
Network Working Group M. Badra
Internet-Draft CNRS/LIMOS Laboratory
Intended status: Standards Track I. Hajjeh
Expires: October 23, 2009 INEOVATION
 April 21, 2009

MTLS: (D)TLS Multiplexing
draft-badra-hajjeh-mtls-05.txt

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79. This document may contain material
 from IETF Documents or IETF Contributions published or made publicly
 available before November 10, 2008. The person(s) controlling the
 copyright in some of this material may not have granted the IETF
 Trust the right to allow modifications of such material outside the
 IETF Standards Process. Without obtaining an adequate license from
 the person(s) controlling the copyright in such materials, this
 document may not be modified outside the IETF Standards Process, and
 derivative works of it may not be created outside the IETF Standards
 Process, except to format it for publication as an RFC or to
 translate it into languages other than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on October 23, 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Badra & Hajjeh Expires October 23, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft (D)TLS Multiplexing April 2009

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 The (Datagram) Transport Layer Security ((D)TLS) standard provides
 connection security with mutual authentication, data confidentiality
 and integrity, key generation and distribution, and security
 parameters negotiation. However, missing from the protocol is a way
 to multiplex several application data over a single (D)TLS.

 This document defines MTLS, an application-level protocol running
 over (D)TLS Record protocol. The MTLS design provides application
 multiplexing over a single (D)TLS session. Therefore, instead of
 associating a (D)TLS session with each application, MTLS allows
 several applications to protect their exchanges over a single (D)TLS
 session.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Badra & Hajjeh Expires October 23, 2009 [Page 2]

Internet-Draft (D)TLS Multiplexing April 2009

Table of Contents

1. Introduction . 4
1.1. Conventions Used in This Document 5

2. (D)TLS Multiplexing Overview and Considerations 5
2.1. MTLS over TLS . 5
2.1.1. Opening Channels 5
2.1.2. Closing Channels 7

2.2. MTLS Flow Control . 7
2.3. MTLS over DTLS . 9
2.4. MTLS Message Types . 10

3. Security Considerations 10
4. IANA Considerations . 10
5. Acknowledgments . 11
6. Contributors . 11
7. References . 11
7.1. Normative References 11
7.2. Informative References 11

 Authors' Addresses . 12

Badra & Hajjeh Expires October 23, 2009 [Page 3]

Internet-Draft (D)TLS Multiplexing April 2009

1. Introduction

 (D)TLS ([RFC5246], ([I-D.ietf-tls-rfc4347-bis]) is the most deployed
 security protocol for securing exchanges, for authenticating entities
 and for generating and distributing cryptographic keys. However,
 what is missing from the protocol is the way to multiplex application
 data over the same (D)TLS session.

 Actually, (D)TLS clients and servers MUST establish a (D)TLS session
 for each application they want to run over a transport layer. The
 client and the server MUST also duplicate the existing TLS/DTLS
 session for each application's stream/thread/connection (channel).
 However, some applications may agree or be configured to use the same
 security policies or parameters (e.g. authentication method and
 cipher_suite) and then to share a single TLS session to protect their
 exchanges. In this way, this document describes a way to allow
 application multiplexing over TLS/DTLS.

 The document motivations included:

 o TLS is application protocol-independent. Higher-level protocol
 can operate on top of the TLS protocol transparently.

 o (D)TLS is a protocol of a modular nature. Since TLS is developed
 in four independent protocols, the approach defined in this
 document can be used with a total reuse of pre-existing (D)TLS
 infrastructures and implementations.

 o It provides a secure VPN tunnel over a transport layer. Unlike
 "ssh-connection" [RFC4254], MTLS can run over unreliable transport
 protocols, such as UDP.

 o Establishing a single (D)TLS session for a number of applications
 -instead of establishing a (D)TLS session per one of those
 applications- reduces resource consumption, latency and messages
 flow that are associated with executing simultaneous (D)TLS
 sessions.

 o (D)TLS can not forbid an intruder to analyze the traffic and
 cannot protect data from inference. Thus, the intruder can know
 the type of application data transmitted through the (D)TLS
 sessions. However, the approach defined in this document allows,
 by its design, data protection against inference.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4254

Badra & Hajjeh Expires October 23, 2009 [Page 4]

Internet-Draft (D)TLS Multiplexing April 2009

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. (D)TLS Multiplexing Overview and Considerations

 This document defines an application-level protocol called (D)TLS
 Multiplexing (MTLS) to handle data multiplexing.

2.1. MTLS over TLS

 If the client is willing to run MTLS over TLS, it MUST connect to the
 server that passively listens for the incoming TLS connection on the
 IANA-to-be-assigned TCP port (TBA). The client MUST therefore send
 the TLS ClientHello to begin the TLS handshake. Once the Handshake
 is complete, the client and the server can establish and manage many
 applications' channels using the MTLS requests/responses defined
 below.

2.1.1. Opening Channels

 The sender MAY request the opening of many channels. For each
 channel, the MTLS layer generates and sends the following request:

 struct {
 uint8 type;
 uint16 length;
 opaque sender_channel_id[2];
 uint32 sender_window_length;
 uint32 sender_max_packet_length;
 opaque source_address_machine<1..2^16-1>;
 opaque source_port[2];
 opaque destination_address_machine<1..2^16-1>;
 opaque destination_port[2];
 } ChannelEstablishmentRequest;

 type
 The "type" field specifies the MTLS packet type (types are
 summarized below).

 length
 The "length" field indicates the length, in octets, of the current
 MTLS packet.

 sender_channel_id

https://datatracker.ietf.org/doc/html/rfc2119

Badra & Hajjeh Expires October 23, 2009 [Page 5]

Internet-Draft (D)TLS Multiplexing April 2009

 The "sender_channel_id" is the first half of the channel
 identifier. The second half is generated by the receiver of that
 MTLS packet.

 sender_window_length
 The "sender_window_length" field conveys the data length (in
 octets), specifying how many bytes the receiver of the packet can
 maximally send on the channel before receiving a new window length
 (available free space). Each end of the channel establishes a
 "receive buffer" and a "send buffer".

 sender_max_packet_length
 The "sender_max_packet_length" field conveys the data length (in
 octets), specifying the maximal packet's length in octets the
 receiver of that packet can send on the channel. The
 sender_max_packet_length is always smaller than the free space of
 the sender_window_length (the sender's "receive buffer").

 source_address_machine and source_port
 The "source_address_machine" MAY carry either the numeric IP
 address or the domain name of the host from where the application
 originates the data multiplexing request and the "source_port" is
 the port on the host from where the connection originated.

 destination_address_machine and destination_port
 The "destination_address_machine" and "destination_port" specify
 the TCP/IP host and port where the recipient should connect the
 channel. The "destination_address_machine" MAY be either a domain
 name or a numeric IP address.

 The receiver decides whether it can open the channel, and replies
 with one of the following messages:

 struct {
 uint8 type;
 uint16 length;
 opaque sender_channel_id[2];
 opaque receiver_channel_id[2];
 uint32 receiver_window_length;
 uint32 receiver_max_packet_length;
 } ChannelEstablishmentSuccess;

 struct {
 uint8 type;
 uint16 length;
 opaque sender_channel_id[2];
 opaque error<0..2^16-6>;
 } ChannelRequestEchec;

Badra & Hajjeh Expires October 23, 2009 [Page 6]

Internet-Draft (D)TLS Multiplexing April 2009

 The "sender_channel_id" and "receiver_channel_id" are the same
 generated during the channel establishment. The length conveys the
 data length of the current packet.

 The field "error" conveys a description of the error.

 Each MTLS channel has its identifier computed as:

 channel_id = sender_channel_id + receiver_channel_id

 Where "+" indicates concatenation.

 Note: channel_id may be susceptible to collisions. The receiver
 needs to take care not to choose a "receiver_channel_id" to avoid any
 collide with any of the established channel identifiers.

2.1.2. Closing Channels

 The following packet MAY be sent to notify the receiver that the
 sender will not send any more data on this channel and that any data
 received after a closure request will be ignored. The sender of the
 closure request MAY close its "receive buffer" without waiting for
 the receiver's response. However, the receiver MUST respond with a
 confirmation of the closure and close down the channel immediately,
 discarding any pending writes.

 struct {
 uint8 type;
 uint16 length;
 opaque channel_id[4];
 } ChannelCloseRequest;

 struct {
 uint8 type;
 uint16 length;
 opaque channel_id[4];
 } ChannelCloseConfirmation;

 The above two packets can be sent even if no window space is
 available.

2.2. MTLS Flow Control

 The structure of the MTLS data packet is described below.

 Each entity maintains its "max_packet_length" (that is originally
 initialized during the channel establishment) to a value not bigger
 than the free space of its "receive buffer". For each received

Badra & Hajjeh Expires October 23, 2009 [Page 7]

Internet-Draft (D)TLS Multiplexing April 2009

 packet, the receiver MUST subtract the packet's length from the free
 space of its "receive buffer". For each transmitted packet, the
 sender MUST subtract the packet's length from the free space of its
 "send buffer". In any case, the result is always positive.

 If the entity is willing to notify the other side about any change in
 the "max_packet_length", the entity MUST send a NewMaxPacketLength
 conveying the new "max_packet_length" that MUST be smaller than the
 free space of the entity's "receive buffer"

 The free space of the "receive buffer" of the sender (resp. the
 receiver) MAY increase in length. The sender SHOULD send an
 Acknowledgment packet to inform the receiver about this increase,
 allowing this latter to send more packets but with length smaller or
 equal than the minimum of the "max_packet_length" and the "receive
 buffer" of the sender.

 If the length of the "receive buffer" does not change, the
 Acknowledgment packet will never be sent.

 In the case where the "receive buffer" of an entity fills up, the
 other entity MUST wait for an Acknowledgment packet before sending
 any more MTLSPlaintext packets.

 struct {
 uint8 type;
 uint32 length;
 opaque channel_id[4];
 opaque data[MTLSPlaintext.length];
 } MTLSPlaintext;

 struct {
 uint8 type;
 uint16 length;
 opaque channel_id[4];
 uint32 max_packet_length;
 /* the max_packet_length of the sender of that packet */
 } NewMaxPacketLength;

 struct {
 uint8 type;
 uint16 length;
 opaque channel_id[4];
 uint32 free_space;
 } Acknowledgment;

 The Acknowledgment and NewMaxPacketLength packets can be sent even if
 no window space is available.

Badra & Hajjeh Expires October 23, 2009 [Page 8]

Internet-Draft (D)TLS Multiplexing April 2009

 The (D)TLS Record Layer receives data from MTLS, supposes it as
 uninterpreted data and applies the fragmentation and the
 cryptographic operations on it, as defined in [RFC5246].

 Note: multiple MTLS fragments MAY be coalesced into a single
 TLSPlaintext record.

 Received data is decrypted, verified, decompressed, and reassembled,
 then delivered to MTLS layer. Next, the MTLS sends data to the
 appropriate application using the channel identifier and the length
 value.

2.3. MTLS over DTLS

 To run MTLS over DTLS, we MUST provide reliability for all MTLS
 messages, except the MTLSPlaintext message that will be handled by
 DTLS record.

 If the client is willing to run MTLS over DTLS, it MUST connect to
 the server that passively listens for the incoming DTLS connection on
 the IANA-to-be-assigned UDP port (TBA). The client MUST therefore
 send the TLS ClientHello to begin the DTLS handshake. Once the
 Handshake is complete, the client and the server cache the session ID
 and the master_secret.

 Next, the client and the server start a TLS-PSK handshake [RFC4279].
 The client only includes pre-shared key based cipher suites to the
 ClientHello message. The psk_identity is the session ID generated
 during the DTLS handshake and the psk is the master_secret. Using
 the cached session ID will help the server and the client to
 establish a local mapping between both TLS and DTLS sessions.

 Once the TLS handshake is complete, both the client and the server
 can start multiplexing applications' channels using the set of
 requests/responses defined above. Excepting MTLSPlaintext, all
 requests/responses will be conveyed using TLS record.

 MTLSPlaintext will be conveyed using DTLS record. The same Transport
 Layer Mapping defined by DTLS MUST be used here. In particular, the
 maximum record size. Hence, MTLSPlaintext MUST be smaller than the
 maximum record size - 9.

 It is REQUIRED to support the cipher suite
 TLS_PSK_WITH_AES_128_CBC_SHA.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4279

Badra & Hajjeh Expires October 23, 2009 [Page 9]

Internet-Draft (D)TLS Multiplexing April 2009

2.4. MTLS Message Types

 This section defines the initial set of MTLS Message Types used in
 Request/Response exchanges. The Message Type field is one octet and
 identifies the structure of an MTLS Request or Response message.

 The messages defined in this document are listed below. More Message
 Types may be defined in future documents. The list of Message Types,
 as defined through this document, is maintained by the Internet
 Assigned Numbers Authority (IANA). Thus, an application needs to be
 made to the IANA in order to obtain a new Message Type value. Since
 there are subtle (and not-so-subtle) interactions that may occur in
 this protocol between new features and existing features that may
 result in a significant reduction in overall security, new values
 SHALL be defined only through the IETF Review process specified in
 [RFC5226].

 ChannelEstablishmentRequest 1
 ChannelEstablishmentSuccess 2
 ChannelRequestEchec 3
 ChannelCloseRequest 4
 ChannelCloseConfirmation 5
 MTLSPlaintext 6
 NewMaxPacketLength 7
 Acknowledgment 8

3. Security Considerations

 Security issues are discussed throughout this document and in
 [RFC5246].

 If a fatal error related to any channel of an arbitrary application
 occurs, the secure session MUST NOT be resumed. This is logic since
 the Record protocol does not distinguish between the MTLS channels.
 However, if an error occurs at the MTLS layer, both parties
 immediately close the related channel, but not the (D)TLS session (no
 alert of any type is sent by the (D)TLS Record).

4. IANA Considerations

 This section provides guidance to the IANA regarding registration of
 values related to the TLS protocol.

 IANA is requested to assign a TCP and UDP port numbers that will be
 the default port for MTLS sessions as defined in this document.
 There is one name space in MTLS that requires registration: Message

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246

Badra & Hajjeh Expires October 23, 2009 [Page 10]

Internet-Draft (D)TLS Multiplexing April 2009

 Types.

 Message Types have a range from 1 to 255, of which 1-8 are to be
 allocated for this document. Because a new Message Type has
 considerable impact on interoperability, a new Message Type SHALL be
 defined only through the IETF Review process specified in [RFC5226].

5. Acknowledgments

 The authors appreciate Alfred Hoenes for his detailed review.

6. Contributors

 James Blaisdell (Mocana, USA)

7. References

7.1. Normative References

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
 for Transport Layer Security (TLS)", RFC 4279,
 December 2005.

 [I-D.ietf-tls-rfc4347-bis]
 Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security version 1.2", draft-ietf-tls-rfc4347-bis-02 (work
 in progress), March 2009.

7.2. Informative References

 [RFC4254] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, January 2006.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4347-bis-02
https://datatracker.ietf.org/doc/html/rfc4254

Badra & Hajjeh Expires October 23, 2009 [Page 11]

Internet-Draft (D)TLS Multiplexing April 2009

Authors' Addresses

 Mohamad Badra
 CNRS/LIMOS Laboratory
 Campus de cezeaux, Bat. ISIMA
 Aubiere 63170
 France

 Email: badra@isima.fr

 Ibrahim Hajjeh
 INEOVATION
 France

 Email: ibrahim.hajjeh@ineovation.fr

Badra & Hajjeh Expires October 23, 2009 [Page 12]

