
Network Working Group M. Badra
Internet-Draft CNRS/LIMOS Laboratory
Intended status: Standards Track I. Hajjeh
Expires: October 30, 2011 INEOVATION
 April 28, 2011

Multiplexing Single-Application Multiple-Connection over TLS
draft-badra-tls-multiplexing-01.txt

Abstract

 The Transport Layer Security (TLS) is the most widely deployed
 protocol for securing network traffic. It provides mutual
 authentication, data confidentiality and integrity, key generation
 and distribution, and security parameters negotiation. However,
 missing from the protocol is a way to multiplex single-application
 multiple-stream applications that commonly use parallel connections
 to the same logical and/or physical server application data.

 This document describes a mechanism to multiplex single-application
 multiple-stream over TLS. It extends TLS to multiplex parallel
 connections of a given application over a single TLS session,
 avoiding additional delay related to the TLS/TCP session/connection
 setup.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 30, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Badra, et al. Expires October 30, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft MTA-TLS April 2011

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Conventions Used in This Document 3

2. TLS multiplexing Overview and Considerations 4
2.1. Handshake . 4
2.1.1. Opening Channels 4
2.1.2. Closing Channels 6

2.2. MTA-TLS Flow Control 7
2.3. MTA-TLS Message Types 8

3. Security Considerations 10
4. IANA Considerations . 11
5. Acknowledgments . 12
6. Contributors . 13
7. Normative References . 14

 Authors' Addresses . 15

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Badra, et al. Expires October 30, 2011 [Page 2]

Internet-Draft MTA-TLS April 2011

1. Introduction

 A single-application multiple-stream/-thread/-connection commonly
 uses parallel connections to the same logical and/or physical server
 application data. When that application is run over TCP, a TCP
 connection must be established for each stream/thread/connection
 (channel). This incurs a significant additional delay due to the TCP
 slow-start and to the duplication of an existing TLS session as well.
 Having a single TCP connection and opening additional channels over
 that single TCP connection can benefit of a high TCP congestion
 window and throughput instantaneously via statistical multiplexing,
 and raising the throughput further (incrementally) from an already
 high level can be achieved much faster in TCP.

 TLS does not multiplex single-application multiple-channel; it must
 instead duplicate the existing TLS session for each channel. This
 document defines Multiplexing Multi-Threaded Application over
 Transport Layer Security (MTA-TLS). MTA-TLS extends TLS to multiplex
 a single-application multiple-channel over a single TLS session,
 avoiding additional delay related to the TLS/TCP session/connection
 setup.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Badra, et al. Expires October 30, 2011 [Page 3]

Internet-Draft MTA-TLS April 2011

2. TLS multiplexing Overview and Considerations

 This document makes use of TLS extensions described in [RFC5246] and
 defines an extension of type data_multiplexing(TBD). The
 "extension_data" field of this extension SHALL be empty (zero-
 length).

2.1. Handshake

 The client and the server can, in an ordinary TLS handshake,
 negotiate the future use of MTA-TLS. The negotiation usually starts
 with the client that indicates its support of MTA-TLS by including an
 extension of type 'data_multiplexing' in its hello message.

 If the client does attempt to initiate a TLS session using MTA-TLS
 with a server that does not support it, it will be automatically
 alerted. For servers aware of MTA-TLS but not wishing to use it, it
 will gracefully revert to an ordinary TLS handshake or stop the
 negotiation.

 If the server is able of and willing to use the "data_multiplexing"
 extension, it MUST reply with an empty extension of the same type.

 Once the Handshake is complete, both the client and the server can
 start 'channel multiplexing' using a set of requests/responses
 defined below. All requests/responses will pass through MTA-TLS
 layer and are formatted into MTA-TLS packets, depending on each
 request/response.

2.1.1. Opening Channels

 The sender MAY request the opening of many channels. For each
 channel, the MTA-TLS layer generates and sends the following request:

 struct {
 uint8 type;
 uint16 length;
 opaque sender_channel_id[2];
 uint32 sender_window_length;
 uint32 sender_max_packet_length;
 opaque source_address_machine<1..2^16-1>;
 opaque source_port[2];
 opaque destination_address_machine<1..2^16-1>;
 opaque destination_port[2];
 } ChannelEstablishmentRequest;

 type

https://datatracker.ietf.org/doc/html/rfc5246

Badra, et al. Expires October 30, 2011 [Page 4]

Internet-Draft MTA-TLS April 2011

 The "type" field specifies the MTA-TLS packet type (types are
 summarized below).

 length

 The "length" field indicates the length, in octets, of the current
 MTA-TLS packet.

 sender_channel_id

 The "sender_channel_id" is the first half of the channel
 identifier. The second half is generated by the receiver of that
 MTA-TLS packet.

 sender_window_length

 The "sender_window_length" field conveys the data length (in
 octets), specifying how many bytes the receiver of the packet can
 maximally send on the channel before receiving a new window length
 (available free space). Each end of the channel establishes a
 "receive buffer" and a "send buffer".

 sender_max_packet_length

 The "sender_max_packet_length" field conveys the data length (in
 octets), specifying the maximal packet's length in octets the
 receiver of that packet can send on the channel. The
 sender_max_packet_length is always smaller than the free space of
 the sender_window_length (the sender's "receive buffer").

 source_address_machine and source_port

 The "source_address_machine" MAY carry either the numeric IP
 address or the domain name of the host from where the application
 originates the data multiplexing request and the "source_port" is
 the port on the host from where the connection originated.

 destination_address_machine and destination_port

 The "destination_address_machine" and "destination_port" specify
 the TCP/IP host and port where the recipient should connect the
 channel. The "destination_address_machine" MAY be either a domain
 name or a numeric IP address.

 The receiver decides whether it can open the channel, and replies
 with one of the following messages:

Badra, et al. Expires October 30, 2011 [Page 5]

Internet-Draft MTA-TLS April 2011

 struct {
 uint8 type;
 uint16 length;
 opaque sender_channel_id[2];
 opaque receiver_channel_id[2];
 uint32 receiver_window_length;
 uint32 receiver_max_packet_length;
 } ChannelEstablishmentSuccess;

 struct {
 uint8 type;
 uint16 length;
 opaque sender_channel_id[2];
 opaque error<0..2^16-6>;
 } ChannelRequestEchec;

 The "sender_channel_id" and "receiver_channel_id" are the same
 generated during the channel establishment. The length conveys the
 data length of the current packet.

 The field "error" conveys a description of the error.

 Each MTA-TLS channel has its identifier computed as:

 channel_id = sender_channel_id + receiver_channel_id

 Where "+" indicates concatenation.

 Note: channel_id may be susceptible to collisions. The receiver
 needs to take care not to choose a "receiver_channel_id" to avoid any
 collide with any of the established channel identifiers.

2.1.2. Closing Channels

 The following packet MAY be sent to notify the receiver that the
 sender will not send any more data on this channel and that any data
 received after a closure request will be ignored. The sender of the
 closure request MAY close its "receive buffer" without waiting for
 the receiver's response. However, the receiver MUST respond with a
 confirmation of the closure and close down the channel immediately,
 discarding any pending writes.

Badra, et al. Expires October 30, 2011 [Page 6]

Internet-Draft MTA-TLS April 2011

 struct {
 uint8 type;
 uint16 length;
 opaque channel_id[4];
 } ChannelCloseRequest;

 struct {
 uint8 type;
 uint16 length;
 opaque channel_id[4];
 } ChannelCloseConfirmation;

 The above two packets can be sent even if no window space is
 available.

2.2. MTA-TLS Flow Control

 The structure of the MTA-TLS data packet is described below.

 Each entity maintains its "max_packet_length" (that is originally
 initialized during the channel establishment) to a value not bigger
 than the free space of its "receive buffer". For each received
 packet, the receiver MUST subtract the packet's length from the free
 space of its "receive buffer". For each transmitted packet, the
 sender MUST subtract the packet's length from the free space of its
 "send buffer". In any case, the result is always positive.

 If the entity is willing to notify the other side about any change in
 the "max_packet_length", the entity MUST send a NewMaxPacketLength
 conveying the new "max_packet_length" that MUST be smaller than the
 free space of the entity's "receive buffer"

 The free space of the "receive buffer" of the sender (resp. the
 receiver) MAY increase in length. The sender SHOULD send an
 Acknowledgment packet to inform the receiver about this increase,
 allowing this latter to send more packets but with length smaller or
 equal than the minimum of the "max_packet_length" and the "receive
 buffer" of the sender.

 If the length of the "receive buffer" does not change, the
 Acknowledgment packet will never be sent.

 In the case where the "receive buffer" of an entity fills up, the
 other entity MUST wait for an Acknowledgment packet before sending
 any more MTATLSPlaintext packets.

Badra, et al. Expires October 30, 2011 [Page 7]

Internet-Draft MTA-TLS April 2011

 struct {
 uint8 type;
 uint32 length;
 opaque channel_id[4];
 opaque data[MTATLSPlaintext.length];
 } MTATLSPlaintext;

 struct {
 uint8 type;
 uint16 length;
 opaque channel_id[4];
 uint32 max_packet_length;
 /* the max_packet_length of the sender of that packet */
 } NewMaxPacketLength;

 struct {
 uint8 type;
 uint16 length;
 opaque channel_id[4];
 uint32 free_space;
 } Acknowledgment;

 The Acknowledgment and NewMaxPacketLength packets can be sent even if
 no window space is available.

 The TLS Record Layer receives data from MTA-TLS, supposes it as
 uninterpreted data and applies the fragmentation and the
 cryptographic operations on it, as defined in [RFC5246].

 Note: multiple MTA-TLS fragments MAY be coalesced into a single
 TLSPlaintext record.

 Received data is decrypted, verified, decompressed, and reassembled,
 then delivered to MTA-TLS entity. Next, the MTA-TLS sends data to
 the appropriate application using the channel identifier and the
 length value.

2.3. MTA-TLS Message Types

 This section defines the initial set of MTA-TLS Message Types used in
 Request/Response exchanges. The Message Type field is one octet and
 identifies the structure of an MTA-TLS Request or Response message.

 The messages defined in this document are listed below. More Message
 Types may be defined in future documents. The list of Message Types,
 as defined through this document, is maintained by the Internet
 Assigned Numbers Authority (IANA). Thus, an application needs to be
 made to the IANA in order to obtain a new Message Type value. Since

https://datatracker.ietf.org/doc/html/rfc5246

Badra, et al. Expires October 30, 2011 [Page 8]

Internet-Draft MTA-TLS April 2011

 there are subtle (and not-so-subtle) interactions that may occur in
 this protocol between new features and existing features that may
 result in a significant reduction in overall security, new values
 SHALL be defined only through the IETF Review process specified in
 [RFC5226].

 ChannelEstablishmentRequest 1
 ChannelEstablishmentSuccess 2
 ChannelRequestEchec 3
 ChannelCloseRequest 4
 ChannelCloseConfirmation 5
 MTATLSPlaintext 6
 NewMaxPacketLength 7
 Acknowledgment 8

https://datatracker.ietf.org/doc/html/rfc5226

Badra, et al. Expires October 30, 2011 [Page 9]

Internet-Draft MTA-TLS April 2011

3. Security Considerations

 Security issues are discussed throughout this document and in
 [RFC5246].

 If a fatal error related to any channel of an arbitrary application
 occurs, the secure session MUST NOT be resumed. This is logic since
 the Record protocol does not distinguish between the MTA-TLS
 channels. However, if an error occurs at the MTA-TLS layer, both
 parties immediately close the related channel, but not the TLS
 session (no alert of any type is sent by the TLS Record).

Badra, et al. Expires October 30, 2011 [Page 10]

https://datatracker.ietf.org/doc/html/rfc5246

Internet-Draft MTA-TLS April 2011

4. IANA Considerations

 This section provides guidance to the IANA regarding registration of
 values related to the TLS protocol.

 There are name spaces that require registration: the
 data_multiplexing extension and the MTA-TLS message types.

 Message Types have a range from 1 to 255, of which 1-8 are to be
 allocated for this document. Because a new Message Type has
 considerable impact on interoperability, a new Message Type SHALL be
 defined only through the IETF Review process specified in [RFC5226].

Badra, et al. Expires October 30, 2011 [Page 11]

https://datatracker.ietf.org/doc/html/rfc5226

Internet-Draft MTA-TLS April 2011

5. Acknowledgments

 The authors appreciate Alfred Hoenes for his detailed review.

Badra, et al. Expires October 30, 2011 [Page 12]

Internet-Draft MTA-TLS April 2011

6. Contributors

 TBC

Badra, et al. Expires October 30, 2011 [Page 13]

Internet-Draft MTA-TLS April 2011

7. Normative References

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Badra, et al. Expires October 30, 2011 [Page 14]

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft MTA-TLS April 2011

Authors' Addresses

 Mohamad Badra
 CNRS/LIMOS Laboratory
 Campus de cezeaux, Bat. ISIMA
 Aubiere
 France

 Email: badra@isima.fr

 Ibrahim Hajjeh
 INEOVATION
 Paris
 France

 Email: ibrahim.hajjeh@ineovation.fr

 James Blaisdell
 Mocana
 San Francisco
 USA

 Email: JBlaisdell@mocana.com

Badra, et al. Expires October 30, 2011 [Page 15]

