
Independent Submission H. Ayers
Internet-Draft P. Levis
Intended status: Informational Stanford University
Expires: January 14, 2021 July 13, 2020

Design Considerations for Low Power Internet Protocols
draft-ayers-low-power-interop-01

Abstract

 Low-power wireless networks provide IPv6 connectivity through
 6LoWPAN, a set of standards to aggressively compress IPv6 packets
 over small maximum transfer unit (MTU) links such as 802.15.4.

 The entire purpose of IP was to interconnect different networks, but
 we find that different 6LoWPAN implementations fail to reliably
 communicate with one another. These failures are due to stacks
 implementing different subsets of the standard out of concern for
 code size. We argue that this failure stems from 6LoWPAN's design,
 not implementation, and is due to applying traditional Internet
 protocol design principles to low-power networks.

 We propose three design principles for Internet protocols on low-
 power networks, designed to prevent similar failures in the future.
 These principles are based around the importance of providing
 flexible tradeoffs between code size and energy efficiency. We apply
 these principles to 6LoWPAN and show that the modified protocol
 provides a wide range of implementation strategies while allowing
 implementations with different strategies to reliably communicate.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 14, 2021.

Ayers & Levis Expires January 14, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Design-Low July 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Background . 4
3. 6LoWPAN Today . 6
4. Traditional Principles: Not Low-Power 10
5. Three Principles . 10
5.1. Principle 1: Capability Spectrum 10
5.2. Principle 2: Capability Discovery 11
5.3. Principle 3: Explicit and Finite Bounds 12

6. A Principled 6LoWPAN . 12
6.1. Principle 1: Capability Spectrum 13
6.2. Principle 2: Capability Discovery 16
6.3. Principle 3: Provide Reasonable Bounds 16

7. Evaluation . 17
7.1. Implementations . 17
7.2. Compile-Time Costs 18
7.3. Run-time Performance 20

8. Discussion and Conclusions 21
9. Definitions . 22
9.1. Terminology . 22

10. Security Considerations 22
11. IANA Considerations . 22
12. References . 22
12.1. Normative References 22
12.2. Informative References 23

 Authors' Addresses . 25

1. Introduction

 Interoperability has been fundamental to the Internet's success. The
 Internet Protocol (IP) allows devices with different software and
 link layers to communicate. IP provides a basic communication

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Ayers & Levis Expires January 14, 2021 [Page 2]

Internet-Draft Design-Low July 2020

 substrate for many higher layer protocols and applications. In the
 decades of the Internet's evolution, we have accumulated and
 benefited from a great deal of wisdom and guidance in how to design,
 specify, and implement robust, interoperable protocols.

 Over the past decade, the Internet has extended to tens of billions
 of low-power, embedded systems such as sensor networks and the
 Internet of Things. Hundreds of proprietary protocols have been
 replaced by 6LoWPAN, a standardized format for IP networking on low-
 power wireless link layers such as 802.15.4 [RFC6282] and Bluetooth
 Low Energy [RFC7668]. 6LoWPAN was created with the express purpose of
 bringing interoperable IP networking to low power devices, as stated
 in the 6LoWPAN WG charter. Many embedded operating systems have
 adopted 6LoWPAN, [tinyos] [riot] [mbedos] [contiki-ng] [contiki]
 [lite-os] and [zephyr], and every major protocol suite uses it
 (zigbee, openthread). In fact, devices today can communicate with
 the broader Internet.

 However, in many cases 6LoWPAN implementations cannot communicate
 with each other. We find that no pairing of the major
 implementations fully interoperates. Despite 6LoWPAN's focus on
 interoperability, two key features of the protocol -- range extension
 via mesh networking of devices, and the convenience of different
 vendors being able to share a gateway -- are largely impossible 10
 years later.

 Each of the openly available 6LoWPAN stacks, most of which are used
 in production, implements a subset of the protocol _and_ includes
 compile-time flags to cut out additional compression/decompression
 options. As a result, two devices might both use 6LoWPAN, yet be
 unable to exchange certain IP packets because they use required
 features the other does not implement. This is especially
 problematic for gateways, which _need_ to be able to talk to multiple
 implementations to enable significant scaling in real world
 applications.

 This draft argues that the failure of 6LoWPAN interoperability stems
 from applying traditional protocol design principles to low-power
 networks. Low-power protocols minimize energy consumption via
 compression. Squeezing every bit out of packet headers, however,
 requires many different options/operating modes. Principles such as
 Postel's Law - "Be liberal in what you accept, and conservative in
 what you send" [RFC1122] - state that an implementation must be able
 to receive every feature, even thought it only sends some of them.
 However, code space is tight on many systems. As a result, when an
 application does not fit, developers cut out portions of the
 networking stack and stop working with other devices. Put another
 way, 3kB of unused compression code seems tiny, but when removing it

https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc7668
https://datatracker.ietf.org/doc/html/rfc1122

Ayers & Levis Expires January 14, 2021 [Page 3]

Internet-Draft Design-Low July 2020

 allows an additional 3kB of useful features, developers cut out parts
 of 6LoWPAN and devices become part of a custom networked system
 rather than the Internet.

 This draft presents three design principles which resolve this
 tension between interoperability and efficiency. Protocols following
 these principles get the best of both worlds: resource-limited
 devices can implement subsets of a protocol to save code space while
 remaining able to communicate with every other implementation.

 Capability spectrum: a low-power protocol specifies a linear
 spectrum of capabilities. Simpler implementations have fewer
 capabilities and save less energy, while fuller implementations have
 strictly more capabilities and are able to save more energy. When
 two devices differ in capability levels, communication can always
 fall back to the lower one.

 Capability discovery: a low-power protocol provides mechanisms to
 discover the capability of communicating devices. This discovery can
 be proactive (advertisements) or reactive (in response to errors).

 Explicit, finite bounds: a low-power protocol specifies explicit,
 finite bounds on growth during decompression. Without explicit
 bounds, buffers must be sized too conservatively. In practice,
 implementations allocate smaller buffers and silently drop packets
 they cannot decompress.

 This draft is not the first to observe poor 6LoWPAN interoperability
 [probe-it-plugtest], but it is the first to identify this root cause.
 It is the first to define design principles for protocols that allow
 implementations to reduce code size and still interoperate. This
 draft examines how these principles could be applied to a low power
 protocol and evaluates the overhead of doing so. It finds that
 applying these principles to 6LoWPAN promises interoperability across
 a wide range of device capabilities, while imposing a code size cost
 of less than 10%. In particular, capability discovery requires an
 order of magnitude less code than the code size difference at the
 extremes of our capability spectrum, with minimal runtime overhead.

2. Background

 6LoWPAN is a set of standards on communicating IPv6 over low-power
 wireless link layers such as IEEE 802.15.4 and Bluetooth[RFC4944]
 [RFC6282] [RFC7668]. 6LoWPAN primarily specifies two things:
 aggressive compression of IPv6 headers and how to fragment/re-
 assemble packets on link layers whose MTU is smaller than the minimum
 1280 bytes required by IPv6. 6LoWPAN also specifies optimized IPv6

https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc7668

Ayers & Levis Expires January 14, 2021 [Page 4]

Internet-Draft Design-Low July 2020

 Neighbor Discovery. 6LoWPAN is critical to ensuring that IPv6
 communication does not exceed the energy budget of low power systems.

 The interoperability IP provides is a goal in and of itself, and so
 many different network stacks, including ZigBee and Thread, have
 transitioned to supporting IP connectivity with 6LoWPAN. IP
 connectivity allows systems to easily incorporate new services and
 applications, and allows applications to build on all of the existing
 Internet systems, such as network management and monitoring.

 Low Power Hardware and Operating Systems

 IoT Platform **Code (kB)** **Year**
 -------------------- --------------- ----------
 EMB-WMB 64 2012
 Zolertia Z1 92 2013
 TI CC2650 128 2015
 NXP MKW40Z 160 2015
 SAMR21 XPro 256 2014
 Nordic NRF52840 DK 512 2018

 Figure 1: Flash Size across IoT Platforms

 Figure 1 shows a variety of older and more recent low-power
 platforms. Modern microcontrollers typically have 128-512 kB of code
 flash. Applications often struggle with these limits on code flash,
 and rarely leave code space unused. Embedded systems are application
 specific, and use their limited available resources toward different
 ends. Despite this, they still rely on a small number of reusable
 OSes for basic abstractions.

 To support the highly constrained applications and devices for which
 embedded OSes are used, embedded OSes must be minimal. However, the
 manner in which they must be minimal varies - some applications
 require minimal use of radio energy, which can require code size
 consuming techniques like compression, while others require tiny/low
 cost MCUs without space for those mechanisms. To support this
 variety, OSes have compile-time flags to include or exclude parts of
 the system or networking stack (contiki,mbedos,contiki-ng). Some
 systems take a more extreme approach, dynamically generating the
 minimum code to compile from the application itself (tinyos). Part
 of this minimalist focus is that until application developers demand
 certain features, OSes are likely to leave them out entirely (a
 requirement often specified in contribution guides - contiki-ng).
 These techniques are critical to ensuring a given OS can support a
 wide range of embedded platforms, and influence the implementation of
 network protocols.

Ayers & Levis Expires January 14, 2021 [Page 5]

Internet-Draft Design-Low July 2020

3. 6LoWPAN Today

 The original 6LoWPAN working group charter stated "The Working Group
 will generate the necessary documents to ensure interoperable
 implementations of 6LoWPAN networks". However looking at
 implementations today, we find that each includes a different subset
 of the protocol. Source code shows this is due to concerns with code
 size. Experiences with a new implementation verify these concerns.

 Feature Fail A 6LoWPAN receiver has much less flexibility than a
 sender: it must be able to process any valid compression it receives.
 Figure 2 shows the receiver features supported by 6 major open-source
 6LoWPAN stacks. Some, such as TinyOS, are mostly developed and used
 in academia. Others, such as ARM Mbed and Nest's OpenThread, are
 developed and supported commercially. Contiki and Contiki-NG sit
 somewhere in the middle, having both significant academic and
 commercial use. Riot is an open-source OS with hundreds of
 contributors for industrial, academic, and hobbyist use. Two widely
 used open source stacks excluded from this analysis are LiteOS
 [lite-os] and Zephyr [zephyr] -- they are excluded because LiteOS
 uses the same 6LoWPAN library (LWIP) used in MBED-OS, and Zephyr
 simply imports OpenThread.

 In almost all cases, each stack's support for features is symmetric
 for sending and receiving. There are significant mismatches in
 feature support between stacks. These mismatches lead to
 deterministic cases when IP communication fails. We verified these
 failures by modifying existing network applications and testing them
 on hardware, using Wireshark to verify packets were compressed and
 formatted as we expected when receivers failed to decode packets.
 Every implementation pair fails for some type of packet which can be
 organically generated by one of the stacks. This result may be
 surprising when compared to prior work which demonstrated successful
 interoperability, such as [RPL-interop]. However, this early success
 preceded the release of RFC 6282, which increased the complexity (and
 overhead) of 6LoWPAN.

https://datatracker.ietf.org/doc/html/rfc6282

Ayers & Levis Expires January 14, 2021 [Page 6]

Internet-Draft Design-Low July 2020

 Feature Stack
 ------------------------------------- ------- -- -- ---- --- ------
 Contiki NG OT Riot Arm TinyOS
 ------------------------------------- ------- -- -- ---- --- ------
 Uncompressed IPv6 o o o o o
 6LoWPAN Fragmentation o o o o o o
 1280 byte packets o o o o o o
 Dispatch_IPHC header prefix o o o o o o
 IPv6 Stateless Address Compression o o o o o o
 Stateless multicast addr compression o o o o o o
 802.15.4 16 bit short address support o o o o o
 IPv6 Address Autoconfiguration o o o o o o
 Stateful Address Compression o o o o o o
 Stateful multicast addr compression o o o
 TC and Flow label compression o o o o o o
 NH Compression: Ipv6 (tunneled) o o o
 IPv6 NH Compression: UDP o o o o o o
 UDP port compression o o o o o o
 UDP checksum elision o
 Compression + headers past first frag o o
 Compression of IPv6 Extension Headers ~ ~ o o
 Mesh Header o o ~
 Broadcast Header o
 Regular IPv6 ND o o o o ~

RFC 6775 6LoWPAN ND o o
RFC 7400 Generic Header Compression

 ------------------------------------- ------- -- -- ---- --- ------
 ~ = Partial Support

 Figure 2: 6LoWPAN Interoperability Matrix

https://datatracker.ietf.org/doc/html/rfc6775
https://datatracker.ietf.org/doc/html/rfc7400

Ayers & Levis Expires January 14, 2021 [Page 7]

Internet-Draft Design-Low July 2020

 +-----------+---------+-------------+------+----------------+
 | Stack Code Size Measurements (kB) |
 +-----------+---------+-------------+------+----------------+
 | | 6Lo-All | Compression | Frag | Mesh/Bcast Hdr |
 +-----------+---------+-------------+------+----------------+
 | Contiki-NG| 6.2 | 3.4 | 1.9 | N/A |
 | Contiki | 11.3 | 6.0 | 3.3 | N/A |
 | OT | 26.6 | 20.0 | 1.3 | 4.5 |
 | Riot | 7.5 | >4.7 | 1.5 | N/A |
 | Arm Mbed | 22.1 | 18.0 | 3.1 | 1331 |
 | TinyOS | 16.2 | ---- | ---- | 0.6 |
 +-----------+---------+-------------+------+----------------+

 Figure 3: 6LoWPAN stack code size for 6 open source stacks. The code
 size varies by over a factor of 4, in part due to different feature
 sets. Compression dominated the code requirements of each stack.
 Individual components do not add up to total as some size cannot be
 clearly attributed to any subcomponent. TinyOS's whole-program
 optimization model precluded separating out subcomponents, and only
 includes incomplete mesh header support.

 Why?

 IP communication can consistently fail in low-power networks, despite
 the presence of succinct standards (RFC 6282 + RFC 4944 is 52 pages)
 designed for low-power devices. Worse, this failure is silent: the
 receiver will simply drop the packet. Examining the documentation
 and implementation of each stack, code size concerns motivated
 feature elision. Mbed, Riot, and Contiki even provide compile-time
 flags to remove additional features for particularly constrained use
 cases.

 Figure 3 shows a break down of the code size of each stack.
 Compression dominates the code size of 6LoWPAN implementations, and
 in several cases 6LoWPAN's size is comparable to the whole rest of
 the IPv6 stack. The Contiki and Contiki-NG implementations are
 significantly smaller than the others in part because they elide
 significant and complex features. The ARM Mbed IPv6 stack uses 45kB
 of flash. This is nearly 1/3 of the available space on a CC2650,
 just for IPv6: it does not include storage, sensors, the OS kernel,
 cryptography, higher layer protocols, signal processing, or
 applications.

 Can a careful developer implement a leaner, fully-featured stack? To
 answer this question, we implemented our own 6LoWPAN stack. Our
 open-source implementation is written in Rust, for Tock, a secure
 embedded OS [tock].

https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc4944

Ayers & Levis Expires January 14, 2021 [Page 8]

Internet-Draft Design-Low July 2020

 Our experiences support the comments and documentation of the other
 stacks. We surpassed the size of the Contiki-NG and Riot 6LoWPAN
 code before adding support for recursive compression of IPv6 or the
 mesh and broadcast headers. We noted several aspects of the protocol
 required surprisingly complex code to properly handle. For example,
 6LoWPAN requires IPv6 tunneled inside a compressed packet to compress
 interior headers as well. This requires the decompression library to
 support recursive invocation, which increases minimum execution stack
 sizes and makes tracking buffer offsets during decompression more
 difficult. Refusing to support tunneled IPv6 packets (e.g., Contiki)
 greatly simplified the code. Another example: headers in the first
 6LoWPAN sub-IP fragment must be compressed, while headers in
 subsequent fragments must not be compressed. Given that low-power
 link layers have variable length headers, correctly determining
 exactly where to fragment and what should be compressed requires
 complex interactions between layers of the stack. Finally, 6LoWPAN
 requires support for out-of-order reception of fragments, potentially
 from different packets. This forced our receiver to store and track
 state for a collection of received packets, preventing reliance on a
 single global receive buffer. The exercise of implementing a 6LoWPAN
 stack from the ground up affirmed that code size concerns encourage
 feature elision.

 Why does it matter?

 For any 6LoWPAN implementation, there exists a border router
 implementation that can connect it to the broader Internet. But this
 status-quo model of connectivity forces vertical integration and
 fails to meet the original design goals of 6LoWPAN, for two reasons.

 First, a 6LoWPAN gateway can not know how to safely compress packets
 for different nodes, unless it communicates only with devices
 produced by the same vendor. As a result, for a coverage area
 containing devices produced by 5 different vendors, 5 gateways are
 required. If not for feature mismatches, a single gateway would
 suffice. Second, the current situation significantly limits the
 potential for range extension via mesh topologies. Most existing
 6LoWPAN meshes rely on "route-over" mesh routing at the network
 layer, which requires that each node can at least partially
 decompress and recompress IP headers when forwarding. Mesh-under
 routing is no better, as implementation of the mesh header is not
 universal (see Figure 2). Poor interoperability worsens the
 usability, range, cost, and efficiency of these networks.

Ayers & Levis Expires January 14, 2021 [Page 9]

Internet-Draft Design-Low July 2020

4. Traditional Principles: Not Low-Power

 Over the past 45 years, the Internet community has coalesced on a
 small number of design principles. Connectivity through
 interoperability is a key premise of the Internet. Principles such
 as layering and encapsulation support composing protocols in new ways
 (e.g., tunneling), while the end-to-end principle [end-to-end] allows
 building a robust network out of an enormous and complex collection
 of unreliable parts. The robustness principle asserts that
 implementations should make no assumptions on packets they receive:
 bugs, transmission errors, and even memory corruption can cause a
 device to receive arbitrarily formatted packets. It also asserts
 that an implementation must be ready to receive any and all properly
 formatted packets. This aspect of the principle is often attributed
 to John Postel as Postel's Law, first written down in the initial
 specification of IPv4: "In general, an implementation should be
 conservative in its sending behavior, and liberal in its receiving
 behavior."

 Protocols often have optional features ("MAY, SHOULD, and OPTIONAL"
 in RFC language). Implicitly, due to Postel's Law, a receiver needs
 to handle either case. This scenario creates an asymmetry, where
 sender code can have reduced complexity but receiver code must be
 large and complex.

 We need to think about low-power protocols differently. They need
 new principles to help guide their design. These principles need to
 embrace that there is no "one size fits all" design, while defining
 how devices choosing different design points interoperate.
 Flexibility needs to exist not only for senders, but also receivers,
 without harming interoperability.

5. Three Principles

 This section describes three protocol design principles which prevent
 failures in low-power protocols. These principles are absolutely
 necessary to ensure interoperable implementations in this space, and
 should be closely observed.

5.1. Principle 1: Capability Spectrum

 A low power protocol should be deployable/installable on devices
 which are at the low end of code and RAM resources. Rather than
 require every device pay the potential energy costs of fewer
 optimizations, a protocol should support a linear spectrum of device
 capabilities.

Ayers & Levis Expires January 14, 2021 [Page 10]

Internet-Draft Design-Low July 2020

 This may seem familiar -- the IP [RFC0791] and TCP [RFC0793]
 specifications provide optional fields which can be used by endpoints
 at their leisure; many non-standard HTTP headers will be ignored
 unless both client and server support them; TLS ciphersuite support
 is often asymmetrical. But this principle is different. For those
 examples, no linear spectrum exists -- support for any particular
 capability is generally unrelated to support for any other. Checking
 for support of any feature requires explicit enumeration of each,
 making it impossible to effectively compress such options. A non-
 linear spectrum requires storing feature support for every neighbor
 in RAM, or re-discovering capabilities on every exchange.

 Low power protocols require simpler capability management. A low
 power protocol should define a capability spectrum with a clear
 ordering in which especially resource constrained devices can reduce
 code size or RAM use by eliding features. Such a spectrum makes a
 protocol usable by extremely low resource devices without forcing
 more resourceful devices to communicate inefficiently.

 This capability spectrum should be a linear scale. For a device to
 support capability level N, it must also support all lower
 capability levels. More complex configuration approaches (e.g., a
 set of independent options) might allow for a particular
 implementation to be more efficient, picking the features that give
 the most benefit for the least added complexity. However, this sort
 of optimization makes interoperability more difficult, as two devices
 must negotiate each specific feature to use.

5.2. Principle 2: Capability Discovery

 The second principle follows from the first: if different capability
 levels exist, there should be a mechanism for two devices to
 determine what level to communicate with.

 The capability negotiation we propose here differs from capability
 discovery mechanisms built for traditional systems, such as IP Path
 MTU discovery or the Link Layer Discovery Protocol (LLDP). IP Path
 MTU discovery relies on continual probing until an acceptable value
 is discovered. LLDP requires regular, detailed capability
 advertisements at a fixed interval. The energy overhead of network
 probing or advertising is unacceptable in most low power
 environments. Capability discovery in low power networks should
 require no more than one failure between any two neighbors, even if
 this slightly increases the overhead per error. Proactive capability
 discovery should be built into baseline communication required for
 tasks like neighbor discovery or route maintenance. Further,
 assumptions for traditional systems that prohibit storing per-
 endpoint state do not apply, as nodes store information about link-

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc0793

Ayers & Levis Expires January 14, 2021 [Page 11]

Internet-Draft Design-Low July 2020

 layer neighbors, _not IP endpoints_. This is needed because low-power
 networks with route over topologies frequently involve decompression
 and re-compression at each hop to enable forwarding. Low power nodes
 have few neighbors, so storing a few bits of state for each is
 feasible and can significantly reduce the amount of radio energy
 needed for communication. The code size cost of storing state is
 small compared to the cost of complex compression mechanisms.

 In a low power network with capability discovery, if two devices wish
 to communicate, they default to the lower of their supported
 capability levels. E.g. a level 2 and a level 4 device should
 communicate at level 2. One offshoot of this principle is that it
 requires implementations have symmetric capabilities for send and
 receive - no benefits can be realized from an asymmetric
 implementation.

5.3. Principle 3: Explicit and Finite Bounds

 Protocols must specify explicit and reasonable bounds on recursive or
 variable features so implementations can bound RAM use. This allow
 implementations to safely limit their RAM use without silent
 interoperability failures. This also ensures that capability
 discovery is sufficient for interoperability.

 The idea of imposing bounds is, on its own, not unique to this space.
 TCP enforces a finite limit of 40 bytes for TCP options which may be
 appended to the TCP header, as does IPv4. DHCP allows for the
 communication of maximum DHCP message sizes. In the space of low
 power Internet protocols, however, this idea _must be pervasive._
 Notably, the original designers of a specification may not know
 exactly what these values should be. This is not a new problem: TCP
 congestion control, for example, had to specify initial congestion
 window values. In this space, bounds should initially be very
 conservative. Over time, if increasing resources or knowledge
 suggests they should grow, then future devices will have the onus of
 using fewer resources to interoperate with earlier ones. The
 capability spectrum defined in the previous two principles can be
 helpful in this regard.

6. A Principled 6LoWPAN

 This section proposes how to apply the three principles in the
 previous section to 6LoWPAN through specific modifications to the
 protocol. These modifications ensure that two 6LoWPAN devices can
 communicate even if they choose different code size/energy efficiency
 tradeoffs. We refer to this modified protocol as Principled 6LoWPAN
 (P6LoWPAN).

Ayers & Levis Expires January 14, 2021 [Page 12]

Internet-Draft Design-Low July 2020

 This application of our principles is not intended as a suggestion
 that these changes be made immediately to 6LoWPAN, as modifying an
 established protocol is a complex task very different from
 constructing new protocols. Instead, this application is a tool for
 evaluating these principles, and an example for how they should be
 applied.

6.1. Principle 1: Capability Spectrum

 We propose replacing the large collection of "MUST" requirements --
 the features in Figure 2 --into 6 levels of functionality. These
 "Capability Levels" are depicted in Figure 4.

 +----------------+-----------------------------------+
 | **Capability** | **Basic Description / Added |
 | | Features** |
 +================+===================================+
 | Level 0 | Uncompressed IPv6 + ability to |
 | | send ICMP errors |
 +----------------+-----------------------------------+
	- Uncompressed IPv6
	- 6LoWPAN Fragmentation
	(Fragment Header)
	- 1280 Byte Packets
	- Stateless decompression of
	source addresses
+----------------+-----------------------------------+	
Level 1	IPv6 Compression Basics +
	Stateless Addr Compression
+----------------+-----------------------------------+	
	- Support for the
	Dispatch_IPHC Header Prefix
	- Correctly handle elision of
	IPv6 length and version
	- Stateless compression of all
	unicast addresses
	- Stateless compression of
	multicast addresses
	- Compression + 16 bit
	link-layer addresses

Ayers & Levis Expires January 14, 2021 [Page 13]

Internet-Draft Design-Low July 2020

 | | - IPv6 address |
 | | autoconfiguration |
 +----------------+-----------------------------------+
 | Level 2 | Stateful IPv6 Address Compression |
 +----------------+-----------------------------------+
	- Stateful compression of
	unicast addresses
	- Stateful compression of
	multicast addresses
+----------------+-----------------------------------+	
Level 3	IPv6 Traffic Class and Flow Label
	Compression
+----------------+-----------------------------------+	
	- Traffic Class compression
	- Flow Label Compression
	- Hop Limit Compression
+----------------+-----------------------------------+	
Level 4	Next Header Compression + UDP
	Port Compression
+----------------+-----------------------------------+	
	- Handle Tunneled IPv6
	correctly
	- Handle the compression of the
	UDP Next Header
	- Correctly handle elision of
	the UDP length field
	- Correctly handle the
	compression of UDP ports
	- Handle headers past the first
	fragment, when first fragment
	compressed.
+----------------+-----------------------------------+	
Level 5	Entire Specification
(all routers)	
+----------------+-----------------------------------+	
	- Support the broadcast header
	and the mesh header
	- Support compression of all
	IPv6 Extension headers
 +----------------+-----------------------------------+

Ayers & Levis Expires January 14, 2021 [Page 14]

Internet-Draft Design-Low July 2020

 Figure 4: Capability Spectrum

 These levels prioritize features which provide the greatest energy
 savings per byte of added code size, based off our code size
 measurements and the number of bits saved by each additional
 compression mechanism. They allow for a wide range of code size/
 efficiency tradeoffs.

 For example, addresses dominate an uncompressed IPv6 header. Level 0
 devices only support compressed source addresses, while level 1
 devices support all stateless address compression. In one early
 design of this spectrum, Level 0 supported only uncompressed packets.
 However, this raises a problem with ICMP error generation. If a node
 cannot decompress the source address of a received packet, it cannot
 send ICMP errors. ICMP errors are required for capability discovery.
 Stateful compression depends on an out-of-band signal to set up
 state, such that nodes only send statefully compressed packets to
 nodes who also support it. Therefore decompressing stateless source
 addresses is a minimum requirement.

 The classes in this scale do not precisely reflect the current
 feature support of the implementations described in Section 3. For
 example, Contiki supports UDP port compression (level 4) but does not
 support 802.15.4 short addresses (level 2) or stateful multicast
 compression (level 3): following this formulation, Contiki only
 provides level 1 support. If Contiki supported 16-bit addresses, it
 would provide level 2 support. A concrete spectrum such as the one
 above gives stack designers a structure and set of guidelines on the
 order in which to implement features. Based on our experiences
 developing a 6LoWPAN stack, we believe that if this scale existed as
 part of the initial specification, implementations would have made an
 effort to adhere to it.

 One additional advantage of this spectrum is that it allows for some
 future additions to the P6LoWPAN specification without breaking
 interoperability between new and old implementations. For example,
 our scale does not include support for Generic Header Compression
 [RFC7400] because none of the open-source stacks we analyzed
 implement it. Despite this, support for this RFC could easily be
 added as a new class on this linear scale (as Class 6), and devices
 supporting it would know to not use it when communicating with lower
 class implementations.

 This spectrum requires that a node store 3 bits of state for each
 neighbor. Given that low-power nodes often store ten or more bytes
 for each entry in their link table (link quality estimates,
 addresses, etc.), this cost is small. 6LoWPAN already assumes that

https://datatracker.ietf.org/doc/html/rfc7400

Ayers & Levis Expires January 14, 2021 [Page 15]

Internet-Draft Design-Low July 2020

 routers are more resourceful devices, P6LoWPAN routers are required
 to be level 5.

6.2. Principle 2: Capability Discovery

 We propose two mechanisms by which P6LoWPAN performs capability
 discovery: neighbor discovery (ND) and ICMP\@. Neighbor discovery
 [RFC4861] is analogous to ARP in IPv4: it allows IPv6 devices to
 discover the link layer addresses of neighboring addresses as well as
 local gateways. Devices use neighbor discovery to proactively
 discover capability levels and ICMP to detect when incompatible
 features are used. Of the two, only ICMP is required. Neighbor
 discovery simply allows a pair of differing nodes to avoid an initial
 ICMP error, and allows for optimization of host-router communication
 during neighbor discovery.

 ICMP: We propose adding a new ICMPv6 message type--P6LoWPAN Class
 Unsupported--which a device sends in response to receiving 6LoWPAN
 features it does not understand. This error encodes the device's
 capability level. A node receiving such an error updates its link
 table entry with the capability level. In the future, any packets
 sent to that address use at most the supported level.

 Neighbor discovery: We propose adding an IPv6 ND option that allows
 a device to communicate its capability class during network
 association. This option would be included in Router Solicitations
 and Neighbor Advertisements, and would allow all devices that obtain
 link-layer addresses via ND to also know how to send packets which
 that neighbor can receive. When a node uses ND to resolve an IP
 address to a link layer address, it learns the supported capability
 level as well as the link layer address. This option minimizes the
 energy cost of communicating capabilities. It is worth noting that

RFC 7400 already employs a similar method for communicating whether
 devices implement General Header Compression: adding such an option
 is clearly viable [RFC7400].

6.3. Principle 3: Provide Reasonable Bounds

Section 3 discussed two missing bounds which affect 6LoWPAN
 interoperability: limits on header decompression and bounds on
 recursion when decompressing tunneled IPv6.

 For P6LoWPAN, we propose that header decompression be bounded to 51
 bytes. This bound allows for significant RAM savings in
 implementations that decompress first fragments into the same buffer
 in which the fragment was originally held. 51 bytes is a good
 tradeoff between RAM savings and how frequently we expect such a
 bound would force packets to be sent uncompressed. A 51 byte limit

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc7400
https://datatracker.ietf.org/doc/html/rfc7400

Ayers & Levis Expires January 14, 2021 [Page 16]

Internet-Draft Design-Low July 2020

 allows for transmission of a packet containing a maximally compressed
 IP header (+38 bytes), a maximally compressed UDP header (+6 bytes),
 and one maximally compressed IPv6 extension header (+7 bytes). This
 allows saving hundreds of bytes of RAM, without jeopardizing
 interoperability. Packets requiring more decompression than this are
 extremely rare, and could be sent uncompressed. How rare? It is
 only possible to surpass this limit if tunneled IPv6 is used or
 multiple IPv6 extension headers are present. As of 2014, a real-
 world study of IPv6 extension header use found that 99% of packets
 with _multiple_ extension headers were dropped in the real Internet,
 as published at IETF 90.

 Second, we propose that headers for tunneled IPv6 should not be
 compressed. The primary motivation for this feature was from the RPL
 protocol [RFC6550], as discussed in Section 3. However, the fact
 that RPL must tunnel IPv6 in this way is generally agreed to be a
 problem and a wart in its design that should be avoided when
 possible. This change allows implementations to avoid recursive
 functions to decompress these headers, and instead use simple if/else
 statements.

7. Evaluation

 This section evaluates the costs of applying our principles to
 6LoWPAN. The principles are written such that interoperability comes
 by construction, and thus interoperability of the modified protocol
 cannot be directly evaluated without observing implementations
 written by different stakeholders. But indirect evaluation is
 possible. Can a reasonable set of capability levels provide a good
 range of implementation complexity from which a developer can choose?
 Is the overhead of the proposed mechanisms low enough to make them
 viable? Are the savings afforded by a linear capability spectrum
 worth the associated limitations? We find the incremental costs of
 capability discovery mechanisms is small, adding 172-388 bytes of
 code in the worst case. We find that the capability spectrum allows
 meaningful savings in code size and memory usage. Finally, we find
 capability discovery has a low run-time performance cost when a
 linear spectrum is used.

7.1. Implementations

 First, we implemented the proposed P6LoWPAN on the Contiki-NG 6LoWPAN
 stack, modifying it such that a compile-time option determines which
 features of 6LoWPAN are compiled. We selected Contiki-NG because it
 has the smallest 6LoWPAN stack of those tested, so any overheads the
 mechanisms introduce would be most pronounced. Our changes required
 modifying 500 lines of code relative to the head of the 4.2 release
 of Contiki-NG. We did not add additional 6LoWPAN features which were

https://datatracker.ietf.org/doc/html/rfc6550

Ayers & Levis Expires January 14, 2021 [Page 17]

Internet-Draft Design-Low July 2020

 absent from the original Contiki-NG 6LoWPAN stack. Our code size
 numbers therefore represent a conservative lower bound of the total
 possible savings. All code sizes provided in this section are
 compiled with the Texas Instruments CC2650 as the target.

 We also added ICMP and ND support for capability discovery. The
 updated stack responds to incompatible 6LoWPAN messages with an ICMP
 error, and communicates its capability level in Router Solicitation
 messages using the 6CIO prefix originally defined in [RFC7400]. It
 stores the capability class of each node in its link table, and
 compresses IPv6 packets by the maximum amount supported by the
 destination.

 Finally, we implemented a second modified 6LoWPAN stack in Contiki-
 NG, which does not follow the recommendation of using a linear
 capability spectrum. In this modified implementation, each node can
 select any of the 6LoWPAN features it chooses. We refer to this
 implementation as FLEX-6LoWPAN. For this alternative policy, we
 isolated 26 features of 6LoWPAN as single bit flags in a 32 bit
 bitfield. Thus, FLEX-6LoWPAN stores and communicates capabilities
 using 4 byte objects. FLEX-6LOWPAN also supports the added
 granularity required to maximally compress outgoing messages intended
 for a device supporting any specific combination of features. We did
 not add back in any 6LoWPAN features which the Contiki-NG stack did
 not originally support. This second implementation required
 modifying about 300 additional lines of code from the P6LoWPAN
 implementation.

7.2. Compile-Time Costs

 Figure 5 shows the size of the original Contiki-NG 6LoWPAN stack
 compiled at each possible capability level. Each capability level
 adds between 0.25 and 1.05 kB of code, and the spectrum enables
 implementations to cut the size of the 6LoWPAN stack by up to 45%.
 The code size cost of adding capability discovery, using the P6LoWPAN
 implementation with the linear capability spectrum, is shown in
 Figure 6. Capability discovery adds 178-388 bytes, a fraction of the
 size which implementations can save by supporting lower capability
 levels. The code added for communication varies across capability
 levels because the number of code paths for ICMP error generation and
 compression changes.

https://datatracker.ietf.org/doc/html/rfc7400

Ayers & Levis Expires January 14, 2021 [Page 18]

Internet-Draft Design-Low July 2020

 Capability Code Size (kB) Increase (kB)
 ---------------- -------------------- -------------------
 Level 0 3.2 \-
 Level 1 4.2 1.0
 Level 2 4.8 0.6
 Level 3 5.1 0.3
 Level 4 5.6 0.5
 Level 5 6.2 0.6
 ---------------- -------------------- -------------------

 Figure 5: 6LoWPAN code size of different capabilities levels in
 Contiki-NG. The spectrum spans a nearly 100% increase in code size.

 Capability Base w/Discovery Increase
 ---------------- ---------- ----------------- --------------
 Level 0 3.2 3.4 188 bytes
 Level 1 4.2 4.4 260 bytes
 Level 2 4.8 5.2 388 bytes
 Level 3 5.1 5.4 340 bytes
 Level 4 5.6 5.9 296 bytes
 Level 5 6.2 6.3 172 bytes
 ---------------- ---------- ----------------- --------------

 Figure 6: The cost of implementing capability discovery in Contiki-NG
 is on average less than 5% of the total 6LoWPAN size; the maximum
 size reduction from choosing a lower capability level is 10x the
 discovery cost.

 Figure 7 presents the compile-time costs of using an arbitrary
 bitfield instead of a linear capability spectrum by comparing our
 P6LoWPAN implementation with our FLEX-6LoPWAN implementation. The
 bitfield approach requires 32 bits per neighbor to store
 capabilities, instead of 3 bits. More importantly, it complicates
 determining the allowable compression between two nodes, as
 demonstrated by the code size increase. The important takeaway here
 is that opting for a less restrictive set of feature combinations
 mitigates much of the savings provided by implementing capabilities.
 For example, a FLEX-6LoWPAN device with the equivalent of level 4
 capabilities requires more code space than a level 5 P6LoWPAN device
 - the linear capability spectrum makes a difference. The code size
 addition for FLEX-6LoWPAN is a conservative lower bound, as we did
 not need to add checks for handling 6LoWPAN compression features that
 Contiki-NG does not support.

Ayers & Levis Expires January 14, 2021 [Page 19]

Internet-Draft Design-Low July 2020

7.3. Run-time Performance

 ND Cost 6LoWPAN ND communication [RFC6775] is host-initiated and
 flows through routers (which must be level 5), and nodes store
 neighbor capability levels alongside link layer addresses: thus there
 is no possibility of communication failures due to capability
 mismatches. Therefore the cost of capability discovery in networks
 that use IPv6 ND is exclusively that certain ND messages become
 longer (router solicitations and neighbor advertisements are sent
 with an added capability option). To put this added cost in
 perspective, The equation below shows the total link-layer payload
 bytes sent/received for ND by a node in its initial wake-up period.
 This equation assumes the configuration described in RFC 6775 as the
 "Basic Router Solicitation Exchange" - route over topology, 1 6LoWPAN
 context, 1 on-link prefix, and the host requires address
 registration. All variables not affected by the use of capability
 discovery are assigned the minimum possible value for the scenario
 discussed, so that the overhead of capability discovery represents a
 worst case.

 If C = total link layer payload sent/recieved for ND, and N =
 endpoints requiring address resolution:

 C = Router Soliciation {RS} + Min. IP Hdr {2} + Router Advertisement
 {104} + Min. IP Hdr {2} + (Neighbour Solicitation {24} + Min. IP Hdr
 {2})*N + (Neighbour Advertisement {24} + Min. IP Hdr {2})*N + Address
 Registration Options in first NS {24} + Address Registration Options
 in first NA {16}.

 Figure 8 shows the values of RS and NA for each 6LoWPAN
 implementation, and the resulting total ND cost. Notably, use of an
 arbitrary bitfield increases the size of the capability option by 4
 bytes, making use of existing ND options like the 6CIO option
 impossible. In both cases the additional bytes added for capability
 discovery are small compared to the total cost of ND(<= 8% linear
 spectrum / <= 16% arbitrary bitfield).

 ICMP Cost In networks that do not use IPv6 ND the cost of
 capability discovery is the energy/latency required for one ICMP
 packet per failure between any two nodes. For P6LoWPAN capability
 based failures can only happen in one direction, so the size of this
 link-layer payload is:

 C_icmp = Compressed IP Header Size + 4

 For FLEX-6LoWPAN C_icmp = 48, because the recipient does not know the
 capabilities of the sender, and thus must send an uncompressed packet
 to ensure successful reception of its own capabilities. This example

https://datatracker.ietf.org/doc/html/rfc6775
https://datatracker.ietf.org/doc/html/rfc6775

Ayers & Levis Expires January 14, 2021 [Page 20]

Internet-Draft Design-Low July 2020

 reveals why use of an arbitrary bitfield is so undesirable - the
 ability to compress headers in ICMP errors can reduce overhead by a
 factor of 4 or more (in the common case of 8 byte compressed
 headers).

 -- Linear Spectrum Arbitrary Bitfield
 ------------------- --------------------- ------------------------
 6LoWPAN Code Size 5.9 kB 6.5 kB
 RAM per neighbor 19 Bytes 22 Bytes
 ------------------- --------------------- ------------------------

 Figure 7: Resource requirements for a 6LoWPAN stack in Contiki-NG
 using a linear capability spectrum vs. using an arbitrary capability
 bitfield.

 -- RS NA C (Total ND Cost)
 -------------- --------------- --------------- ---------------------
 6LoWPAN 20 24 168 + 52*N
 P6LoWPAN 24 28 172+56*N
 FLEX-6LoWPAN 28 32 176+60*N
 -------------- --------------- --------------- ---------------------

 Figure 8: Total ND cost for each implementation

8. Discussion and Conclusions

 A new generation of low-power devices face a connectivity dilemma:
 Internet protocols are not designed for energy efficiency, but
 compression and other energy saving adaptations takes up precious
 code space. Device deployments specialized for single-vendor local
 networks make trade-offs specific to their application requirements.
 As a result, IP communication between IP enabled devices fails. This
 problem is not specific to 6LoWPAN -- Iova et. al. recently noted
 similar issues in the RPL protocol: "RPL has too large of a footprint
 for resource-constrained devices, and requires all devices in a
 network to run the same mode of operation, limiting heterogeneity"
 [iova].

 Part of the challenge is that some traditional protocol design
 principles do not apply well to the low-power setting. We present
 three design principles for low-power protocols that attempt to
 remedy this. These principles explicitly acknowledge the unique code
 space/energy tradeoffs of low-power devices.

 Looking forward, considering this tension is critical for protocol
 designers in this ecosystem of diverse hardware capabilities and

Ayers & Levis Expires January 14, 2021 [Page 21]

Internet-Draft Design-Low July 2020

 application tradeoffs. 6LoWPAN is not the only low power Internet
 protocol -- the low power space uses its own routing protocols,
 address discovery protocols, and application layer protocols
 [RFC6550] [RFC7252]. Additional protocols will follow as the space
 matures. Many of these protocols will be initially developed outside
 the IETF -- Jonathan Hui was a graduate student when he presented the
 first complete IPv6-based network architecture for sensor nets [hui],
 as was Adam Dunkels when he created Contiki. We present a roadmap
 for how these principles can reframe the discussion of how to connect
 the next hundred billion devices to the Internet.

9. Definitions

9.1. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

10. Security Considerations

 This informational document does have some implications for security
 if followed.

 First, capability advertisements of the type recommended in this
 document are liable to leak some information regarding the type of
 device sending those advertisements. In any situation for which this
 information is privileged, such advertisements must be suppressed.

 Second, implementations should be careful not to take for granted
 that the suggestions in this document will be implemented by all
 other transmitting devices. Accordingly, though this document
 recommends reasonable bounds, receivers still must be careful to
 prevent buffer overflows in the event these bounds are not followed.

11. IANA Considerations

 This document has no actions for IANA.

12. References

12.1. Normative References

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <https://www.rfc-editor.org/info/rfc4861>.

https://datatracker.ietf.org/doc/html/rfc6550
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4861
https://www.rfc-editor.org/info/rfc4861

Ayers & Levis Expires January 14, 2021 [Page 22]

Internet-Draft Design-Low July 2020

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC6282] Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 DOI 10.17487/RFC6282, September 2011,
 <https://www.rfc-editor.org/info/rfc6282>.

 [RFC6775] Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C.
 Bormann, "Neighbor Discovery Optimization for IPv6 over
 Low-Power Wireless Personal Area Networks (6LoWPANs)",

RFC 6775, DOI 10.17487/RFC6775, November 2012,
 <https://www.rfc-editor.org/info/rfc6775>.

12.2. Informative References

 [contiki] Dunkels, A., "Contiki OS", n.d.,
 <http://www.contiki-os.org/>.

 [contiki-ng]
 Duquennoy, S., "Contiki-NG", n.d.,
 <https://github.com/contiki-ng/contiki-ng>.

 [end-to-end]
 Clark, D., "End-to-end Arguments in System Design", n.d..

 [hui] Culler, D., "IP is Dead, Long Live IP for Wireless Sensor
 Networks", n.d..

 [iova] Kiraly, C., "RPL The Routing Standard for the Internet of
 Things...Or Is It?", n.d..

 [lite-os] Huawei, ., "LiteOS", n.d., <https://liteos.github.io/>.

 [mbedos] ARM, ., "ARM MbedOS", n.d., <https://os.mbed.com/>.

 [probe-it-plugtest]
 Huang, X., "Tehcnical Interoperability 6LoWPAN-CoAP Report
 from Interop Event", n.d..

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <https://www.rfc-editor.org/info/rfc791>.

https://datatracker.ietf.org/doc/html/rfc4944
https://www.rfc-editor.org/info/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282
https://www.rfc-editor.org/info/rfc6282
https://datatracker.ietf.org/doc/html/rfc6775
https://www.rfc-editor.org/info/rfc6775
http://www.contiki-os.org/
https://github.com/contiki-ng/contiki-ng
https://liteos.github.io/
https://os.mbed.com/
https://datatracker.ietf.org/doc/html/rfc791
https://www.rfc-editor.org/info/rfc791

Ayers & Levis Expires January 14, 2021 [Page 23]

Internet-Draft Design-Low July 2020

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
 Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
 JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
 Low-Power and Lossy Networks", RFC 6550,
 DOI 10.17487/RFC6550, March 2012,
 <https://www.rfc-editor.org/info/rfc6550>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7400] Bormann, C., "6LoWPAN-GHC: Generic Header Compression for
 IPv6 over Low-Power Wireless Personal Area Networks
 (6LoWPANs)", RFC 7400, DOI 10.17487/RFC7400, November
 2014, <https://www.rfc-editor.org/info/rfc7400>.

 [RFC7668] Nieminen, J., Savolainen, T., Isomaki, M., Patil, B.,
 Shelby, Z., and C. Gomez, "IPv6 over BLUETOOTH(R) Low
 Energy", RFC 7668, DOI 10.17487/RFC7668, October 2015,
 <https://www.rfc-editor.org/info/rfc7668>.

 [riot] Berlin, F., "riot OS", n.d., <https://www.riot-os.org/>.

 [RPL-interop]
 Ko, J., "Contikierpl and tinyrpl - Happy Together", n.d..

 [tinyos] Levis, P., "TinyOS An Operating System for Sensor
 Networks", n.d., <https://link.springer.com/

chapter/10.1007/3-540-27139-2_7>.

 [tock] Levy, A., "Multiprogramming a 64kB Computer Safely and
 Efficiently", n.d..

https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6550
https://www.rfc-editor.org/info/rfc6550
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7400
https://www.rfc-editor.org/info/rfc7400
https://datatracker.ietf.org/doc/html/rfc7668
https://www.rfc-editor.org/info/rfc7668
https://www.riot-os.org/
https://link.springer.com/chapter/10.1007/3-540-27139-2_7
https://link.springer.com/chapter/10.1007/3-540-27139-2_7

Ayers & Levis Expires January 14, 2021 [Page 24]

Internet-Draft Design-Low July 2020

 [zephyr] Foundation, T., "zephyrOS", n.d.,
 <https://www.zephyrproject.org/>.

Authors' Addresses

 Hudson Ayers
 Stanford University
 350 Serra Mall
 Stanford, CA
 United States

 Email: hayers@stanford.edu

 Philip Levis
 Stanford University
 350 Serra Mall
 Stanford, CA
 United States

 Email: pal@cs.stanford.edu

https://www.zephyrproject.org/

Ayers & Levis Expires January 14, 2021 [Page 25]

