it could
 arise in practice if EAP-NOOB is deployed in unexpected applications.
 However, most devices acting as the peer are likely to support only
 one direction of exchange, in which case interfering with the
 direction negotiation can only prevent the completion of the
 protocol.

5.4. EAP security claims

 EAP security claims are defined in section 7.2.1 of [RFC3748]. EAP-
 NOOB makes the following security claims:

https://datatracker.ietf.org/doc/html/rfc3748#section-7.2.1

Aura & Sethi Expires August 11, 2016 [Page 29]

Internet-Draft EAP-NOOB February 2016

 +----------------+--+
 | Security | EAP-NOOB claim |
 | property | |
 +----------------+--+
Authentication	ECDH key exchange with out-of-band
mechanism	authentication
Protected	yes
cryptosuite	
negotiation	
Mutual	yes
authentication	
Integrity	yes
protection	
Replay	yes
protection	
Key derivation	yes
Key strength	The specified cryptosuites provide key strength
	of at least 128 bits.
Dictionary	not applicable
attack	
protection	
Fast reconnect	yes
Cryptographic	not applicable
binding	
Session	yes
independence	
Fragmentation	no (The largest EAP-NOOB packet is at most TBD
	bytes long.)
Channel	yes (The ServerInfo and PeerInfo can be used to
binding	convey integrity-protected channel properties
	such as peer MAC address.)
 +----------------+--+

 Table 4: Security claims

Aura & Sethi Expires August 11, 2016 [Page 30]

Internet-Draft EAP-NOOB February 2016

6. References

6.1. Normative references

 [IEEE-802.1X]
 Institute of Electrical and Electronics Engineers, "Local
 and Metropolitan Area Networks: Port-Based Network Access
 Control", IEEE Standard 802.1X-2004. , December 2004.

 [NIST-DH] Barker, E., Johnson, D., and M. Smid, "Recommendation for
 Pair-Wise Key Establishment Schemes Using Discrete
 Logarithm Cryptography", NIST Special Publication 800-56A
 Revision 1 , March 2007,
 <http://dx.doi.org/10.1145/2632048.2632049>.

 [RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform
 Resource Locators (URL)", RFC 1738, DOI 10.17487/RFC1738,
 December 1994, <http://www.rfc-editor.org/info/rfc1738>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <http://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 2434,
 DOI 10.17487/RFC2434, October 1998,
 <http://www.rfc-editor.org/info/rfc2434>.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <http://www.rfc-editor.org/info/rfc3748>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5216] Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
 Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216,
 March 2008, <http://www.rfc-editor.org/info/rfc5216>.

http://dx.doi.org/10.1145/2632048.2632049
https://datatracker.ietf.org/doc/html/rfc1738
http://www.rfc-editor.org/info/rfc1738
https://datatracker.ietf.org/doc/html/rfc2104
http://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2434
http://www.rfc-editor.org/info/rfc2434
https://datatracker.ietf.org/doc/html/rfc3748
http://www.rfc-editor.org/info/rfc3748
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5216
http://www.rfc-editor.org/info/rfc5216

Aura & Sethi Expires August 11, 2016 [Page 31]

Internet-Draft EAP-NOOB February 2016

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <http://www.rfc-editor.org/info/rfc6234>.

 [RFC6761] Cheshire, S. and M. Krochmal, "Special-Use Domain Names",
RFC 6761, DOI 10.17487/RFC6761, February 2013,

 <http://www.rfc-editor.org/info/rfc6761>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <http://www.rfc-editor.org/info/rfc7517>.

 [RFC7542] DeKok, A., "The Network Access Identifier", RFC 7542,
 DOI 10.17487/RFC7542, May 2015,
 <http://www.rfc-editor.org/info/rfc7542>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <http://www.rfc-editor.org/info/rfc7748>.

6.2. Informative references

 [Sethi14] Sethi, M., Oat, E., Di Francesco, M., and T. Aura, "Secure
 Bootstrapping of Cloud-Managed Ubiquitous Displays",
 Proceedings of ACM International Joint Conference on
 Pervasive and Ubiquitous Computing (UbiComp 2014), pp.
 739-750, Seattle, USA , September 2014,
 <http://dx.doi.org/10.1145/2632048.2632049>.

 [SimplePairing]
 Bluetooth, SIG, "Simple pairing whitepaper", Technical
 report , 2007.

https://datatracker.ietf.org/doc/html/rfc6234
http://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/rfc6761
http://www.rfc-editor.org/info/rfc6761
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7517
http://www.rfc-editor.org/info/rfc7517
https://datatracker.ietf.org/doc/html/rfc7542
http://www.rfc-editor.org/info/rfc7542
https://datatracker.ietf.org/doc/html/rfc7748
http://www.rfc-editor.org/info/rfc7748
http://dx.doi.org/10.1145/2632048.2632049

Aura & Sethi Expires August 11, 2016 [Page 32]

Internet-Draft EAP-NOOB February 2016

Appendix A. Exchanges and events per state

 Figure 10 shows how the EAP server chooses the exchange type
 depending on the server and peer states. The table also indicates
 other possible events that may lead to a state change. In the fields
 marked with asterisk (*), the direction of the OOB message is further
 limited by the negotiated OOB directions (Dirp). Therefore, these
 OOB events are not always possible. Additionally, user may reset the
 association state at the EAP server or peer at any time. The fields
 with "UA" indicate state combinations where user action is required
 to recover or reset the association state.

 +--------+--------------------------+-------------------------------+
 | pier state: Unregistered (0) |
 +--------+--------------------------+-------------------------------+
 | server | possible exchanges | next peer and |
 | state | and events | server states |
 +--------+--------------------------+-------------------------------+
0	Initial Exchange	both 1 (0 on error)
1	Initial Exchange	both 1 (0 on error)
2	Initial Exchange	both 1 (0 on error)
3	UA	affected side 0 or 3
4	UA	affected side 0 or 3
+--------+--------------------------+-------------------------------+		
pier state: Waiting for OOB (1)		
+--------+--------------------------+-------------------------------+		
0	Initial Exchange	both 1 (0 on error)
1	Waiting Exchange	both 1
	OOB from server to peer*	peer 2 (1 on failure)
	OOB from peer to server*	server 2 (1 on failure)
2	Completion Exchange	both 4 (no change on failure)
	OOB from server to peer*	peer 2 (1 on failure)
3	UA	affected side 0 or 3
4	UA	affected side 0 or 3
+--------+--------------------------+-------------------------------+		
pier state: OOB Received (2)		
+--------+--------------------------+-------------------------------+		
0	Initial Exchange	both 1 (0 on error)

Aura & Sethi Expires August 11, 2016 [Page 33]

Internet-Draft EAP-NOOB February 2016

1	Completion Exchange	both 4 (no change on failure)
	OOB from peer to server*	server 2 (1 on failure)
2	Completion Exchange	both 4 (no change on failure)
3	UA	affected side 0 or 3
4	UA	affected side 0 or 3
+--------+--------------------------+-------------------------------+		
pier state: Reconnecting (3)		
+--------+--------------------------+-------------------------------+		
0	UA	affected side 0 or 3
1	UA	affected side 0 or 3
2	UA	affected side 0 or 3
3	Reconnect Exchange	both 4 (3 on failure)
4	Reconnect Exchange	both 4 (3 on failure)
+--------+--------------------------+-------------------------------+		
pier state: Registered (4)		
+--------+--------------------------+-------------------------------+		
0	UA	affected side 0 or 3
1	UA	affected side 0 or 3
2	UA	affected side 0 or 3
3	Reconnect Exchange	both 4 (3 on failure)
4	Timeout/Failure	one or both 3
	UA	affected side 0 or 3
 +--------+--------------------------+-------------------------------+

 Figure 10: Exchanges and events possible in each state

Appendix B. TODO list

 o Check maximum lengths of all messages to ensure no fragmentation.

 o Update Kms and Kmp in the persistent EAP_NOOb association after
 ECDH rekeying. This will add to security but is somewhat tricky.

 o Clarify the relation of Unregistered state and no association
 stored.

Aura & Sethi Expires August 11, 2016 [Page 34]

Internet-Draft EAP-NOOB February 2016

 o Consider less disruptive ways for handling protocol errors in
 state 1, compared to the current solution of returning to state 0.

 o Add examples of all exchanges and messages.

Authors' Addresses

 Tuomas Aura
 Aalto University
 Aalto 00076
 Finland

 EMail: tuomas.aura@aalto.fi

 Mohit Sethi
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: mohit@piuha.net

Aura & Sethi Expires August 11, 2016 [Page 35]

