
TLS Working Group M. Badra
Internet-Draft LIMOS Laboratory
Intended status: Standards Track I. Hajjeh
Expires: April 27, 2008 ESRGroups
 October 25, 2007

 MTLS: TLS Multiplexing
 <draft-badra-hajjeh-mtls-03.txt>

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on April 27, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 The Transport Layer Security (TLS) standard provides connection
 security with mutual authentication, data confidentiality and
 integrity, key generation and distribution, and security parameters
 negotiation. However, missing from the protocol is a way to
 multiplex application data over a single TLS session.

 This document defines MTLS, a new TLS sub-protocol running over TLS
 (or DTLS) Record protocol. The MTLS design provides application
 multiplexing over a single TLS (or DTLS) session. Therefore, instead

https://datatracker.ietf.org/doc/pdf/draft-badra-hajjeh-mtls-03.txt
https://datatracker.ietf.org/doc/pdf/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 of associating a TLS connection with each application, MTLS allows

Badra & Hajjeh Expires April 2008 [Page 1]

Internet-Draft TLS Multiplexing October 2007

 several applications to protect their exchanges over a single TLS
 session.

1. Introduction

 HTTP over TLS [HTTPTLS], POP over TLS and IMAP over TLS [POPTLS] are
 examples of securing, respectively HTTP, POP and IMAP data exchanges
 using the TLS protocol [TLS].

 TLS ([TLS], [DTLS]) is the most deployed security protocol for
 securing exchanges, for authenticating entities and for generating
 and distributing cryptographic keys. However, what is missing from
 the protocol is the way to multiplex application data over the same
 TLS session.

 Actually, TLS (or DTLS) clients and servers MUST establish a TLS (or
 DTLS) session for each application they want to run over a transport
 layer. However, some applications may agree or be configured to use
 the same security policies or parameters (e.g. authentication method
 and cipher_suite) and then to share a single TLS session to protect
 their exchanges. In this way, this document extends TLS to allow
 application multiplexing over TLS.

 The document motivations included:

 o TLS is application protocol-independent. Higher-level protocol
 can operate on top of the TLS protocol transparently.

 o TLS is a protocol of a modular nature. Since TLS is developed in
 four independent protocols, the approach defined in this
 document can be added by extending the TLS protocol and with a
 total reuse of pre-existing TLS infrastructures and
 implementations.

 o It provides a secure VPN tunnel over a transport layer. Unlike
 "ssh-connection" [SSHCON], MTLS can run over unreliable
 transport protocols, such as UDP.

 o Establishing a single session for a number of applications
 -instead of establishing a session per application- reduces
 resource consumption, latency and messages flow that are
 associated with executing simultaneous TLS sessions.

 o TLS can not forbid an intruder to analyze the traffic and cannot
 protect data from inference. Thus, the intruder can know the
 type of application data transmitted through the TLS session.
 However, the extension defined in this document allows, by its
 design, data protection against inference.

Badra & Hajjeh Expires April 2008 [Page 2]

Internet-Draft TLS Multiplexing October 2007

1.2. Requirements language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [KEYWORDS].

2. TLS multiplexing overview and considerations

 This document defines a new TLS sub-protocol called Multiplexing TLS
 (MTLS) to handle data multiplexing, and it specifies the content
 type mtls(TBA). It extends also TLS with a new extension type (TBA)
 allowing the negotiation of data multiplexing features.

2.1. Handshake

 This document defines an extension of type "data_multiplexing". The
 "extension_data" field of this extension is zero-length.

 Based on the TLS Extensions [TLSEXT], a client and a server can, in
 an ordinary TLS handshake, negotiate the future use of MTLS. If the
 client does attempt to initiate a TLS connection using MTLS with a
 server that does not support it, it will be automatically alerted.
 For servers aware of MTLS but not wishing to use it, it will
 gracefully revert to an ordinary TLS handshake or stop the
 negotiation.

 The negotiation usually starts with the client determining whether
 the server is capable of and willing to use MTLS or not. In order to
 allow a TLS client to negotiate the application multiplexing
 functionality, a new extension type SHOULD be added to the Extended
 Client and Extended Server Hello messages.

 If the server is able of and willing to use the "data_multiplexing"
 extension, it MUST reply with an empty extension of the same type.
 Once the Handshake is complete, the client and the server SHOULD

 establish and manage many application channels using the
 requests/responses defined below.

2.1.1. Opening and closing connections

 Once the Handshake is complete, both the client and the server can
 start data multiplexing using a set of requests/responses defined
 below. All requests/requests will pass through MTLS layer and are
 formatted into MTLS packets, depending on each request/response.

 The sender MAY request the opening of many channels. For each
 channel, the MTLS layer generates and sends the following request:

Badra & Hajjeh Expires April 2008 [Page 3]

Internet-Draft TLS Multiplexing October 2007

 struct {
 uint8 type;
 opaque sender_channel_id[2];
 uint32 sender_window_length;
 uint32 sender_max_packet_length;
 opaque source_address_machine<4..7>;
 opaque source_port[2];
 opaque destination_address_machine<4..7>;
 opaque destination_port[2];
 } RequestEstablishmentChannel;

 The field "type" specifies the MTLS packet type (types are
 summarized below), the "max_packet_length" and the
 "sender_channel_id" are used as described below. The
 "source_address_machine" MAY carry either the numeric IP address or
 the domain name of the host from where the application originates
 the data multiplexing request and the "port" is the port on the host
 from where the connection originated.

 The sender initializes its "window_length" with the data length (in
 octets), specifying how many bytes the receiver can maximally send
 on the channel before receiving a new window length (available free
 space). Each end of the channel establishes a "receive buffer" and a
 "send buffer".

 The sender initializes its "max_packet_length" with the data length
 (in octets), specifying the maximal packet's length in octets the
 receiver can send on the channel.

 The "destination_address_machine" and "destination_port" specify the
 TCP/IP host and port where the recipient should connect the channel.
 The "destination_address_machine" MAY be either a domain name or a
 numeric IP address.

 The receiver decides whether it can open the channel, and replies
 with one of the following messages:

 struct {
 uint8 type;
 opaque sender_channel_id[2];
 opaque receiver_channel_id[2];
 uint32 receiver_window_length;
 uint32 max_packet_length;
 } RequestEstablishmentSuccess;

 struct {
 uint8 type;
 opaque sender_channel_id[2];
 opaque error<0..2^16>;
 } RequestEchecChannel;

Badra & Hajjeh Expires April 2008 [Page 4]

Internet-Draft TLS Multiplexing October 2007

 The field "error" conveys a description of the error.

 If an error occurs at the MTLS layer, the established secure session
 is still valid and no alert of any type is sent by the TLS Record.

 Each MTLS channel has its identifier computed as:

 channel_id = sender_channel_id" + "receiver_channel_id

 Where "+" indicates concatenation.

 The following packet MAY be sent to notify the receiver that the
 sender will not send any more data on this channel and that any data
 received after a closure request will be ignored. The sender of the
 closure request MAY close its "receive buffer" without waiting for
 the receiver's response. However, the receiver MUST respond with a
 confirmation of the closure and close down the channel immediately,
 discarding any pending writes.

 struct {
 uint8 type;

 opaque channel_id[4];
 } CloseChannel;

 struct {
 uint8 type;
 opaque channel_id[4];
 } ConfirmationCloseChannel;

2.2. MTLS sub-protocol

 The structure of the MTLS packet is described below. The
 "sender_channel_id" and "receiver_channel_id" are the same gererated
 during the connection establishment. The length conveys the data
 length of the current packet.

 Each entity maintains its "max_packet_length" (that is originally
 initialized during the connection establishment) to a value not
 bigger than the maximum size of this entity's "receive buffer". For
 each received packet, the entity MUST subtract the packet's length
 from the "max_packet_length". The result is always positive since
 the packet's length is always less than or equal to the current
 "max_packet_length".

 The free space of the "receive buffer" MAY increase in length.
 Consequently, the entity MUST inform the other end about this
 increase, allowing the other entity to send packet with length
 bigger than the old "max_packet_length" but smaller or equal than
 the new value.

Badra & Hajjeh Expires April 2008 [Page 5]

Internet-Draft TLS Multiplexing October 2007

 The entity MAY indicate this increase by sending an Acknowledgment
 packet. The Acknowledgment packet carries the available free space
 ("free_space" field in octets) the receiver of that packet can send
 on the channel before receiving a new window length.

 If the length of the "receive buffer" does not change,
 Acknowledgment packet will never be sent.

 In the case where the "receive buffer" of an entity fills up, the
 other entity MUST wait for an Acknowledgment packet before sending
 any more MTLSPlaintext packets.

 struct {
 uint8 type;

 opaque channel_id[4];
 uint32 length;
 opaque data[MTLSPlaintext.length];
 } MTLSPlaintext;

 struct {
 uint8 type;
 opaque channel_id[4];
 uint32 free_space;
 } Acknowledgment;

 The TLS Record Layer receives data from MTLS, supposes it as
 uninterpreted data and applies the fragmentation and the
 cryptographic operations on it, as defined in [TLS]. The type is set
 to mtls(TBA).

 Note: multiple MTLS fragments MAY be coalesced into a single
 TLSPlaintext record.

 Received data is decrypted, verified, decompressed, and reassembled,
 then delivered to MTLS sub-protocol. Next, the MTLS sends data to
 the appropriate application using the channel identifier and the
 length value.

 enum {
 change_cipher_spec(20), alert(21), handshake(22),
 application_data(23), mtls(TBA), (255)
 } ContentType;

2.3. MTLS Message Types

 Additional message types can be supported by MTLS.

 RequestEstablishmentChannel 0x01
 RequestEstablishmentSuccess 0x02
 RequestEchecChannel 0x03
 CloseChannel 0x04

Badra & Hajjeh Expires April 2008 [Page 6]

Internet-Draft TLS Multiplexing October 2007

 ConfirmationCloseChannel 0x05
 MTLSPlaintext 0x06
 Acknowledgment 0x07

3. Security Considerations

 Security issues are discussed throughout this document, and in

 [TLS], [DTLS] and [TLSEXT] documents.

 If a fatal error related to any channel or a connection of an
 arbitrary application occurs, the secure session MUST NOT be
 resumed. This is logic since the Record protocol does not
 distinguish between the MTLS channels. However, if an error occurs
 at the MTLS layer, both parties immediately close the related
 channels, but not the TLS session (no alert of any type is sent by
 the TLS Record).

4. IANA Considerations

 This section provides guidance to the IANA regarding registration of
 values related to the TLS protocol.

 There are name spaces that require registration: the mtls content
 type, the data_multiplexing extension, and the MTLS message types.

5. References

5.1. Normative References

 [TLS] Dierks, T., Rescorla, E., "The TLS Protocol Version 1.1",
 RFC 4346, April 200P.

 [TLSEXT] Blake-Wilson, S., et. al., "Transport Layer Security
 (TLS) Extensions", RFC 4346, April 2006.

 [DTLS] Rescorla, E., Modadugu, N., "Datagram Transport Layer
 Security", RFC 4347, April 2006.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

5.2. Informative References

 [HTTPTLS] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [POPTLS] Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC
 2595, June 1999.

 [SSHCON] Lonvick, C., "SSH Connection Protocol", RFC 4254, January
 2005.

Badra & Hajjeh Expires April 2008 [Page 7]

Internet-Draft TLS Multiplexing October 2007

https://datatracker.ietf.org/doc/pdf/rfc4346
https://datatracker.ietf.org/doc/pdf/rfc4346
https://datatracker.ietf.org/doc/pdf/rfc4347
https://datatracker.ietf.org/doc/pdf/rfc2119
https://datatracker.ietf.org/doc/pdf/rfc2818
https://datatracker.ietf.org/doc/pdf/rfc2595
https://datatracker.ietf.org/doc/pdf/rfc2595
https://datatracker.ietf.org/doc/pdf/rfc4254

Author's Addresses

 Mohamad Badra
 LIMOS Laboratory - UMR6158, CNRS
 France Email: badra@isima.fr

 Ibrahim Hajjeh
 ESRGroups, Security WG
 France Email: Ibrahim.Hajjeh@esrgroups.org

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
 WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE.

 Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology described
 in this document or the extent to which any license under such might
 or might not be available; nor does it represent that it has made
 any independent effort to identify any such rights. Information on
 the procedures with respect to rights in RFC documents can be found
 in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

https://datatracker.ietf.org/doc/pdf/bcp78
https://datatracker.ietf.org/doc/pdf/bcp78
https://datatracker.ietf.org/doc/pdf/bcp79
http://www.ietf.org/ipr

Badra & Hajjeh Expires April 2008 [Page 8]

Internet-Draft TLS Multiplexing October 2007

 Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Badra & Hajjeh Expires April 2008 [Page 9]

