
Network Working Group T. Aura
Internet-Draft Aalto University
Intended status: Standards Track M. Sethi
Expires: November 25, 2017 Ericsson
 May 24, 2017

Nimble out-of-band authentication for EAP (EAP-NOOB)
draft-aura-eap-noob-02

Abstract

 Extensible Authentication Protocol (EAP) provides support for
 multiple authentication methods. This document defines the EAP-NOOB
 authentication method for nimble out-of-band (OOB) authentication and
 key derivation. This EAP method is intended for bootstrapping all
 kinds of Internet-of-Things (IoT) devices that have a minimal user
 interface and no pre-configured authentication credentials. The
 method makes use of a user-assisted one-directional OOB channel
 between the peer device and authentication server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 25, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Aura & Sethi Expires November 25, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft EAP-NOOB May 2017

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. EAP-NOOB protocol . 4
3.1. Protocol overview . 4
3.2. Protocol messages and sequences 8
3.2.1. Initial Exchange 8
3.2.2. OOB Step . 10
3.2.3. Completion Exchange 12
3.2.4. Waiting Exchange 13

3.3. Message data fields 15
3.4. Fast reconnect and rekeying 20
3.4.1. Persistent EAP-NOOB association 20
3.4.2. Reconnect Exchange 21
3.4.3. User reset . 23

3.5. Key derivation . 24
3.6. Error handling . 26
3.6.1. Invalid messages 27
3.6.2. Unwanted peer . 28
3.6.3. State mismatch 28
3.6.4. Negotiation failure 28
3.6.5. Cryptographic verification failure 28
3.6.6. Application-specific failure 29

4. IANA Considerations . 29
4.1. Cryptosuites . 30
4.2. Error codes . 30
4.3. Domain name reservation considerations 31

5. Security considerations 32
5.1. Authentication principle 32
5.2. Identifying and naming peer devices 33
5.3. Downgrading threats 35
5.4. EAP security claims 36

6. References . 38
6.1. Normative references 38
6.2. Informative references 39

Appendix A. Exchanges and events per state 40
Appendix B. Application-specific parameters 41
Appendix C. EAP-NOOB Roaming 42
Appendix D. OOB message as URL 43
Appendix E. Example messages 43
Appendix F. Version history 46

 Authors' Addresses . 47

Aura & Sethi Expires November 25, 2017 [Page 2]

Internet-Draft EAP-NOOB May 2017

1. Introduction

 This document describes a method for registration, authentication and
 key derivation for network-connected ubiquitous computing devices,
 such as consumer and enterprise appliances that are part of the
 Internet of Things (IoT). These devices may be off-the-shelf
 hardware that is sold and distributed without any prior registration
 or credential-provisioning process. Thus, the device registration in
 a server database, ownership of the device, and the authentication
 credentials for both network access and application-level security
 must all be established at the time of the device deployment.
 Furthermore, many such devices have only limited user interfaces that
 could be used for their configuration. Often, the interfaces are
 limited to either only input (e.g. camera) or output (e.g. display
 screen). The device configuration is made more challenging by the
 fact that the devices may exist in large numbers and may have to be
 deployed or re-configured nimbly based on user needs.

 More specifically, the devices may have the following
 characteristics:

 o no pre-established relation with a specific server or user,

 o no pre-provisioned device identifier or authentication
 credentials,

 o limited user interface and configuration capabilities.

 Many proprietary OOB configuration methods exits for specific IoT
 devices. The goal of this specification is to provide an open
 standard and a generic protocol for bootstrapping the security of
 network-connected appliances, such as displays, printers, speakers,
 and cameras. The security bootstrapping in this specification makes
 use of a user-assisted out-of-band (OOB) channel. The security is
 based on the assumption that attackers are not able to observe or
 modify the messages conveyed through the OOB channel. We follow the
 common approach of performing a Diffie-Hellman key exchange over the
 insecure network and authenticating the established key with the help
 of the OOB channel in order to prevent man-in-the-middle (MitM)
 attacks.

 The solution presented here is intended for devices that have either
 an input or output interface, such as a camera or display screen,
 which is able to send or receive dynamically generated messages of
 tens of bytes in length. Naturally, this solution may not be
 appropriate for very small sensors or actuators that have no user
 interface at all. We also assume that the OOB channel is at least
 partly automated (e.g. camera scanning a bar code) and, thus, there

Aura & Sethi Expires November 25, 2017 [Page 3]

Internet-Draft EAP-NOOB May 2017

 is no need to absolutely minimize the length of the data transferred
 through the OOB channel. This differs, for example, from Bluetooth
 simple pairing [SimplePairing], where it is critical to minimize the
 length of the manually transferred or compared codes. Since the OOB
 messages are dynamically generated, we do not support static printed
 registration codes. This also prevents attacks where a static secret
 code would be leaked.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In addition, this document frequently uses the following terms as
 they have been defined in [RFC5216]:

 authenticator The entity initiating EAP authentication.

 peer The entity that responds to the authenticator. In
 [IEEE-802.1X], this entity is known as the supplicant.

 server The entity that terminates the EAP authentication method with
 the peer. In the case where no backend authentication server
 is used, the EAP server is part of the authenticator. In the
 case where the authenticator operates in pass-through mode, the
 EAP server is located on the backend authentication server.

3. EAP-NOOB protocol

 This section defines the EAP-NOOB protocol. The protocol is a
 generalized version of the original idea presented by Sethi et al.
 [Sethi14].

3.1. Protocol overview

 One EAP-NOOB protocol execution spans multiple EAP exchanges. This
 is necessary to leave time for the OOB message to be delivered, as
 will be explained below.

 The overall protocol starts with the Initial Exchange, in which the
 server allocates an identifier to the peer, and the server and peer
 negotiate the protocol version and cryptosuite (i.e. cryptographic
 algorithm suite), exchange nonces and perform an Elliptic Curve
 Diffie-Hellman (ECDH) key exchange. The user-assisted OOB Step then
 takes place. This step involves only one out-of-band message either
 from the peer to the server or from the server to the peer. While
 waiting for the OOB Step action, the peer MAY probe the server by

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5216

Aura & Sethi Expires November 25, 2017 [Page 4]

Internet-Draft EAP-NOOB May 2017

 reconnecting to it with EAP-NOOB. If the OOB Step has already taken
 place, the probe leads to the Completion Exchange, which completes
 the mutual authentication and key confirmation. On the other hand,
 if the OOB Step has not yet taken place, the probe leads to the
 Waiting Exchange, and the peer will perform another probe after a
 server-defined minimum waiting time. The Initial Exchange and
 Waiting Exchange always end in EAP-Failure, while the Completion
 Exchange may result in EAP-Success. Once the peer and server have
 performed a successful Completion Exchange, both parties store the
 created association in persistent storage, and the OOB Step is not
 repeated. Thereafter, creation of new temporal keys, ECDH rekeying,
 and updates of cryptographic algorithms can be achieved with the
 Reconnect Exchange.

Aura & Sethi Expires November 25, 2017 [Page 5]

Internet-Draft EAP-NOOB May 2017

 OOB Output, Initial Exchange,
 or Waiting Exchange
 .-----.
 | v
 .------------------. Initial .------------------.
 | | Exchange | |
 .->| 0. Unregistered |---------------->|1. Waiting for OOB|
 | | | | |
 | '------------------' '------------------'
 | | | ^
 User Reset Completion | | |
 | Exchange | OOB Initial
 |<-------. .<------------------------' Input Exchange
 | | | | |
 | | v v |
 | .------------------. Completion .------------------.
 | | | Exchange | |
 | | 4. Registered |<----------------| 2. OOB Received |
 | | | | |
 | '------------------' '------------------'
 | | ^
 | | |
 | Timeout / Reconnect
 | Failure Exchange
 | | |
 | v |
 | .-----------------.
 | | |
 '--| 3. Reconnecting |
 | |
 '-----------------'

 Figure 1: EAP-NOOB server-peer association state machine

 Figure 1 shows the association state machine, which is the same for
 the server and for the peer. When the client initiates the EAP-NOOB
 method, the server chooses the ensuing message exchange based on the
 combination of the server and peer states. The EAP server and peer
 are initially in the Unregistered state, in which no state
 information needs to be stored. Before a successful Completion
 Exchange, the server-peer association state is ephemeral in both the
 server and peer (ephemeral states 0..2) , and either party may cause
 the protocol to fall back to the Initial Exchange. After the
 Completion Exchange has resulted in EAP-Success, the association
 state becomes persistent (persistent states 3..4), and only user
 reset or memory failure can cause the return of the server or the
 peer to the ephemeral states and to the Initial Exchange.

Aura & Sethi Expires November 25, 2017 [Page 6]

Internet-Draft EAP-NOOB May 2017

 The server MUST NOT repeat the OOB Step with the same peer except if
 the association with the peer is explicitly reset by the user or lost
 due to failure of the persistent storage in the server. In
 particular, once the association has entered the Registered state,
 the server MUST NOT delete the association or go back to states 0-2
 without explicit user approval. Similarly, the peer MUST NOT repeat
 the OOB Step unless the user explicitly deletes the association with
 the server or resets the peer to the Unregistered state. The server
 and peer MAY implement user reset of the association by deleting the
 state data from that endpoint. If they continue to store data about
 the association after the user reset, their behavior SHOULD be
 equivalent to having deleted the association data.

 It can happen that the peer accidentally or through user reset loses
 its persistent state and reconnects to the server without a
 previously allocated peer identifier. In that case, the server MUST
 treat the peer as a new peer. The server MAY use auxiliary
 information, such as the PeerInfo field received in the Initial
 Exchange, to detect such multiple association of the same peer.
 However, it MUST NOT delete or merge redundant associations without
 user or application approval because EAP-NOOB internally has no
 secure way of verifying that the two peers are the same physical
 device. Similarly, the server might lose the association state
 because of a memory failure or user reset. In that case, the only
 way to recover is that the user resets also the peer.

 A special feature of the EAP-NOOB method is that the server is not
 assumed to have any a-priori knowledge of the peer. Therefore, the
 peer initially uses the generic identity string "noob@eap-noob.net"
 as the NAI. The server then allocates a server-specific identifier
 to the peer. After that, the network access identifier NAI is a
 concatenation of the server-allocated peer identifier and the generic
 suffix "@eap-noob.net". This suffix serves two purposes: firstly, it
 tells the server that the peer supports and expects the EAP-NOOB
 method and, secondly, it allows routing of the EAP-NOOB sessions to a
 specific authentication server in the AAA architecture.

 EAP-NOOB is an unusual EAP method in that the peer has to connect to
 the server two or more times before it can receive EAP-Success. The
 reason is that, while EAP allows delays between the request-response
 pairs, e.g. for repeated password entry, the user delays in OOB
 authentication can be much longer than in password trials. In
 particular, EAP-NOOB supports also peers with no input capability in
 the user interface. Since these output-only devices cannot be told
 to perform the protocol at the right moment, they have to perform the
 initial exchange opportunistically and hope for the OOB Step to take
 place within a timeout period (NoobTimeout), which is why the timeout
 needs to be several minutes rather than seconds. For example,

Aura & Sethi Expires November 25, 2017 [Page 7]

Internet-Draft EAP-NOOB May 2017

 consider a printer (peer) from which the OOB message is printed as a
 bar code on paper and then scanned with a camera phone and
 communicated to the server. To support such devices and slow OOB
 channels, the peer in EAP-NOOB first contacts the server in the
 Initial Exchange, then disconnects for some time, and later continues
 with the Waiting and Completion Exchanges.

3.2. Protocol messages and sequences

 This section defines the EAP-NOOB exchanges. The protocol messages
 communicated and the data members in each message are listed in the
 diagrams below.

 Each EAP-NOOB exchange begins with the authenticator sending an EAP-
 Request/Identity packet to the peer. From this point on, the EAP
 conversation occurs between the server and the peer, and the
 authenticator acts as a pass-through device. The peer responds to
 the authenticator with an EAP-Response/Identity packet, containing
 the network access identifier (NAI). The peer MUST compose the NAI
 as defined in Section 3.3. Essentially, if the peer has no previous
 peer identifier (PeerId), it uses the fixed NAI string "noob@eap-
 noob.net", and if it has received a PeerId from the server, it
 creates the NAI by concatenating the PeerId, a state indicator "+sX",
 and the fixed suffix string "@eap-noob.net".

 After receiving the NAI, the server chooses the EAP-NOOB exchange,
 i.e. the ensuing message sequence, based on the combination of the
 client and server states. The client recognizes the exchange based
 on the message type field (Type) of the EAP-NOOB request received
 from the server. The available exchanges are defined in the
 following subsections. Each exchange comprises one or two EAP
 requests-response pairs and ends in either EAP-Failure, indicating
 that authentication is not (yet) successful, or in EAP-Success.

3.2.1. Initial Exchange

 Upon receiving the EAP-Response/Identity from the peer, if either the
 peer or the server is in the Unregistered (0) state and the other is
 in one of the ephemeral states (0..2), the server chooses the Initial
 Exchange.

 The Initial Exchange comprises two EAP-NOOB request-response pairs,
 one for version, algorithm and parameter negotiation and the other
 for the ECDH key exchange. The first EAP-NOOB request (Type=1) from
 the server contains a newly allocated PeerId for the peer and an
 optional Realm. The server allocates a new PeerId in the Initial
 Exchange regardless of any old PeerId in the username part of the
 received NAI. The server also sends in the request a list of

Aura & Sethi Expires November 25, 2017 [Page 8]

Internet-Draft EAP-NOOB May 2017

 protocol versions supported (Vers), cryptosuites (Cryptosuites), an
 indicator of the OOB channel directions supported by the server
 (Dirs), and a ServerInfo object. The peer chooses one of the
 versions and cryptosuites. The peer sends a response (Type=1) with
 the selected protocol version (Verp), the received PeerId, the
 selected cryptosuite (Cryptosuitep), an indicator of the OOB channel
 directions selected by the peer (Dirp), and a PeerInfo object. In
 the second EAP-NOOB request and response (Type=2), the server and
 peer exchange the public components of their ECDH keys and nonces
 (PKs,Ns,PKp,Np). The ECDH keys MUST be based on the negotiated
 cryptosuite. The Initial Exchange ends with EAP-Failure from the
 server because the authentication cannot yet be completed.

 The server MAY assign a realm to the peer by sending the optional
 Realm field in the Initial Exchange. In that case, the peer MUST use
 the assigned Realm (together with the allocated PeerId) to construct
 the NAI for the following Waiting, Completion, and Reconnect
 Exchanges with the server. The peer MUST remember the assigned
 values until a new Initial Exchange or return to Unregistered state.
 Some Authenticators or AAA servers use the assigned Realm to
 determine client-specific connection parameters, such as isolating
 the peer to a specific VLAN.

Aura & Sethi Expires November 25, 2017 [Page 9]

Internet-Draft EAP-NOOB May 2017

 EAP Peer EAP Server
 | |
 |<----------- EAP-Request/Identity -| |
 | |
 | |
 |------------ EAP-Response/Identity -------------->|
 | (NAI=noob|PeerId+sX@eap-noob.net) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=1,Vers,PeerId,[Realm], |
 | Cryptosuites,Dirs,ServerInfo) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=1,Verp,PeerId,Cryptosuitep, |
 | Dirp,PeerInfo) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=2,PeerId,PKs,Ns,[SleepTime]) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=2,PeerId,PKp,Np) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

 Figure 2: Initial Exchange

 At the conclusion of the Initial Exchange, both the server and the
 peer move to the Waiting for OOB (1) state.

3.2.2. OOB Step

 The OOB Step, shown as OOB Output and OOB Input in Figure 1, takes
 place after the Initial Exchange. Depending on the direction
 negotiated, the peer or the server outputs the OOB message containing
 the PeerId, the secret nonce Noob, and the cryptographic fingerprint
 Hoob, as defined in Section 3.3. This message is then delivered to
 the other party via a user-assisted OOB channel. The details of the
 OOB channel are defined by the application.

 The receiver of the OOB message MUST compare the received value of
 the fingerprint Hoob with a value that it computes locally, and it

Aura & Sethi Expires November 25, 2017 [Page 10]

Internet-Draft EAP-NOOB May 2017

 MUST reject OOB messages with invalid Hoob. For usability reasons,
 the receiver SHOULD indicate the acceptance or rejection of the OOB
 message to the user. The receiver SHOULD reject invalid OOB messages
 without changing its state, until an application-specific number of
 invalid messages (OobRetries) has been reached, after which the
 receiver SHOULD consider it an error and go back to the Unregistered
 (0) state.

 The server or peer MAY send multiple OOB messages with different Noob
 values while in the Waiting for OOB (1) state. The sender SHOULD
 remember the Noob values until they expire and accept any one of them
 in the following Completion Exchange. The Noob values sent by the
 server expire after an application-dependent timeout (NoobTimeout),
 and the server MUST NOT accept Noob values older than that in the
 Completion Exchange. The RECOMMENDED value for NoobTimeout is 3600
 seconds if there are no application-specific reasons for making it
 shorter or longer. The Noob values sent by the peer expire as
 defined in Section 3.2.4.

 The sender will typically generate a new Noob, and therefore a new
 OOB message, at constant intervals (NoobInterval). The RECOMMENDED
 interval is NoobInterval = NoobTimeout / 2, so that the two latest
 values are always accepted. However, the timing of the Noob
 generation may also be based on user interaction or on implementation
 considerations.

 Even though not recommended (see Section 3.3), this specification
 allows both directions to be negotiated (Dirp=3) for the OOB channel.
 In this case, both sides SHOULD output the OOB message, and it is up
 to the user to deliver one of them.

 EAP Peer EAP Server
 | |
 |=================OOB=============================>|
 | (PeerId,Noob,Hoob) |
 | |

 Figure 3: OOB Step, from peer to EAP server

Aura & Sethi Expires November 25, 2017 [Page 11]

Internet-Draft EAP-NOOB May 2017

 EAP Peer EAP Server
 | |
 |<================OOB==============================|
 | (PeerId,Noob,Hoob) |
 | |

 Figure 4: OOB Step, from EAP server to peer

3.2.3. Completion Exchange

 After the Initial Exchange, if both the server and the peer support
 the peer-to-server direction for the OOB channel, the peer SHOULD
 initiate the EAP-NOOB method again after an applications-specific
 waiting time in order to probe for completion of the OOB Step. Also,
 if both sides support the server-to-peer direction of the OOB
 exchange and the peer receives the OOB message, it SHOULD initiate
 the EAP-NOOB method immediately. Once the server receives the EAP-
 Response/Identity, if one of the server and peer is in the OOB
 Received (2) state and the other is either in the Waiting for OOB (1)
 or OOB Received (2) state, the OOB Step has taken place and the
 server SHOULD continue with the Completion Exchange.

 The Completion Exchange comprises one or two EAP-NOOB request-
 response pairs. If the peer is in the Waiting for OOB (1) state, the
 OOB message has been sent in the peer-to-server direction. In that
 case, only one request-response pair (Type=4) takes place. In the
 request, the server sends the NoobId value, which the peer uses to
 identify the exact OOB message received by the server. On the other
 hand, if the peer is in the OOB Received (2) state, the direction of
 the OOB message is from server to peer. In that case, two request-
 response pairs (Type=8 and Type=4) are needed. With the first
 request, the server discovers NoobId, which identifies the exact OOB
 message received by the peer. The server returns the same NoobId to
 the peer in the latter request.

 In the last and sometimes only request-response pair (Type=4) of the
 Completion Exchange, the server and peer exchange message
 authentication codes. Both sides MUST compute the keys Kms and Kmp
 as defined in Section 3.5 and the message authentication codes MACs
 and MACp as defined in Section 3.3. Both sides MUST compare the
 received message authentication code with a locally computed value.
 If the EAP server finds that it has received the correct value of
 MACp, the Completion Exchange ends in EAP-Success; otherwise, in EAP-
 Failure.

 While it is not expected to occur in practice, poor user interface
 design could lead to two OOB messages delivered simultaneously, one

Aura & Sethi Expires November 25, 2017 [Page 12]

Internet-Draft EAP-NOOB May 2017

 from the peer to the server and the other from the server to the
 peer. The server detects this event by observing that both the
 server and peer are in the OOB Received state (2). In that case, the
 server MUST behave as if only the server-to-peer message was
 delivered.

 After successful Completion Exchange, both the server and the peer
 move to the Registered (4) state. They also derive the output key
 material and store the persistent association state as defined in

Section 3.4 and Section 3.5.

 EAP Peer EAP Server
 | |
 |<----------- EAP-Request/Identity -| |
 | |
 | |
 |------------ EAP-Response/Identity -------------->|
 | (NAI=PeerId+sX@eap-noob.net) |
 | |
 | |
 |<----------- [EAP-Request/EAP-NOOB] ------------|
 | (Type=8,PeerId) |
 | |
 | |
 |------------ [EAP-Response/EAP-NOOB] ---------->|
 | (Type=8,PeerId,NoobId) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=4,PeerId,NoobId,MACs) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=4,PeerId,MACp) |
 | |
 | |
 |<----------- EAP-Success -------------------------|
 | |

 Figure 5: Completion Exchange

3.2.4. Waiting Exchange

 As explained in Section 3.2.3, the peer SHOULD probe the server for
 completion of the OOB Step. If both the server and client states are
 Waiting for OOB (1), the server will continue with the Waiting

Aura & Sethi Expires November 25, 2017 [Page 13]

Internet-Draft EAP-NOOB May 2017

 Exchange (message Type=3). The main purpose of this exchange is to
 indicate to the peer that the server has not yet received a peer-to-
 server OOB message.

 In order to limit the rate at which peers probe the server, the
 server MAY send to the peer either in the Initial Exchange or Waiting
 Exchange a minimum time to wait before probing the server again. A
 peer that has not received an OOB message MUST wait at least the
 server-specified minimum waiting time in seconds (SleepTime) before
 initiating EAP again with the same server. The peer uses the latest
 SleepTime value that it has received in or after the Initial
 Exchange. If the server has not sent any SleepTime value, the peer
 SHOULD wait for an application-specified minimum time.

 After the Waiting Exchange, the peer MUST discard Noob values that it
 has sent to the server in OOB messages that are older than the
 application-defined timeout NoobTimeout (see Section 3.2.2). The
 peer SHOULD discard such expired Noob values even if the probing
 failed, e.g. because of failure to connect to the EAP server or
 incorrect MAC. The timeout of Noob values is defined like this in
 order to allow the peer to probe the server once after it has waited
 for the server-specified SleepTime.

 If the server and peer have negotiated to use only the server-to-peer
 direction for the OOB channel (Dirp=2), the peer SHOULD nevertheless
 probe the server. The purpose of this is to keep the server informed
 about the peers that are still waiting for OOB messages. The server
 MAY set SleepTime to a high number (3600) to prevent the peer from
 probing the server frequently.

Aura & Sethi Expires November 25, 2017 [Page 14]

Internet-Draft EAP-NOOB May 2017

 EAP Peer EAP Server
 | |
 |<----------- EAP-Request/Identity -| |
 | |
 | |
 |------------ EAP-Response/Identity -------------->|
 | (NAI=PeerId+s1@eap-noob.net) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=3,PeerId,[SleepTime]) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=3,PeerId) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

 Figure 6: Waiting Exchange

3.3. Message data fields

 Table 1 defines the data fields in the protocol messages. The in-
 band messages are formatted as JSON objects [RFC7159] in UTF-8
 encoding. The JSON member names are in the left-hand column of
 table.

 +------------------+--+
 | Data field | Description |
 +------------------+--+
Vers,Verp	EAP-NOOB protocol versions supported by the
	EAP server, and the protocol version chosen by
	the peer. Vers is a JSON array of unsigned
	integers, and Verp is an unsigned integer.
	Currently, the only defined values are "[1]"
	and "1", respectively.
PeerId	Peer identifier. If the peer does not yet have
	a peer identifier or it does not remember one,
	it uses the NAI "noob@eap-noob.net" in the
	Initial Exchange. The server then assigns an
	identifier to the peer and sends it in the
	first server-to-peer request of the Initial
	Exchange. The assigned identifier is ephemeral
	until a successful Completion Exchange takes

https://datatracker.ietf.org/doc/html/rfc7159

Aura & Sethi Expires November 25, 2017 [Page 15]

Internet-Draft EAP-NOOB May 2017

	place. Thereafter, the peer identifier becomes
	permanent until the user resets the peer and
	the server. Resetting the server means
	deleting the association for the peer from the
	server database. The peer identifier MUST
	follow the syntax of the utf8-username
	specified in [RFC7542]; however, it MUST NOT
	exceed 60 bytes in length and MUST NOT contain
	the character '+'. The server MUST generate
	the identifiers in such a way that they do not
	repeat and cannot be guessed by the peer or
	third parties beforehand. One way to generate
	the identifiers is to choose a random 16-byte
	identifier and base64url encode it into a
	22-character string. Another way to generate
	the identifiers is to choose a random
	22-character alphanumeric string.
Realm	Peer realm. The server may assign a realm to
	the peer. Peer then uses this value as the
	realm part of its NAI. The realm value MUST
	follow the syntax of the uft8-realm specified
	in [RFC7542].
Peer State "+sX"	This part of the NAI informs the server about
	the peer state. The server uses this
	information together with the server state to
	decide on the type of the exchange and, thus,
	of the type of the next EAP-Request. The peer
	appends the peer state to the PeerId to form
	the username part of the NAI. (Sending it in
	the EAP-Response/Identity message avoids an
	additional round trip for querying the peer
	state.) If the peer is in state 0, it MUST use
	the NAI "noob@eap-noob.net"; otherwise, the
	peer MUST create the NAI as the concatenation
	of the PeerId, the string "+s", a single digit
	indicating the state of the peer, and the
	string "@eap-noob.net".
Type	EAP-NOOB message type. The type is an integer
	in the range 0..8. EAP-NOOB requests and the
	corresponding responses share the same type
	value.
PKs, PKp	The public components of the ECDH keys of the
	server and peer. PKs and PKp are sent in the
	JSON Web Key (JWK) format [RFC7517].

https://datatracker.ietf.org/doc/html/rfc7542
https://datatracker.ietf.org/doc/html/rfc7542
https://datatracker.ietf.org/doc/html/rfc7517

Aura & Sethi Expires November 25, 2017 [Page 16]

Internet-Draft EAP-NOOB May 2017

Cryptosuites,	The identifiers of cryptosuites supported by
Cryptosuitep	the server and of the cryptosuite selected by
	the peer. The format is specified in Section
	4.1.
Dirs, Dirp	OOB channel directions supported by the server
	and ones selected by the peer. The possible
	values are 1=peer-to-server, 2=server-to-peer,
	3=both directions. Endpoints that are general-
	purpose computers or online services SHOULD
	support both directions. IoT devices with a
	limited user interface will mostly support
	only one direction. If the negotiated value is
	3, the user may be presented with two OOB
	messages, one for each direction, even though
	the user needs to deliver only one of them.
	Since this can be confusing to the user, it is
	RECOMMENDED that the peer selects Dirp value 1
	or 2. The EAP-NOOB protocol itself is designed
	to cope also with selected value 3, in which
	case it uses the first delivered OOB message.
	In the unlikely case of simultaneously
	delivered OOB messages, the protocol
	prioritizes the server-to-peer direction.
Ns, Np	32-byte nonces for the Initial Exchange.
ServerInfo	This field contains information about the
	server to be passed from the EAP method to the
	application layer in the peer. The information
	is specific to the application and it is
	encoded as a JSON object of at most 500 bytes.
	It could include, for example, the network
	name and server name or a Uniform Resource
	Locator (URL) [RFC4266] or some other
	information that helps the user to deliver the
	OOB message to the server through the out-of-
	band channel.
PeerInfo	This field contains information about the peer
	to be passed from the EAP method to the
	application layer in the server. The
	information is specific to the application and
	it is encoded as a JSON object of at most 500
	bytes. It could include, for example, the peer
	make, model and serial number that helps the
	user to distinguish between devices and to

https://datatracker.ietf.org/doc/html/rfc4266

Aura & Sethi Expires November 25, 2017 [Page 17]

Internet-Draft EAP-NOOB May 2017

	deliver the OOB message to the correct peer
	through the out-of-band channel.
SleepTime	The number of seconds for which peer MUST NOT
	start a new execution of the EAP-NOOB method
	with the authenticator, unless the peer
	receives the OOB message or it is reset by the
	user. The server can use this field to limit
	the rate at which peers probe it. SleepTime is
	an unsigned integer in the range 0..3600.
Noob	16-byte secret nonce sent through the OOB
	channel and used for the session key
	derivation. The party that received the OOB
	message uses this secret in the Completion
	Exchange to authenticate the exchanged key to
	the party that sent the OOB message.
Hoob	32-byte cryptographic fingerprint (i.e. hash
	value) computed from all the parameters
	exchanged in the Initial Exchange and in the
	OOB message. Receiving this fingerprint over
	the OOB channel guarantees the integrity of
	the key exchange and parameter negotiation.
	Hence, it authenticates the exchanged key to
	the party that receives the OOB message.
NoobId	16-byte identifier for the OOB message,
	computed with a one-way function from the
	nonce Noob.
Ns2, Np2	32-byte Nonces for the Reconnect Exchange.
MACs, MACp	Message authentication codes for mutual
	authentication, key confirmation, and
	integrity check on the exchanged information.
	The input to the HMAC is defined below, and
	the key for the HMAC is defined in Section
	3.5.
PKs2, PKp2	The public components of the ECDH keys of the
	server and peer. These MUST be present if a
	new cryptosuite was negotiated. Otherwise,
	either party may omit the field. PKs2 and PKp2
	are sent in the JSON Web Key (JWK) format
	[RFC7517].
MACs2, MACp2	Message authentication codes for mutual

https://datatracker.ietf.org/doc/html/rfc7517

Aura & Sethi Expires November 25, 2017 [Page 18]

Internet-Draft EAP-NOOB May 2017

	authentication, key confirmation, and
	integrity check on the Reconnect Exchange. The
	input to the HMAC is defined below, and the
	key for the HMAC is defined in Section 3.5.
 +------------------+--+

 Table 1: Message data fields

 The nonces in the in-band messages (Ns, Np, Ns2, Np2) are 32-byte
 fresh random byte strings, and the secret nonce Noob is a 16-byte
 fresh random byte string. All the nonces are generated by the party
 that sends the message.

 The fingerprint Hoob and the identifier NoobId are computed with the
 hash function specified in the negotiated cryptosuite and truncated
 to the 16 leftmost bytes of the output. The message authentication
 codes (MACs, MACp, MACs2, MACp2) are computed with the HMAC function
 [RFC2104] based on the same cryptographic hash function and truncated
 to the 32 leftmost bytes of the output.

 The inputs to the hash function for computing the fingerprint Hoob
 and to the HMAC for computing MACs, MACp, MACs2 and MACp2 are JSON
 arrays containing a fixed number (16) of members. The array member
 values MUST be copied to the array verbatim from the in-band
 messages, and space characters or whitespace MUST NOT be added
 anywhere in the JSON structure.

 The inputs for computing the fingerprint and message authentication
 codes are the following:

 Hoob = H(Dir,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,Cryptos
 uitep,Dirp,[Realm],PeerInfo,PKs,Ns,PKp,Np,Noob).

 NoobId = H("NoobId",Noob).

 MACs = HMAC(Kms; 2,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,C
 ryptosuitep,Dirp,[Realm],PeerInfo,PKs,Ns,PKp,Np,Noob).

 MACp = HMAC(Kmp; 1,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,C
 ryptosuitep,Dirp,[Realm],PeerInfo,PKs,Ns,PKp,Np,Noob).

 MACs2 = HMAC(Kms2; 2,Vers,Verp,PeerId,Cryptosuites,"",[ServerInfo]
 ,Cryptosuitep,"",[Realm],[PeerInfo],[PKs2],Ns2,[PKp2],Np2,"")

 MACp2 = HMAC(Kmp2; 1,Vers,Verp,PeerId,Cryptosuites,"",[ServerInfo]
 ,Cryptosuitep,"",[Realm],[PeerInfo],[PKs2],Ns2,[PKp2],Np2,"")

https://datatracker.ietf.org/doc/html/rfc2104

Aura & Sethi Expires November 25, 2017 [Page 19]

Internet-Draft EAP-NOOB May 2017

 Missing input values are represented by empty strings "" in the
 array. The values indicated with "" are always empty strings. The
 values in brackets MUST be included if they were exchanged in the
 same Reconnect Exchange; otherwise these values are replaced by empty
 strings "".

 The parameter Dir indicates the direction in which the OOB message
 containing the Noob value is being sent (1=peer-to-server, 2=server-
 to-peer). This field in needed to prevent the user from accidentally
 delivering the OOB message back to its originator in the rare cases
 where both OOB directions have been negotiated. The keys for the
 HMACs are defined in the following section.

 The nonces (Ns, Np, Ns2, Np2) and message authentication codes (MACs,
 MACp, MACs2, MACp2) in the in-band messages and in the cryptographic
 function inputs MUST be base64url encoded [RFC4648]. The values Noob
 and Hoob in the OOB channel MAY also be base64url encoded, if that is
 appropriate for the application and the used OOB channel.

 The ServerInfo and PeerInfo are JSON object with UTF-8 encoding. The
 length of each encoded object as a byte array MUST NOT exceed 500
 bytes. The format and semantics of these objects MUST be defined by
 the application that uses the EAP-NOOB method.

3.4. Fast reconnect and rekeying

 EAP-NOOB implements Fast Reconnect ([RFC3748], section 7.2.1) that
 avoids repeated use of the user-assisted OOB channel.

 The rekeying and the Reconnect Exchange may be needed for several
 reasons. A timeout, software or hardware failure, or user action may
 cause the EAP server, peer or authenticator to lose its non-
 persistent state data such as the EAP output values MSK and EMSK.
 The failure would typically be detected by the peer or authenticator
 when the keys no longer are accepted by the other party. Change in
 the supported cryptosuites in the EAP server or peer may also cause
 the need for a new key exchange. When the EAP server or peer detects
 such an event, it MUST change from the Registered to Reconnecting
 state. These state transitions are labeled Timeout/Failure in
 Figure 1. The EAP-NOOB method will then perform the Reconnect
 Exchange next time when EAP is triggered.

3.4.1. Persistent EAP-NOOB association

 To enable rekeying, the EAP server and peer store the session state
 in persistent memory after a successful Completion Exchange. This
 state data, called "persistent EAP-NOOB association", MUST include at
 least the data fields shown in table Table 2. They are used for

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc3748#section-7.2.1

Aura & Sethi Expires November 25, 2017 [Page 20]

Internet-Draft EAP-NOOB May 2017

 identifying and authenticating the peer in the Reconnect Exchange.
 When a persistent EAP-NOOB association exists, the EAP server and
 peer are in the Registered state (4) or Reconnecting state (3), as
 shown in Figure 1.

 +--------------+---------------------------------+------------------+
 | Data field | Value | Type |
 +--------------+---------------------------------+------------------+
PeerId	Peer identifier allocated by	UTF-8 string
	server	(typically 22
		bytes)
Realm	Optional realm assigned by	UTF-8 string
	server (default value is "eap-	
	noob.net")	
Cryptosuitep	Negotiated cryptosuite	integer
Kz	Persistent key material	32 bytes
 +--------------+---------------------------------+------------------+

 Table 2: Persistent EAP-NOOB association

3.4.2. Reconnect Exchange

 The server chooses the Reconnect Exchange when peer is in the
 Reconnecting (3) state and the server itself is in the Registered (4)
 or Reconnecting (3) state. The peer MUST NOT initiate EAP-NOOB when
 the peer is in Registered state.

 The Reconnect Exchange comprises three EAP-NOOB request-response
 pairs, one for algorithm and parameter negotiation, another for the
 nonce and key exchange, and the last one for exchanging message
 authentication codes. In the first request and response (Type=5) the
 server and peer negotiate a cryptosuite in the same way as in the
 Initial Exchange. The messages MAY also contain PeerInfo and
 ServerInfo objects. In the second request and response (Type=6), the
 server and peer exchange the public components of ECDH keys and the
 nonces (PKs2,Ns2,PKp2,Np2). The server ECDH key MUST be fresh, i.e.
 not previously used with the same peer, and the client ECDH key
 SHOULD be fresh, i.e. not previously used. In the third and final
 request and response (Type=7), the server and peer exchange the
 message authentication codes (MACs2,MACp2). Both sides MUST compute
 the keys Kms2 and Kmp2 as defined in Section 3.5 and the message
 authentication codes MACs2 and MACp2 as defined in Section 3.3. Both
 sides MUST compare the received message authentication code with a
 locally computed value. If the EAP server finds that it has received

Aura & Sethi Expires November 25, 2017 [Page 21]

Internet-Draft EAP-NOOB May 2017

 the correct value of MACp, the Completion Exchange ends in EAP-
 Success; otherwise, in EAP-Failure.

 If the negotiated cryptosuite is the same as previously, the server
 MAY refuse to perform a new ECDH exchange by omitting PKs2, and the
 peer MAY refuse by omitting PKp2. If the server omits PKs2, the peer
 SHOULD also omit PKp2. When one or both public keys are not present,
 the new EAP output values are derived from the fresh nonces and the
 previously established shared key Kz, as defined in Section 3.5. The
 security property lost by refusing the ECDH exchange is forward
 secrecy.

 The server and client MAY send updated Realm, ServerInfo and PeerInfo
 objects in the Reconnect Exchange. If there is no update to the
 values, they SHOULD omit this information from the messages.

 Both sides MUST compare the received message authentication code with
 a locally computed value. If the EAP server finds that it has
 received the correct value of MACp2, the Reconnect Exchange ends in
 EAP-Success; otherwise, in EAP-Failure.

 After successful Reconnect Exchange, both the server and the peer
 move to the Registered (4) state. If the Realm was updated or if a
 new cryptosuite and Kz were negotiated, they also update the
 persistent EAP-NOOB association with the changed values.

Aura & Sethi Expires November 25, 2017 [Page 22]

Internet-Draft EAP-NOOB May 2017

 EAP Peer EAP Server
 | |
 |<----------- EAP-Request/Identity -| |
 | |
 | |
 |------------ EAP-Response/Identity -------------->|
 | (NAI=PeerId+s3@eap-noob.net) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=5,PeerId,Cryptosuites, |
 | [Realm],[ServerInfo]) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=5,PeerId,Cryptosuitep,[PeerInfo]) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=6,PeerId,[PKs2,]Ns2) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=6,PeerId,[PKp2,]Np2) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=7,PeerId,MACs2) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=7,PeerId,MACp2) |
 | |
 | |
 |<----------- EAP-Success -------------------------|
 | |

 Figure 7: Reconnect Exchange

3.4.3. User reset

 As shown in the association state machine in Figure 1, the only
 specified way for the association to return from the Registered state
 (4) to the Unregistered state (0) is through user-initiated reset.
 After the reset, a new OOB message will be needed to establish a new
 association between the EAP server and peer. Typical situations in
 which the user reset is required are when the other side has

Aura & Sethi Expires November 25, 2017 [Page 23]

Internet-Draft EAP-NOOB May 2017

 accidentally lost the persistent EAP-NOOB association data, or when
 the peer device is decommissioned.

 The server could detect that the peer is in the Registered or
 Reconnecting state but the server itself is in one of the ephemeral
 states 0..2 (including situations where the server does not recognize
 the PeerId). In this case, effort should be made to recover the
 persistent server state, for example, from a backup storage -
 especially if many peer devices are similarly affected. If that is
 not possible, the EAP server SHOULD log the error or notify an
 administrator. The only way to continue from such a situation is by
 having the user reset the peer device.

 On the other hand, if the peer is in any of the ephemeral states
 0..2, including the Unregistered state, the server will treat the
 peer as a new peer device and allocate a new PeerId to it. The
 PeerInfo can be used by the administrator as a clue to which physical
 device has lost its state. However, there is no secure way of
 matching the "new" peer with the old PeerId without repeating the OOB
 Step. This situation will be resolved when the user performs the OOB
 Step and, thus, identifies the physical peer device. The server user
 interface SHOULD support situations where the "new" peer is actually
 a previously registered peer that has been reset by a user or has
 otherwise lost the persistent EAP-NOOB association data and needs to
 be merged with the old peer data in the server.

3.5. Key derivation

 EAP-NOOB derives the EAP output values MSK and EMSK and other secret
 keying material from the output of an Elliptic Curve Diffie-Hellman
 (ECDH) algorithm following the NIST specification [NIST-DH]. In NIST
 terminology, we use a C(2, 0, ECC CDH) scheme, i.e. two ephemeral
 keys and no static keys. In the Initial and Rekeying Exchange, the
 server and peer compute the ECDH shared secret Z as defined in

section 6.1.2.2 of the NIST specification. In the Completion and
 Rekeying Exchange, the server and peer compute the secret keying
 material from Z with the single-step key derivation function (KDF)
 defined in section 5.8.1 of the NIST specification. The hash
 function H for KDF is taken from the negotiated cryptosuite.

 Table 3 defines the inputs to the KDF. In the Completion Exchange,
 the input Z comes from the preceding Initial exchange, while the
 Rekeying Exchange uses the Z just created. The KDF takes some
 additional inputs (OtherInfo), for which we use the concatenation
 format defined in section 5.8.1.2.1 of the NIST specification.
 OtherInfo consists of the AlgorithmId, PartyUInfo, PartyVInfo, and
 SuppPrivInfo fields. The three first ahve fixed length, and
 SuppPrivInfo have fixed length, and SuppPrivInfo has a one-byte

Aura & Sethi Expires November 25, 2017 [Page 24]

Internet-Draft EAP-NOOB May 2017

 Datalength. AlgorithmId is the fixed-length 8-byte ASCII string
 "EAP-NOOB". The other input values are the server's and peer's
 nonces. In the Completion Exchange, the inputs also include the
 secret nonce Noob from the OOB message, while in the Rekeying
 Exchange, it is replaced by the shared secret Kz from the persistent
 EAP-NOOB association.

 A special case of the rekeying occurs if no ECDH public keys were
 exchanged in the Reconnect Exchange (or if only one party sent its
 public key). In this case, input Z to the KDF is replaced with the
 shared key Kz from the persistent EAP-NOOB association. The result
 is rekeying without the computational cost of the ECDH exchange, but
 also without forward secrecy.

 +---------------+--------------+-----------------------+------------+
 | Exchange | KDF input | Value | Length |
 | | field | | (bytes) |
 +---------------+--------------+-----------------------+------------+
Completion	Z	ECDH shared secret	variable
		from PKs and PKp	
	AlgorithmId	"EAP-NOOB"	8
	PartyUInfo	Np	32
	PartyVInfo	Ns	32
	SuppPubInfo	(not allowed)	
	SuppPrivInfo	Noob	16
Rekeying with	Z	ECDH shared secret	variable
ECDH		from PKs2 and PKp2	
	AlgorithmId	"EAP-NOOB"	
	PartyUInfo	Np2	32
	PartyVInfo	Ns2	32
	SuppPubInfo	(not allowed)	
	SuppPrivInfo	Kz	32
Rekeying	Z	Kz	32
without ECDH	AlgorithmId	"EAP-NOOB"	
	PartyUInfo	Np2	32
	PartyVInfo	Ns2	32
	SuppPubInfo	(not allowed)	
	SuppPrivInfo	(null)	0
 +---------------+--------------+-----------------------+------------+

 Table 3: Key derivation input

 Table 3 defines how the output bytes of the KDF are used. In
 addition to the EAP output values MSK and EMSK, the server and peer
 derive another shared secret key AMSK, which MAY be used for
 application-layer security. Further output bytes are used internally

Aura & Sethi Expires November 25, 2017 [Page 25]

Internet-Draft EAP-NOOB May 2017

 by EAP-NOOB for the message authentication keys (Kms,Kmp,Kms2,Kmp2).
 The Completion Exchange also produces the shared secret Kz, which the
 server and peer store in the persistent EAP-NOOB association. The
 Rekeying Exchange updates Kz only when a new cryptosuite is
 negotiated. In that case, the server and peer update both the
 cryptosuite and Kz in the persistent EAP-NOOB association.

 +---------------------+------------------+---------+----------------+
 | Exchange | KDF output bytes | Used as | Length (bytes) |
 +---------------------+------------------+---------+----------------+
Completion	0..63	MSK	64
	64..127	EMSK	64
	128..191	AMSK	64
	192..223	Kms	32
	224..255	Kmp	32
	256..287	Kz	32
Rekeying, no change	0..63	MSK	64
in cryptosuite	64..127	EMSK	64
	128..191	AMSK	64
	192..223	Kms2	32
	224..255	Kmp2	32
Rekeying, new	0..63	MSK	64
cryptosuite	64..127	EMSK	64
negotiated	128..191	AMSK	64
	192..223	Kms2	32
	224..255	Kmp2	32
	256..287	Kz	32
 +---------------------+------------------+---------+----------------+

 Table 4: Key derivation output

3.6. Error handling

 Various error conditions in EAP-NOOB are handled by sending an error
 notification message (type=0) instead of the expected next EAP
 request or response message. Both the EAP server and the peer may
 send the error notification, as shown in Figure 8 and Figure 9.
 After sending or receiving an error notification, the server MUST
 send an EAP-Failure message. The notification MAY contain an
 ErrorInfo field, which is a UTF-8 encoded text string with a maximum
 length of 500 bytes. It is used for sending descriptive information
 about the error for logging and debugging purposes.

Aura & Sethi Expires November 25, 2017 [Page 26]

Internet-Draft EAP-NOOB May 2017

 EAP Peer EAP Server

 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=0,[PeerId],ErrorCode,[ErrorInfo]) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

 Figure 8: Error notification from server to peer

 EAP Peer EAP Server

 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=0,[PeerId],ErrorCode,[ErrorInfo]) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

 Figure 9: Error notification from peer to server

 After an error notification, the server and peer set their state as
 follows. In the Initial Exchange, both the sender and recipient of
 the error notification MUST set the association state to the
 Unregistered (0) state. In the Waiting and Completion Exchanges,
 each side MUST remain in its old state as if the failed exchange did
 not take place, with the exception that the peer checks for expiry of
 the Noob value as defined in Section 3.2.4. In the Reconnect
 Exchange, both sides MUST set the association state to the
 Reconnecting (3) state.

 Errors that occur in the OOB channel are not explicitly notified in-
 band.

3.6.1. Invalid messages

 If the NAI structure is invalid, the server SHOULD send the error
 code 1001 to the peer. The recipient of an EAP-NOOB request or
 response SHOULD send the following error codes back to the sender:
 1002 if it cannot parse the message as a JSON object or the top-level
 JSON object has missing or unrecognized members; 1003 if a data field
 has an invalid value, such as an integer out of range; 1004 if the

Aura & Sethi Expires November 25, 2017 [Page 27]

Internet-Draft EAP-NOOB May 2017

 received message type was unexpected; 1005 if the PeerId has an
 unexpected value; 1006 if the NoobId is not recognized; and 1007 if
 the ECDH key is invalid.

3.6.2. Unwanted peer

 The preferred way for the EAP server to rate limit EAP-NOOB
 connections from a peer is to use the SleepTime parameter in the
 Waiting Exchange. However, if the EAP server receives repeated EAP-
 NOOB connections from a peer which is apparently should not connect
 to this server, the server MAY indicate that the connections are
 unwanted by sending the error code 2001. After receiving this error
 message, the peer MAY refrain from reconnecting to the same EAP
 server and, if possible, both the EAP server and peer SHOULD indicate
 this error condition to the user. However, in order to avoid
 persistent denial of service, the peer is not required to stop
 entirely from reconnecting to the server.

3.6.3. State mismatch

 In the states indicated by "-" in Figure 10 in Appendix A, user
 action is required to reset the association state or to recover it,
 for example, from backup storage. In those cases, the server sends
 the error code 2002 to the peer. If possible, both the EAP server
 and peer SHOULD indicate this error condition to the user.

3.6.4. Negotiation failure

 If there is no matching protocol version, the peer sends the error
 code 3001 to the server. If there is no matching cryptosuite, the
 peer sends the error code 3002 to the server. If there is no
 matching OOB direction, the peer sends the error code 3003 to the
 server.

 In practice, there is no way of recovering from these errors without
 software or hardware changes. If possible, both the EAP server and
 peer SHOULD indicate these error conditions to the user. In
 particular, user action is needed for changing the association from a
 persistent state to the Unregistered (0) state.

3.6.5. Cryptographic verification failure

 If the recipient of the OOB message detects an unrecognized PeerId or
 incorrect fingerprint (Hoob) in the OOB message, the recipient MUST
 remain in the Waiting for OOB state (1) as if no OOB message was
 received. The recipient SHOULD indicate the failure to accept the
 OOB message to the user.

Aura & Sethi Expires November 25, 2017 [Page 28]

Internet-Draft EAP-NOOB May 2017

 Note that if the OOB message was delivered from the server to the
 peer and the peer does not recognize the PeerId, the likely cause is
 that the user has unintentionally delivered the OOB message to the
 wrong destination. If possible, the peer SHOULD indicate this to the
 user; however, the peer device may not have capability for many
 different error indications and it MAY use the same method or error
 indication as in the case of an incorrect fingerprint.

 The rationale for the above is that the invalid OOB message could
 have been presented to the recipient by mistake or intentionally by a
 malicious party and, thus, it should be ignored in the hope that the
 honest user will soon deliver a correct OOB message.

 If the EAP server or peer detects an incorrect message authentication
 code (MACs, MACp, MACs2, MACp2), it sends the error code 4001 to the
 other side. As specified in the beginning of Section 3.6, the failed
 Completion Exchange will not result in server or peer state changes
 while error in the Reconnect Exchange will put both sides to the
 Reconnecting (3) state and thus lead to another reconnect attempt.

 The rationale for this is that the invalid cryptographic message may
 have been spoofed by a malicious party and, thus, it should be
 ignored. In particular, a spoofed message on the in-band channel
 should not force the honest user to perform the OOB Step again. In
 practice, however, the error may be caused by other failures, such as
 software bug. For this reason, the EAP server MAY limit the rate of
 peer connections with SleepTime after the above error. Also, there
 MUST be a way for the user to reset the EAP server and peer to the
 Unregistered state (0), so that the OOB Step can be repeated.

3.6.6. Application-specific failure

 Applications MAY define new error messages for failures that are
 specific to the application or to one type of OOB channel. They MAY
 also use the generic application-specific error code 5001, or the
 error codes 5002 and 5003, which have been reserved for indicating
 invalid data in the ServerInfo and PeerInfo fields, respectively.
 Additionally, anticipating OOB channels that make use of a URL, the
 error code 5003 have been reserved for indicating invalid server URL.

4. IANA Considerations

 This section provides guidance to the Internet Assigned Numbers
 Authority (IANA) regarding registration of values related to the EAP-
 NOOB protocol, in accordance with [RFC5226].

 The EAP Method Type number for EAP-NOOB needs to be assigned.

https://datatracker.ietf.org/doc/html/rfc5226

Aura & Sethi Expires November 25, 2017 [Page 29]

Internet-Draft EAP-NOOB May 2017

 This memo also requires IANA to create new registries as defined in
 the following subsections.

4.1. Cryptosuites

 An EAP server MUST supply one or more suggestions for cryptosuites as
 the Cryptosuites value in the Initial Exchange. They are formatted
 as a JSON array of the identifier integers. Each suite MUST appear
 only once in the array. The cryptosuites MUST be supplied in the
 order of priority. Peers MUST supply exactly one suite in the
 Cryptosuitep value, formatted as an identifier integer. The
 following suites are defined by EAP-NOOB:

 +-------------+---+
 | Cryptosuite | Algorithms |
 +-------------+---+
 | 1 | Curve25519 [RFC7748], SHA-256 [RFC6234] |
 +-------------+---+

 Table 5: EAP-NOOB cryptosuites

 Assignment of new values for new cryptosuites MUST be done through
 IANA with "Specification Required" and "IESG Approval" as defined in
 [RFC5226].

4.2. Error codes

 The error codes defined by EAP-NOOB are listed in Table 6.

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc5226

Aura & Sethi Expires November 25, 2017 [Page 30]

Internet-Draft EAP-NOOB May 2017

 +------------+--+
 | Error code | Purpose |
 +------------+--+
 | 1001 | Invalid NAI or peer state |
 | 1002 | Invalid message structure |
 | 1003 | Invalid data |
 | 1004 | Unexpected message type |
 | 1005 | Unexpected peer identifier |
 | 1006 | Unrecognized OOB message identifier |
 | 1007 | Invalid ECDH key |
 | 2001 | Unwanted peer |
 | 2002 | State mismatch, user action required |
 | 3001 | No mutually supported protocol version |
 | 3002 | No mutually supported cryptosuite |
 | 3003 | No mutually supported OOB direction |
 | 4001 | MAC verification failure |
 | 5001 | Application-specific error |
 | 5002 | Invalid server info |
 | 5003 | Invalid server URL |
 | 5004 | Invalid peer info |
 +------------+--+

 Table 6: EAP-NOOB error codes

 Assignment of new error codes MUST be done through IANA with
 "Specification Required" and "IESG Approval" as defined in [RFC5226].

4.3. Domain name reservation considerations

 "eap-noob.net" should be registered as a special-use domain. The
 considerations required by [RFC6761] for registering this special use
 domain name are as follows:

 o Users: Non-admin users are not expected to encounter this name or
 recognize it as special. AAA administrators may need to recognize
 the name.

 o Application Software: Application software is not expected to
 recognize this domain name as special.

 o Name Resolution APIs and Libraries: Name resolution APIs and
 libraries are not expected to recognize this domain name as
 special.

 o Caching DNS Servers: Caching servers are not expected to recognize
 this domain name as special.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc6761

Aura & Sethi Expires November 25, 2017 [Page 31]

Internet-Draft EAP-NOOB May 2017

 o Authoritative DNS Servers: Authoritative DNS servers MUST respond
 to queries for eap-noob.net with NXDOMAIN.

 o DNS Server Operators: Except for the authoritative DNS server,
 there are no special requirements for the operators.

 o DNS Registries/Registrars: There are no special requirements for
 DNS registrars.

5. Security considerations

 EAP-NOOB is an authentication and key derivation protocol and, thus,
 security considerations can be found in most sections of this
 specification. In the following, we explain the protocol design and
 highlight some other special considerations.

5.1. Authentication principle

 The mutual authentication in EAP-NOOB is based on two separate
 features, both conveyed in the OOB message. The first authentication
 feature is the secret nonce Noob. The peer and server use this
 secret in the Completion Exchange to mutually authenticate the
 session key previously created with ECDH. The message authentication
 codes computed with the secret nonce Noob are alone sufficient for
 authenticating the key exchange. The OOB channel might, however, be
 vulnerable to eavesdropping of the OOB channel, which could lead to
 compromise of the secret nonce, which will then enable a man-in-the-
 middle attack on the in-band channel. This is why we include, as a
 second authentication feature, the integrity-protecting fingerprint
 Hoob in the OOB message. It is typically more difficult to spoof or
 alter messages on the human-assisted OOB channel, such as bar code,
 sound burst or user-transferred URL, than it is to spy on them.

 The security provided by the cryptographic fingerprint is somewhat
 intricate to understand. The party that receives the OOB message
 uses Hoob to verify the integrity of the ECDH exchange. Thus, that
 party can detect man-in-the-middle attacks on the in-band channel.
 The other party, however, is not equally protected because the OOB
 message and fingerprint are sent only in one direction. Some
 protection to the OOB sender is afforded by the fact that the user
 may notice the failure of the association at the OOB receiver and
 therefore reset the OOB sender. Indeed, other device-pairing
 protocols have solved a similar situation by requiring the user to
 confirm to the OOB sender that the association was accepted by the
 OOB-receiver, e.g. by pressing an "accept" button on the sender.
 Since EAP-NOOB was designed to work strictly with one-directional OOB
 communication, it does not rely on such input to the OOB sender.

Aura & Sethi Expires November 25, 2017 [Page 32]

Internet-Draft EAP-NOOB May 2017

 To summarize, EAP-NOOB uses the combined protection of the secret
 nonce Noob and the cryptographic fingerprint Hoob, both conveyed in
 the OOB message. The secret nonce Noob alone is sufficient for
 mutual authentication, unless the attacker can eavesdrop it from the
 OOB channel. If an attacker is able to eavesdrop the secret nonce
 and performs a man-in-the-middle attack on the in-band channel, the
 mismatching fingerprint will alert the OOB receiver, which will
 reject the OOB message. In this case, the association will appear to
 be complete only on the OOB sender side. The user in many
 applications will detect this apparently one-sided association
 because the peer device does not appear registered on the server or
 network.

 The expected use cases for EAP-NOOB are ones where it replaces a
 user-entered access credentials. In wireless network access for IoT
 devices, the user-entered credential is often a passphrase, which is
 shared by all the network stations. Like any other EAP-based
 solution, EAP-NOOB establishes a different master secret for each
 peer device, which is obviously more resilient to device compromise
 than a common master secret. Additionally, it is possible to revoke
 the security association for an individual device on the server side.

 Forward secrecy in EAP-NOOB is optional. The Reconnect Exchange in
 EAP-NOOB provides forward secrecy only if both the server and peer
 send their fresh ECDH keys. This allows both the server and the peer
 to limit the frequency of the costly computation that is required for
 forward secrecy. The server should make its decision primarily based
 on what it knows about the peer's computational capabilities.

5.2. Identifying and naming peer devices

 EAP-NOOB relies on physical possession or identification of the peer
 device and secure communication between the user and the server. The
 main remaining threat against EAP-NOOB is that the attacker performs
 a man-in-the-middle attack on the in-band channel and, during the
 protocol execution, tricks the user to deliver the OOB message to or
 from the wrong peer. The server will now be associated with that
 wrong peer. Similarly, the attacker could try to trick the user to
 accessing the wrong server in the OOB Step. This reliance on user in
 identifying the correct parties is an inherent property of out-of-
 band authentication.

 One mechanism that can be used to mitigate user mistakes is
 certification of trusted servers and peer devices. For example, if
 used together with EAP-NOOB, vendor certificates could prevent
 accidental association with a rogue peer device. Compared to a fully
 certificate-based authentication, EAP-NOOB does not depend on trusted

Aura & Sethi Expires November 25, 2017 [Page 33]

Internet-Draft EAP-NOOB May 2017

 third parties and does not require the user to know the identifier of
 the peer device; physical access is sufficient.

 The user could also accidentally deliver the OOB message to more than
 one peer device. This could, for example, occur if the OOB message
 is a bar code and the peer is a camera: the user could by mistake
 show the bar code first to the wrong camera. Such accidents in EAP-
 NOOB will not enable the wrong camera to compute the master key or to
 opportunistically eavesdrop the communication. This is because the
 wrong peer device would need to have performed a man-in-the middle
 attack on the in-band channel before the accident. In comparison,
 simpler solutions where the master key is transferred to the device
 via the OOB channel would be vulnerable to opportunistic attacks if
 the user mistakenly delivers the master key to more than one device.

 The PeerId value in the protocol is a server-allocated identifier for
 its association with the peer and SHOULD NOT be shown to the user
 because its value is initially ephemeral. Since the PeerId is
 allocated by the server and the scope of the identifier is the single
 server, the so-called identifier squatting attacks, where a malicious
 peer could reserve another peer's identifier, are not possible in
 EAP-NOOB. The server SHOULD assign a random or pseudo-random PeerId
 to each new peer. It SHOULD NOT select the PeerId based on any peer
 characteristics that it may know, such as the peer's link-layer
 network address.

 User reset or failure in the OOB step can cause the peer to perform
 many Initial Exchanges with the server and to allocate many PeerIds
 and to store the ephemeral protocol state for them. The peer will
 typically only remember the latest one. EAP-NOOB leaves it to the
 implementation to decide when to delete these ephemeral associations.
 There is no security reason to delete them early, and the server does
 not have any way to verify that the peers are actually the same one.
 Thus, it is safest to store the ephemeral states for at least one
 day. If the OOB messages are sent only in the server-to-peer
 direction, the server SHOULD NOT delete the ephemeral state before
 all the related Noob values have expired.

 After completion of EAP-NOOB, the server may store the PeerInfo data,
 and the user may use it to identify the peer and its properties, such
 as make and model or serial number. A compromised peer could lie
 about this information in the PeerInfo that it sends to the server.
 If the server stores any information about the peer, it is important
 that this information is approved by the user during or after the OOB
 Step. Without rigorous user checking, the PeerInfo is not
 authenticated information and should not be relied on. Therefore, it
 is better to include only minimal information about the peer in
 PeerInfo and to ask the user to name the peer devices. In many

Aura & Sethi Expires November 25, 2017 [Page 34]

Internet-Draft EAP-NOOB May 2017

 applications, such as OOB authentication for ad-hoc wireless network
 access, it may be unnecessary to store any names for the peer device.
 Since the user delivering the OOB message will often communicate with
 the server over an authenticated channel, e.g. by logging into a
 secure web page, the user identity and user-given name can in those
 cases be reliably stored for the peer device. It is these user
 identities and user-given names that should be later used for access
 control and revocation.

 Another reason to include only minimal information in the PeerInfo is
 potential privacy issues. The PeerInfo field is typically
 transmitted in plaintext between the peer and the authenticator.
 Although the PeerInfo sent by a new, unregistered device will not
 leak any information specifically about the user, it could reveal
 device identifiers and information about other device properties,
 which the user may want to avoid leaking at this point.

5.3. Downgrading threats

 The fingerprint Hoob protects all the information exchanged in the
 Initial Exchange, including the cryptosuite negotiation. The message
 authentication codes MACs and MACp also protect the same information.
 The message authentication codes MACs2 and MACp2 protect information
 exchanged during key renegotiation in the Reconnect Exchange. This
 prevents downgrade attacks to weaker cryptosuites as long as the
 possible attacks take more time than the maximum time allowed for the
 EAP-NOOB completion. This is typically the case for recently
 discovered cryptanalytic attacks.

 As an additional precaution, the EAP server and peer SHOULD check for
 downgrading attacks in the Reconnect Exchange. As long as the server
 or peer saves any information about the other party, it SHOULD also
 remember the previously negotiated cryptosuite and not accept
 renegotiation of any cryptosuite that is known to be weaker than the
 previous one (e.g. a deprecated cryptosuite or the same ECDH field
 with a shorter key).

 Integrity of the direction negotiation cannot be verified in the same
 way as the integrity of the cryptosuite negotiation. That is, if the
 OOB channel used in an application is critically insecure in one
 direction, a man-in-the-middle attacker could modify the negotiation
 messages and thereby cause that direction to be used. Applications
 that support OOB messages in both directions SHOULD therefore ensure
 that the OOB channel has sufficiently strong security in both
 directions. While this is a theoretical vulnerability, it could
 arise in practice if EAP-NOOB is deployed in unexpected applications.
 However, most devices acting as the peer are likely to support only
 one direction of exchange, in which case interfering with the

Aura & Sethi Expires November 25, 2017 [Page 35]

Internet-Draft EAP-NOOB May 2017

 direction negotiation can only prevent the completion of the
 protocol.

 The long-term shared key material Kz in the persistent EAP-NOOB
 association is established with an ECDH key exchange when the peer
 and server are first associated. It is a weaker secret than a
 manually configured random shared key because advances in
 cryptanalysis against the used ECDH curve could eventually enable the
 attacker to recover Kz. EAP-NOOB protect against such attacks by
 allowing cryptosuite upgrade in the Reconnect Exchange. We do not
 expect the upgrades to be frequent, but if one becomes necessary, the
 upgrade can be made without manual resetting and reassociation of the
 peer devices. During the algorithm upgrade, the shared key material
 Kz is also updated.

5.4. EAP security claims

 EAP security claims are defined in section 7.2.1 of [RFC3748]. The
 security claims for EAP-NOOB are listed in Table 7.

https://datatracker.ietf.org/doc/html/rfc3748#section-7.2.1

Aura & Sethi Expires November 25, 2017 [Page 36]

Internet-Draft EAP-NOOB May 2017

 +----------------+--+
 | Security | EAP-NOOB claim |
 | property | |
 +----------------+--+
Authentication	ECDH key exchange with out-of-band
mechanism	authentication
Protected	yes
cryptosuite	
negotiation	
Mutual	yes
authentication	
Integrity	yes
protection	
Replay	yes
protection	
Key derivation	yes
Key strength	The specified cryptosuites provide key strength
	of at least 128 bits.
Dictionary	yes
attack	
protection	
Fast reconnect	yes
Cryptographic	not applicable
binding	
Session	yes
independence	
Fragmentation	no
Channel	yes (The ServerInfo and PeerInfo can be used to
binding	convey integrity-protected channel properties
	such as peer MAC address.)
 +----------------+--+

 Table 7: EAP security claims

Aura & Sethi Expires November 25, 2017 [Page 37]

Internet-Draft EAP-NOOB May 2017

6. References

6.1. Normative references

 [NIST-DH] Barker, E., Chen, L., Roginsky, A., and M. Smid,
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography", NIST Special
 Publication 800-56A Revision 2 , May 2013,
 <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-56Ar2.pdf>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <http://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <http://www.rfc-editor.org/info/rfc3748>.

 [RFC4266] Hoffman, P., "The gopher URI Scheme", RFC 4266,
 DOI 10.17487/RFC4266, November 2005,
 <http://www.rfc-editor.org/info/rfc4266>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5216] Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
 Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216,
 March 2008, <http://www.rfc-editor.org/info/rfc5216>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <http://www.rfc-editor.org/info/rfc6234>.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
https://datatracker.ietf.org/doc/html/rfc2104
http://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3748
http://www.rfc-editor.org/info/rfc3748
https://datatracker.ietf.org/doc/html/rfc4266
http://www.rfc-editor.org/info/rfc4266
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5216
http://www.rfc-editor.org/info/rfc5216
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc6234
http://www.rfc-editor.org/info/rfc6234

Aura & Sethi Expires November 25, 2017 [Page 38]

Internet-Draft EAP-NOOB May 2017

 [RFC6761] Cheshire, S. and M. Krochmal, "Special-Use Domain Names",
RFC 6761, DOI 10.17487/RFC6761, February 2013,

 <http://www.rfc-editor.org/info/rfc6761>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <http://www.rfc-editor.org/info/rfc7517>.

 [RFC7542] DeKok, A., "The Network Access Identifier", RFC 7542,
 DOI 10.17487/RFC7542, May 2015,
 <http://www.rfc-editor.org/info/rfc7542>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <http://www.rfc-editor.org/info/rfc7748>.

6.2. Informative references

 [IEEE-802.1X]
 Institute of Electrical and Electronics Engineers, "Local
 and Metropolitan Area Networks: Port-Based Network Access
 Control", IEEE Standard 802.1X-2004. , December 2004.

 [RFC2904] Vollbrecht, J., Calhoun, P., Farrell, S., Gommans, L.,
 Gross, G., de Bruijn, B., de Laat, C., Holdrege, M., and
 D. Spence, "AAA Authorization Framework", RFC 2904,
 DOI 10.17487/RFC2904, August 2000,
 <http://www.rfc-editor.org/info/rfc2904>.

 [Sethi14] Sethi, M., Oat, E., Di Francesco, M., and T. Aura, "Secure
 Bootstrapping of Cloud-Managed Ubiquitous Displays",
 Proceedings of ACM International Joint Conference on
 Pervasive and Ubiquitous Computing (UbiComp 2014), pp.
 739-750, Seattle, USA , September 2014,
 <http://dx.doi.org/10.1145/2632048.2632049>.

 [SimplePairing]
 Bluetooth, SIG, "Simple pairing whitepaper", Technical
 report , 2007.

https://datatracker.ietf.org/doc/html/rfc6761
http://www.rfc-editor.org/info/rfc6761
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7517
http://www.rfc-editor.org/info/rfc7517
https://datatracker.ietf.org/doc/html/rfc7542
http://www.rfc-editor.org/info/rfc7542
https://datatracker.ietf.org/doc/html/rfc7748
http://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc2904
http://www.rfc-editor.org/info/rfc2904
http://dx.doi.org/10.1145/2632048.2632049

Aura & Sethi Expires November 25, 2017 [Page 39]

Internet-Draft EAP-NOOB May 2017

Appendix A. Exchanges and events per state

 Figure 10 shows how the EAP server chooses the exchange type
 depending on the server and peer states. In the state combinations
 marked with hyphen "-", there is no possible exchange and user action
 is required to make progress. Note that peer state 4 is omitted from
 the table because the peer never connects to the server when the peer
 is in that state.

 +--------+---------------------------+------------------------------+
 | peer | exchange chosen by | next peer and |
 | states | server | server states |
 +========+===========================+==============================+
 | server state: Unregistered (0) |
 +--------+---------------------------+------------------------------+
 | 0..2 | Initial Exchange | both 1 (0 on error) |
 | 3 | - | no change, notify user |
 +--------+---------------------------+------------------------------+
 | server state: Waiting for OOB (1) |
 +--------+---------------------------+------------------------------+
0	Initial Exchange	both 1 (0 on error)
1	Waiting Exchange	both 1 (no change on error)
2	Completion Exchange	both 4 (no change on error)
3	-	no change, notify user
+--------+---------------------------+------------------------------+		
server state: OOB Received (2)		
+--------+---------------------------+------------------------------+		
0	Initial Exchange	both 1 (0 on error)
1	Completion Exchange	both 4 (no change on error)
2	Completion Exchange	both 4 (no change on error)
3	-	no change, notify user
+--------+---------------------------+------------------------------+		
server state: Reconnecting (3) or Registered (4)		
+--------+---------------------------+------------------------------+		
0..2	-	no change, notify user
3	Reconnect Exchange	both 4 (3 on error)
 +--------+---------------------------+------------------------------+

 Figure 10: How server chooses the exchange type

 Figure 11 lists the local events that can take place in the server or
 peer. Both the server and peer output and accept OOB messages in
 association state 1. The OOB message events have been marked with
 asterisk (*) to indicate that events are only possible if allowed by
 the negotiated OOB directions (Dirp). Communication errors and
 timeouts in states 0..2 lead back to state 0, while similar errors in

Aura & Sethi Expires November 25, 2017 [Page 40]

Internet-Draft EAP-NOOB May 2017

 states 3..4 lead to state 3. Application request for rekeying (e.g.
 to refresh session keys or to upgrade algorithms) also takes the
 association from state 3..4 to state 3. User can always reset the
 association state to 0. Recovering association data, e.g. from a
 backup, leads to state 3.

 +--------+---------------------------+------------------------------+
server/	possible local events	next state
peer	on server and peer	
state		
+========+===========================+==============================+		
1	OOB Output*	1
1	OOB Input*	2 (1 on error)
0..2	Timeout/network failure	0
3..4	Timeout/network failure	3
3..4	Rekeying request	3
0..4	User resets peer state	0
0..4	Association state recovery	3
 +--------+---------------------------+------------------------------+

 Figure 11: Local events on server and peer

Appendix B. Application-specific parameters

 Table 8 lists OOB channel parameters that need to be specified in
 each application that makes use of EAP-NOOB. The list is not
 exhaustive and is included for the convenience of implementors only.

Aura & Sethi Expires November 25, 2017 [Page 41]

Internet-Draft EAP-NOOB May 2017

 +--------------------+--+
 | Parameter | Description |
 +--------------------+--+
OobDirs	Allowed directions of the OOB channel
OobMessageEncoding	How the OOB message data fields are encoded
	for the OOB channel
SleepTimeDefault	Default minimum time in seconds that the
	peer should sleep before the next Waiting
	Exchange
OobRetries	Number of received OOB messages with invalid
	Hoob after which the receiver moves to
	Unregistered (0) state
NoobTimeout	How many seconds the sender of the OOB
	message remembers the sent Noob value. The
	RECOMMENDED value is 3600 seconds.
ServerInfoMembers	Required members in ServerInfo
PeerInfoMembers	Required members in PeerInfo
 +--------------------+--+

 Table 8: OOB channel characteristics

Appendix C. EAP-NOOB Roaming

 AAA architectures [RFC2904] allow for roaming of network-connected
 appliances that are authenticated over EAP. While the peer is
 roaming in a visited network, authentication still takes place
 between the peer and an authentication server in its home network.
 EAP-NOOB supports such roaming by assigning a Realm to the peer.
 After the Realm has been assigned, the peer's NAI enables the visited
 network to route the EAP session to the peer's home AAA server.

 A peer device that is new or has gone through a hard reset should be
 connected first to the home network and establish an EAP-NOOB
 association with its home AAA server before it is able to roam.
 After that, it can perform the Reconnect Exchange from the visited
 network.

 Alternatively, the device may provide some method for the user to
 configure the Realm of the home network. In that case, the EAP-NOOB
 association can be created while roaming. The device will use the
 user-assigned Realm in the Initial Exchange, which enables the EAP
 messages to be routed correctly to the home AAA server.

https://datatracker.ietf.org/doc/html/rfc2904

Aura & Sethi Expires November 25, 2017 [Page 42]

Internet-Draft EAP-NOOB May 2017

Appendix D. OOB message as URL

 While EAP-NOOB does not mandate any particular OOB communication
 channel, typical OOB channels include graphical displays and emulated
 NFC tags. In the client-to-server direction, it may be convenient to
 encode the OOB message as a URL, which is then encoded as a QR code
 for displays and printers or as an NDEF record for NFC tags. A user
 can then simply scan the QR code or NFC tag and open the URL, which
 causes the OOB message to be delivered to the authentication server.
 The URL MUST specify the https protocol i.e. secure connection to the
 server, so that the man-in-the-middle attacker cannot read or modify
 the OOB message.

 The ServerInfo in this case includes a JSON member called "ServerUrl"
 of the following format with maximum length of 60 characters:

 https://<host>[:<port>]/[<path>]

 To this, the peer appends the OOB message fields (PeerId, Noob, Hoob)
 as a query string. PeerId is provided to the peer by the server and
 might be a 22-character string. The peer base64url encodes the
 16-byte values Noob and Hoob into 22-character strings. The query
 parameters MAY be in any order. The resulting URL is of the
 following format:

 https://<host>[:<port>]/[<path>]?P=<PeerId>&N=<Noob>&H=<Hoob>

 The following is an example of a well-formed URL encoding the OOB
 message (without line breaks):

 https://example.com/Noob?P=ZrD7qkczNoHGbGcN2bN0&N=rMinS0-F4EfCU8D9ljx
 X_A&H=QvnMp4UGxuQVFaXPW_14UW

Appendix E. Example messages

 The message examples in this section are generated with Curve25519
 ECDH test vectors specified in section 6.1 of [RFC7748]
 (server=Alice, peer=Bob). The direction of the OOB channel
 negotiated is 2 (server-to-peer). The JSON messages are as follows
 (line breaks are for readability only).

 ====== Initial Exchange ======

 Identity response:
 noob@eap-noob.net

 EAP request (type 1):

https://datatracker.ietf.org/doc/html/rfc7748#section-6.1

Aura & Sethi Expires November 25, 2017 [Page 43]

Internet-Draft EAP-NOOB May 2017

 {"Type":1,"Vers":[1],"PeerId":"qJjnijxpojI0dti6qGfOIb","Cryptosuit
 es":[1],"Dirs":3,"ServerInfo":{"Name":"Example","Url":"https://exa
 mple.com/Noob"},"realm":"noob.example.com"}

 EAP request (type 1):
 {"Type":1,"Vers":[1],"PeerId":"qJjnijxpojI0dti6qGfOIb","Cryptosuit
 es":[1],"Dirs":3,"ServerInfo":{"Name":"Example","Url":"https://exa
 mple.com/Noob"},"realm":"noob.example.com"}

 EAP response (type 1):
 {"Type":1,"Verp":1,"PeerId":"qJjnijxpojI0dti6qGfOIb","Cryptosuitep
 ":1,"Dirp":2,"PeerInfo":{"Make":"Acme","Type":"None","Serial":"DU-
 8448","SSID":"Noob2","BSSID":"6c:19:8f:83:c2:90"}}

 EAP request (type 2):
 {"Type":2,"PeerId":"qJjnijxpojI0dti6qGfOIb","Ns":"1htC1L24K-
 jkP9bEgDAEnnmK44ltlY1XwKooEOxs-5c","jwk":{"kty":"EC","crv":"Curve2
 5519","x":"MCowBQYDK2VuAyEAhSDwCYkwp1R0i33ctD73Wg2_Og0mOBr066Spjqq
 bTmo"},"SleepTime":60}

 EAP response (type 2):
 {"Type":2,"PeerId":"qJjnijxpojI0dti6qGfOIb","Np":"ppe-KZ_-Xdz8bwEb
 _vfnny2dKkMepFbiLgf3xduVxxo","jwk":{"kty":"EC","crv":"Curve25519",
 "x":"MCowBQYDK2VuAyEA3p7bfXt9wbTTW2HC7OQ1Nz-DQ8hbeGdNrfx-FG-
 IK08"}}

 ====== Waiting Exchange ======

 Identity response:
 qJjnijxpojI0dti6qGfOIb+s1@noob.example.com

 EAP request (type 3):
 {"Type":3,"PeerId":"qJjnijxpojI0dti6qGfOIb","SleepTime":60}

 EAP response (type 3):
 {"Type":3,"PeerId":"qJjnijxpojI0dti6qGfOIb"}

 ====== OOB Step ======

 Identity response:
 data:,P=qJjnijxpojI0dti6qGfOIb&N=sqfpPmEXh4iPx23oY0t_Lg&H=Y2MxZDc2
 MDUzNTNkMTE3Mg

 ====== Completion Exchange ======

 Identity response:
 qJjnijxpojI0dti6qGfOIb+s2@noob.example.com

Aura & Sethi Expires November 25, 2017 [Page 44]

Internet-Draft EAP-NOOB May 2017

 EAP request (type 8):
 {"Type":8,"PeerId":"qJjnijxpojI0dti6qGfOIb"}

 EAP response (type 8):
 {"Type":8,"PeerId":"qJjnijxpojI0dti6qGfOIb","NoobId":"NzMxMTNkZGFl
 NjhiMmNmYg"}

 EAP request (type 4):
 {"Type":4,"PeerId":"qJjnijxpojI0dti6qGfOIb","NoobId":"NzMxMTNkZGFl
 NjhiMmNmYg","MACs":"3Kf-OEE0l_SMC1C2XYdQmg"}

 EAP response (type 4):
 {"Type":4,"PeerId":"qJjnijxpojI0dti6qGfOIb","MACp":"z6G--
 hg8U3dhSwjYJ8xIFA"}

 ====== Reconnect Exchange ======

 Identity response:
 qJjnijxpojI0dti6qGfOIb+s3@noob.example.com

 EAP request (type 5):
 {"Type":5,"Cryptosuites":[1],"PeerId":"qJjnijxpojI0dti6qGfOIb","Se
 rverInfo":{"Name":"Example","Url":"https://example.com/Noob"}}

 EAP response (type 5):
 {"Type":5,"PeerId":"qJjnijxpojI0dti6qGfOIb","Cryptosuitep":1,"Peer
 Info":{"Make":"Acme","Type":"None","Serial":"DU-
 8448","SSID":"Noob2","BSSID":"6c:19:8f:83:c2:90"}}

 EAP request (type 6):
 {"Type":6,"PeerId":"qJjnijxpojI0dti6qGfOIb","Ns":"RPmLvG79U-
 GfBZTbzbaYMhC1hEE4_lj9SEtrLAct-3w"}

 EAP response (type 6):
 {"Type":6,"PeerId":"qJjnijxpojI0dti6qGfOIb","Np":"u7ecFNRibJ0PnOn2
 zIXmpZrNwlykbqzfyGWZeaRq1MQ"}

 EAP request (type 7):
 {"Type":7,"PeerId":"qJjnijxpojI0dti6qGfOIb","MACs":"EL4hd-
 PMY_RL9pmfZqRffg"}

 EAP response (type 7):
 {"Type":7,"PeerId":"qJjnijxpojI0dti6qGfOIb","MACp":"rjMw0xRebtOYWH
 bgcFeGEw"}

Aura & Sethi Expires November 25, 2017 [Page 45]

Internet-Draft EAP-NOOB May 2017

Appendix F. Version history

 o Version 01:

 * Fixed Reconnection Exchange.

 * URL examples.

 * Message examples.

 * Improved state transition (event) tables.

 o Version 02:

 * Reworked the rekeying and key derivation.

 * Increased internal key lengths and in-band nonce and MAC
 lengths to 32 bytes.

 * Less data in the persistent EAP-NOOB association.

 * Updated reference [NIST-DH] to Revision 2 (2013).

 * Shorter suggested PeerId format.

 * Optimized the example of encoding OOB message as URL.

 * NoobId in Completion Exchange to differentiate between multiple
 valid Noob values.

 * List of application-specific parameters in appendix.

 * Clarified the equivalence of Unregistered state and no state.

 * Peer SHOULD probe the server regardless of the OOB channel
 direction.

 * Added new error messages.

 * Realm is part of the persistent association and can be updated.

 * Clarified error handling.

 * Updated message examples.

 * Explained roaming in appendix.

 * More accurate definition of timeout for the Noob nonce.

Aura & Sethi Expires November 25, 2017 [Page 46]

Internet-Draft EAP-NOOB May 2017

 * Additions to security considerations.

Authors' Addresses

 Tuomas Aura
 Aalto University
 Aalto 00076
 Finland

 EMail: tuomas.aura@aalto.fi

 Mohit Sethi
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: mohit@piuha.net

Aura & Sethi Expires November 25, 2017 [Page 47]

