
Network Working Group S. Baer
Internet-Draft B. Haberstumpf
Intended status: Informational Elektrobit
Expires: March 3, 2016 August 31, 2015

Lightweight Token authentication (LTA) 1.0
draft-baer-lightweight-token-authentication-01

Abstract

 This document contains a specification for a token authentication
 mechanism that is sufficiently resource-friendly to use it on small
 embedded or mobile devices. The three involved parties are a service
 consumer (CON) a service provider (SP) and an authentication provider
 (AP). The authentication provider decouples authentication and the
 actual service that is consumed. It also serves as anonymizer. The
 consumer authenticates at the authentication provider, requests one
 or more authorization tokens and redeems those tokens when accessing
 the service provider's offered services.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 3, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Baer & Haberstumpf Expires March 3, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft LTA 1.0 August 2015

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Requirements Language 4
1.2. Terminology . 4
1.3. Design Goals . 5

 1.3.1. Low Resource Usage and Simple Implementation in the
 Consumer . 5

1.3.2. Works with Standard HTTP + TLS 5
1.3.3. Small Network Overhead 5
1.3.4. Robustness . 6
1.3.5. Support a Stateless Service Provider 6
1.3.6. Anonymization . 6

2. Preconditions . 6
2.1. Transport security 6
2.2. Authentication of the communication partners 7
2.3. Syntax Definitions 7
2.4. Base Elements of the Syntax Definitions 7

3. Authentication Overview 7
4. Consumer Authentication at the Authentication Provider . . . 8
5. Authentication Offers Discovery 8
5.1. Consumer Request for Authentication Offer List 9
5.1.1. Authentication Offer List Response 9
5.1.2. Access to Offer List Granted 9

 5.1.3. Offer List Request Denied Because of Missing
 Credentials . 10
 5.1.4. Offer List Request Denied Because of Invalid
 Credentials . 10

6. Authentication Step by Step 10
6.1. Consumer Requests Token 11
6.2. Consumer Sets "Accept" Headers 11
6.3. Authentication Provider Authenticates the Consumer . . . 12
6.4. Creating a Token . 12
6.4.1. The Token Format Explained 13
6.4.2. Token Expiration 14

6.5. Creating the token signature 15
7. Authentication Provider Answers Token Request 15
7.1. Token Request Granted 15
7.2. Token Request Denied Because of Missing Credentials . . . 16
7.3. Token Request Denied Because of Invalid Credentials . . . 16

8. Consumer Redeems Token 16
8.1. Consumers Should Not Try to Use Expired Tokens 16
8.2. Expiration Time . 16

Baer & Haberstumpf Expires March 3, 2016 [Page 2]

Internet-Draft LTA 1.0 August 2015

8.3. Time to Use . 16
9. Service Provider Validates and Authenticates Token 17
9.1. Validating a token 17

 9.2. Checking if the Token Is Addressed to the Right Service
 Provider . 17

9.3. Checking the Signature 17
9.4. Checking if the Token Expired 17

10. Service Provider Answers the Request 18
10.1. Service access granted 18
10.2. Access Denied due to Missing Authentication Token . . . 18
10.3. Access Denied Because of Illegal Token Format 18
10.4. Access Denied Because of Signature Mismatch 19

 10.5. Access Denied Because of Unsupported Signing Mechanism . 19
10.6. Access Denied Because of Expired Token 19
10.7. Access Denied Because of Insufficient Permissions . . . 19
10.8. Supported Signing Mechanisms 19
10.9. Using a Signature container 20
10.10. Error reporting in the response body 20

11. Optimizations . 21
11.1. Authentication Provider Optimizations 21

 11.1.1. Authentication Provider Sets Cache Header of a Token 21
 11.1.2. Issuing a new Token Shortly Before the Existing
 Token Expires 21
 11.1.3. Token Representation Compatibility with Service
 Provider . 22

11.2. Service Provider Optimizations 22
11.2.1. Token Cache on Service Provider Side 22

11.3. Consumer Optimizations 22
11.3.1. Caching the Token Request URIs 22
11.3.2. Using Tokens until They Expire 23

12. Limitations . 23
12.1. No Token Cache on Authentication Provider Side 23

13. Permission Handling . 23
13.1. Service identification URIs 23

 13.2. Choosing Service Identification URIs and Permission URIs 23
13.3. Permission URI wildcard 24
13.4. Parameterized Permissions 24

14. Examples . 25
14.1. Token Requests . 25
14.2. Service Request with LTA Token 25

15. Acknowledgements . 26
16. IANA Considerations . 26
17. Security Considerations 26
17.1. Attack Vectors . 27
17.1.1. Flooding of the Service Provider 27
17.1.2. Time Synchronization Attack 27
17.1.3. Token Hijacking 27
17.1.4. Man-in-the-Middle 27

Baer & Haberstumpf Expires March 3, 2016 [Page 3]

Internet-Draft LTA 1.0 August 2015

17.1.5. Replay Attacks 28
17.1.6. Service Permission Information Leaking 28
17.1.7. Addressing a Token to the Wrong Service 28

 17.1.8. Using Token Request URIs That Are Not Valid Anymore 28
 17.1.9. Compromized Authentication Provider or Stolen AP
 Secrets . 29

17.2. Anonymization Limitations 29
18. References . 29
18.1. Normative References 29
18.2. Informative References 30

 Authors' Addresses . 30

1. Introduction

 The Lightweight Token Authentication is motivated by the need for a
 simple and resource friendly authentication mechanism mainly targeted
 (but not limited to) the use in embedded devices. This document
 specifies the LTA authentication protocol.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119] .

1.2. Terminology

 Authentication provider (AP): Network component that accepts
 authentication requests and issues authentication tokens to a
 consumer.

 Consumer (CON): Client application that wants to use a service
 offered by a service provider.

 Service provider (SP): Network component that offers a service to
 the consumer.

 Service identification URI (SIU): URI of the service used to
 identify a service in a token. Not necessarily the URI under
 which the service can be reached.

 Service permission URI (SPU): URI that represents a permission on
 the service.

 Time to use (TTU): Recommended time span for which a token should
 be used by a consumer before the consumer requests a new token.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Baer & Haberstumpf Expires March 3, 2016 [Page 4]

Internet-Draft LTA 1.0 August 2015

1.3. Design Goals

 The design of the Lightweight Token Authentication (LTA) aims to
 reach the goals described in the following sub-sections.

1.3.1. Low Resource Usage and Simple Implementation in the Consumer

 It is the most important goal of the LTA to be able to run on small
 embedded computers (like electronic control units in a car or
 motorcycle) and mobile devices. Therefore the design keeps the
 software dependencies and resource requirements low on the consumer
 side. Calculation and traffic intensive parts of the LTA are shifted
 to the authentication provider and the service provider.

 The aim is to keep the following points down in order of importance:

 1. Network traffic

 2. Memory consumption in the consumer

 3. CPU consumption in the consumer

 4. Dependencies on 3rd-party software modules in the consumer

1.3.2. Works with Standard HTTP + TLS

 HTTP software libraries can be considered a commodity - just like the
 availability of network connections that can transport HTTP. LTA
 therefore uses HTTP as its transport protocol and TLS as transport
 security.

1.3.3. Small Network Overhead

 LTA aims to keep the additional network overhead low. Token requests
 and the token headers are both designed to stay as small as
 reasonable while still being in alignment with the philosophy of
 HTTP. Another goal is to keep the total number of request for
 authentication down.

 Typical sizes for LTA tokens including signature are below 500 bytes.

 The authors are clear on the fact that the biggest part of the
 network overhead comes from transport security, namely the use of TLS
 (see Section 2.1) but they consider the advantages of using such
 widely accepted standards to be worth choosing them over proprietary
 protocol stacks that might reduce network overhead further.

Baer & Haberstumpf Expires March 3, 2016 [Page 5]

Internet-Draft LTA 1.0 August 2015

1.3.4. Robustness

 LTA works without a permanent connection between the authentication
 provider and the service provider in order to remove one possible
 cause for a service outage.

 LTA allows consumers to repeat requests. This is important for
 mobile or embedded devices with an unstable network connection.
 Service providers that are based on LTA are encouraged to design
 their services so that they also accept request repetition.

1.3.5. Support a Stateless Service Provider

 The LTA does not force the service provider to manage state. Many
 services are intentionally designed stateless, especially to allow
 for efficient scaling.

1.3.6. Anonymization

 The separation into authentication provider and service provider aims
 to anonymize the consumer towards the service provider. This
 protects the consumer's privacy while still allowing the provider to
 offer services with access restrictions.

 While the authentication provider knows the identity of the consumers
 - or even the users behind the consumer applications - it does not
 know, what data the consumers send to a service.

 From the service provider's perspective the consumer is anonymous.
 The token that the user offers to the service provider does not allow
 the service provider to identify a consumer.

 To ensure anonymization, service provider and authentication provider
 must be separate entities which should also be clearly separated on
 an organizational level. Especially the authentication provider must
 not disclose a token-to-consumer mapping to the service provider.

 See Section 17.2 for limitations on the achieved level of anonymity.

2. Preconditions

2.1. Transport security

 LTA relies on transport encryption (as opposed to message encryption)
 between the three involved parties.

Baer & Haberstumpf Expires March 3, 2016 [Page 6]

Internet-Draft LTA 1.0 August 2015

 Consumer, authentication provider and service provider MUST all use
 Transport Layer Security (TLS) in version 1.2 or newer. See
 [RFC5246] for details.

2.2. Authentication of the communication partners

 The consumer MUST verify the authenticity of the communication
 partners - i.e. authentication provider and service provider.

 The recommended way is using TLS server certificates. See [RFC5246]
 section 7.4.2 for details.

 The service provider indirectly authenticates the authentication
 provider via the token signature. See Section 9 for more
 information.

2.3. Syntax Definitions

 The syntax definitions in this document use the "Augmented Backus
 Naur Form" (ABNF) as defined in [RFC5234] .

2.4. Base Elements of the Syntax Definitions

 The following recurring syntax elements are used throughout the
 document and therefore introduced here.

 LTA's protocol version (and implicitly the token format):

 lta-version = 1*DIGIT "." 1*DIGIT

 In this revision of the LTA specification the LTA version is 1.0.

 The URI that identifies a service:

 service-identification-uri

3. Authentication Overview

 The authentication provider is a service that provides consumer
 authentication and authorization. It also anonymizes the consumers
 towards the service provider. Instead of authenticating themselves
 directly at the service provider the consumers use the authentication
 provider as authentication authority.

 In short a successful authentication follows these steps:

 1. Consumer uses the authentication offers discovery to find out
 where to request tokens.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.2
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.2
https://datatracker.ietf.org/doc/html/rfc5234

Baer & Haberstumpf Expires March 3, 2016 [Page 7]

Internet-Draft LTA 1.0 August 2015

 2. Consumer requests a token at the authentication provider.

 3. Authentication provider authenticates the consumer and issues a
 token.

 4. Consumer redeems the token at the 3rd party service.

 5. Service provider verifies the authenticity of the token.

4. Consumer Authentication at the Authentication Provider

 The consumer MUST provide credentials with all requests to the
 authentication header. This rule applies to the authentication offer
 list request and all other (subsequent) requests to the
 authentication provider.

 An authentication provider SHOULD at least support the "Basic"
 authentication scheme as defined in [RFC2617] section 2. Other
 authentication schemes can be used between the consumer and the
 authentication provider also but implementers should keep in mind
 that complicated authentication schemes are in conflict with the
 design goal to keep the effort low for the consumer.

 A consumer using basic authentication would set the following header:

 authorization = "Authorization:" 1*SP "Basic" 1*SP credentials

 The credentials are encoded with the "Base64 Content-Transfer-
 Encoding" described in [RFC2045] section 6.8.

 Example:

 Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

 Since basic authentication can be considered a commodity of the
 widely available web servers the implementation is not in the scope
 of this document.

5. Authentication Offers Discovery

 The authentication provider has a single entry point. The consumer
 accesses this entry point and gets a list of URIs that it uses to
 find out for which services the authentication provider offers
 tokens.

https://datatracker.ietf.org/doc/html/rfc2617#section-2
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8

Baer & Haberstumpf Expires March 3, 2016 [Page 8]

Internet-Draft LTA 1.0 August 2015

 +-----+ +-----+
 | CON | | AP |
 +--+--+ +--+--+
 | discoverAuthenticationOffers(credentials) |
 |-->|
 | |--.
 | checkCredentials() | |
 | |<-'
 | : authenticationOfferList |
 |< -|
 | |

5.1. Consumer Request for Authentication Offer List

 The consumer requests the offer list with the following request:

 authentication-offer-uri = "GET" SP ap-entry-uri "/"
 lta-version-number

 Where "ap-entry-uri" is the entry URI of the authentication provider
 that the consumer must know.

 The mandatory protocol version number allows to easily route
 consumers that use different protocol versions to the right
 authentication provider. If the authentication provider supports
 multiple versions it MUST offer one offer discovery URI in the form
 of "authentication-offer-uri" for each supported protocol version.

5.1.1. Authentication Offer List Response

 The authentication provider first checks the credentials of the
 consumer. If the user has a valid account, the authentication
 provider creates a list of all services the consumer is registered
 for.

5.1.2. Access to Offer List Granted

 If the consumer's credentials are valid, the authentication provider
 MUST answer with 200 (OK).

 The offer response body MUST contain a map of URIs with the Mime type
 "application/vnd.uri-map".

 Each line of the map has the following format:

 offer-list-entry = service-identification-uri ">"
 token-request-uri CR LF

Baer & Haberstumpf Expires March 3, 2016 [Page 9]

Internet-Draft LTA 1.0 August 2015

 So for each service the map tells the consumer under which URI it
 must request the authentication token.

 Example URI map:

 https://www.example.org/wiki>https://example.com/
 ap_node234/1.0/https%3A%2F%2Fexample.org%2Fwiki
 blog.example.org>https://example.com/ap/1.0/blog.example.org

 Note that in the example above there is an extra newline an
 indentation due to line length restrictions. Both are not present in
 the actual URI map.

 The authentication provider MUST only list those services for which
 it actually offers a token to the individual consumer. That means a
 consumer can expect that it has the necessary rights to request a
 token under each of the listed URIs.

 If the authentication provider does not offer authentication for any
 services to the consumer, the offer list MUST be empty.

5.1.3. Offer List Request Denied Because of Missing Credentials

 The authentication provider MUST answer 401 (Unauthorized) if the
 consumer does not provide the required authentication header.

5.1.4. Offer List Request Denied Because of Invalid Credentials

 The authentication provider MUST answer 401 (Unauthorized) if the
 credentials the consumer used are not valid.

6. Authentication Step by Step

 The following diagram depicts the sequence for a successful
 authentication:

Baer & Haberstumpf Expires March 3, 2016 [Page 10]

Internet-Draft LTA 1.0 August 2015

 +-----+ +-----+ +-----+
 | CON | | AP | | SP |
 +--+--+ +--+--+ +--+--+
 | requestToken(credentials) | | |
 |------------------------------>| |
 | |--. checkCredentials() |
 | | | calculateExpiration() |
 | | | createToken() |
 | | | signPayload() |
 | : token |<-' |
 |< - - - - - - - - - - - - - - -| |
 | | |
 | requestService(..., token) |
 |-->|
 | | |--.
 | | checkTokenFormat() | |
 | | checkAddressing() | |
 | | checkSignature() | |
 | | checkExpiration() | |
 | | |<-'
 | | |--.
 | | executeRequestedService() | |
 | | |<-'
 | : response |
 |< -|
 | | |

6.1. Consumer Requests Token

 The consumer MUST initiate the authentication by requesting a token
 from the authentication provider with the following request:

 token-request = "GET" SP token-request-uri

 Where the "token-request-uri" is a URI that the consumer previously
 discovered via an offer list request to the authentication provider.
 See Section 5 for details.

 Example:

 GET https://example.com/ap/1.0/https%3A%2F%2Fexample.org%2Fwiki

6.2. Consumer Sets "Accept" Headers

 The consumer MUST NOT set the "Accept" header since the token format
 is dictated by the common denominator of authentication provider and
 service provider.

Baer & Haberstumpf Expires March 3, 2016 [Page 11]

Internet-Draft LTA 1.0 August 2015

 The consumer CAN set an "Accept-Charset" header that has one of the
 following values:

 o UTF-8

 o US-ASCII

 Tokens only contain 7bit ASCII characters. See Section 6.4 for
 details.

 The consumer CAN set an "Accept-Language"" header. See [RFC7231]
 section 5.3.5. for more information. This only has an influence on
 the language of error messages issued by the authentication provider.
 Those error messages are used in response to illegal requests or
 other abnormal situations. Note that authentication providers are
 allowed to ignore this header and only provide English error
 messages. See Section 10.10 for details.

6.3. Authentication Provider Authenticates the Consumer

 The authentication provider checks the credentials provided by the
 consumer.

6.4. Creating a Token

 An authentication token is a credential issued by the authentication
 provider and used by the consumer to gain access to a service
 provider's services.

 The authentication token MUST only contain characters from the 7bit
 ASCII character set. This way maximum compatibility across different
 character sets is ensured. For example UTF-8 is compatible to 7bit
 ASCII.

 An authentication token created by the authentication provider MUST
 have the following format:

 token = token-payload " " signature

 The token payload is defined as follows:

 token-payload = lta-version " " service-specification " " expiration
 " " time-to-use

 The service specification identifies service and permissions:

 service-specification = service-identification-uri (*("|"
 service-permission-uri) / "*")

https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.5
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.5

Baer & Haberstumpf Expires March 3, 2016 [Page 12]

Internet-Draft LTA 1.0 August 2015

 The signature is defined as follows:

 signature = signature-info "|" signature-container

 signature-info = (hash-algorithm "|" encryption) / container-format

 Note that the payload of the token and the signature meta-data are
 not encrypted since the consumer must be able to read the contents of
 the token but not to modify them. Refer to Section 6.5 for details.
 This is important because the consumer has to take the token
 expiration into account before trying to redeem a token at a service
 provider. It would cause unnecessary traffic if the consumer tried
 to redeem an expired token.

 The list of service permission URIs can be replaced by an asterisk
 "*" symbol in case no access restrictions below the service level are
 necessary.

 Examples for service specifications:

 https://example.org/blog|*

 https://example.org/blog|get|head

 blog.example.org editor|admin

6.4.1. The Token Format Explained

 There are restrictions that lead to the design of the token format.

 1. The consumer MUST be able to copy the received token directly
 into an HTTP header without modifying it. Therefore only ASCII
 characters that are allowed as header fields values can be used.

 2. The parts the token consists of MUST be separable by the most
 simple string manipulation. It is designed to be split at
 separator characters.

 1. Since parts of the token are URIs, only characters that are
 not allowed in a URI are suitable as separators

 2. The building blocks are split at the " " character

 3. The permissions and signature parts are separated by "|"

 The reason why there are two kinds of separators is that we want to
 be able to vary the number of sub-items.

Baer & Haberstumpf Expires March 3, 2016 [Page 13]

Internet-Draft LTA 1.0 August 2015

6.4.2. Token Expiration

 The authentication provider MUST calculate an expiration date and
 time for each token.

 The expiration delay of a token MUST be configurable in the
 authentication provider per service provider URI.

 The expiration time in the token MUST be encoded as date and time
 according to the following pattern as specified in [RFC3339] section

5.6.

 expiration = year "-" month "-" day "T" hours ":" minutes ":"
 seconds "Z"

 year = 4DIGIT month = ("0" DIGIT) / 11 / 12

 day = ("0" / "1" / "2") DIGIT / 30 / 31

 hours = (("0" / "1") DIGIT) / 21 / 22 / 23

 minutes = ("0" / "1" / "2" / "3" / "4" / "5") DIGIT

 seconds = ("0" / "1" / "2" / "3" / "4" / "5") DIGIT

 All expiration timestamps MUST be encoded in Coordinated Universal
 Time (UTC). If the server is in a different time zone , the
 authentication provider MUST convert the time accordingly.

 time-to-use = 1*DIGIT

 The time to use (TTU) is the number of seconds the token should be
 used after it was issued.

 In simple implementations the time to use is equal to the time to
 live. In this case the TTU is redundant at first glance, but it is a
 concession to consumers that do not have proper clock
 synchronization. See Section 8.3 for details.

 In more sophisticated implementations the authentication provider
 chooses a TTU that is shorter than the difference between token
 issuing time and expiration time. See Section 11.1.2 for more
 information.

https://datatracker.ietf.org/doc/html/rfc3339

Baer & Haberstumpf Expires March 3, 2016 [Page 14]

Internet-Draft LTA 1.0 August 2015

6.5. Creating the token signature

 The authentication provider MUST sign the token payload using a hash
 algorithm and its private key.

 LTA supports exchanging the signing mechanism. It needs an
 asymmetric encryption in order to create a token signature.

 The authentication provider MUST state either the hash algorithm and
 encryption it uses to create in the token signature or a signature
 container format. This tells the service provider how to validate
 the signature.

 Refer to Section 10.8 for a list of supported algorithms.

7. Authentication Provider Answers Token Request

 Depending on whether or not the authentication provider was able to
 identify the consumer, the authentication provider either issues a
 token or tells the consumer that it could not be authenticated.

7.1. Token Request Granted

 The authentication provider must answer 200 (OK) if the consumer was
 authenticated successfully and if the user is authorized to use the
 requested service or services.

 In this case the response body contains the token.

 token-response-body = token

 The authentication provider MUST mark responses that contain an LTA
 token with MIME type "application/lta" in the "Content-Type" header.

 Example:

 HTTP/1.1 200 OK Date: Mon, 01 Jan 2015 14:21:16 GMT
 Content-Type: application/lta
 Content-Length: 451

 1.0 org-example-wiki * 2015-01-01T14:21:46Z 25
 sha-1|rsa|iQEcBA[...]c+s=

 The example above is shortened (marked by "[...]") for better
 readability.

Baer & Haberstumpf Expires March 3, 2016 [Page 15]

Internet-Draft LTA 1.0 August 2015

7.2. Token Request Denied Because of Missing Credentials

 The authentication provider MUST answer 401 (Unauthorized) if the
 consumer does not provide the required authentication header.

7.3. Token Request Denied Because of Invalid Credentials

 The authentication provider MUST answer 401 (Unauthorized) if the
 credentials the consumer provided are invalid.

8. Consumer Redeems Token

 The consumer sends a requests to the service provider and uses the
 token as credential. For this it MUST set the following HTTP header
 in the service request:

 auth-header = "Authorization:" SP "Token" token

 Note that the consumer does not necessarily need to understand the
 signature. It can rely on the authenticity of the sender when using
 HTTPS instead. This allows the consumer to work without needing to
 decode the signature.

8.1. Consumers Should Not Try to Use Expired Tokens

 Consumers SHOULD NOT try to use expired tokens. There are two
 alternative ways for the consumer to determine if a token is expired:

 1. via the absolute expiration time - for a consumer with reliable
 time synchronization

 2. via the time to use (TTU) - works without time synchronization

8.2. Expiration Time

 Properly time synchronized consumers should use the absolute
 expiration time from the token to determine if the token can still be
 used or if it already expired.

8.3. Time to Use

 The time to use (TTU) is a time span between issuing of the token and
 the time when it is recommended the consumer requests a new token.
 The TTU may be lower than the difference between issuing and
 expiration of a token See Section 11.1.2 for more information.

 Also consumers like mobile devices and embedded computers might not
 have proper time synchronization or might use the wrong time zone.

Baer & Haberstumpf Expires March 3, 2016 [Page 16]

Internet-Draft LTA 1.0 August 2015

 In those cases using the TTU instead of the absolute expiration time
 is recommended on the consumer side.

 The downside of this mechanism is that a part of the TTU given in the
 token is already used up in the transmission from the authentication
 provider to the consumer. Since the consumer has no simple means to
 tell how long this delay is, it will consider the token valid longer
 than it actually is. The authentication provider CAN mitigate that
 problem by choosing reasonable safety margin between the expiration
 of a token and the TTU specified in the token.

9. Service Provider Validates and Authenticates Token

 Before the service provider offers its services, it validates and
 authenticates the token sent by the consumer.

9.1. Validating a token

 The service provider MUST validate the token format. If the token
 format does not conform to this document, the service provider MUST
 deny the request.

9.2. Checking if the Token Is Addressed to the Right Service Provider

 Since consumers might accidently or maliciously try to use an
 authentication token for the wrong service provider, a service
 provider MUST always check if a token is really addressed to it. The
 service provider MUST check if the service identification URI in the
 token matches the requested service.

 Note that the service identification URI is not necessarily the URI
 under which the service can be reached in a network. Authentication
 provider and service provider just have to agree on a common URI.

9.3. Checking the Signature

 The service provider checks the signature of the token to verify that
 it has been issued by the authentication provider and has not been
 modified.

 If the signature does not match the token payload, the service
 provider MUST deny the request.

9.4. Checking if the Token Expired

 The service provider compares the expiration date and time from the
 token to the current date and time. If the token's expiration time
 lies in the past, the service provider MUST deny the request.

Baer & Haberstumpf Expires March 3, 2016 [Page 17]

Internet-Draft LTA 1.0 August 2015

 The service provider MUST always use the absolute expiration time
 from the token. The time-to-use is reserved for consumer use only
 and MUST be ignored by the service provider. The service provider
 MUST use clock synchronization (e.g. the "Network Time Protocol", see
 [RFC5905]) that grants a synchronization quality of typically below
 one second. See Section 17.1.2 for security considerations of time
 synchronization.

 The service provider MUST take the time differences into account that
 result from the timezone the service provider is located in. Token
 expiration times inside the token are always given in UTC (see
 [RFC3339]). Service providers MUST convert their local time to UTC
 before evaluating token expiry.

 Service providers MUST NOT accept tokens where the expiration time is
 more than two hours in the future. This is a safety measure in order
 to avoid long-term valid tokens issued by accident by the
 authentication provider.

10. Service Provider Answers the Request

10.1. Service access granted

 The service provider MUST answer 200 (OK) if the token was
 successfully validated and authenticated. The response body is the
 normal service response.

10.2. Access Denied due to Missing Authentication Token

 The service provider MUST answer 401 (Unauthorized) if the consumer
 does not provide the token in the authentication header.

 In addition the service provider must set the "WWW-Authenticate"
 header (see [RFC2617] section 1.2) as follows:

 challenge = "Token" 1*SP "realm" "=" DQOUTE
 service-identification-uri DQUOTE

 Example:

 WWW-Authenticate: Token realm="https://example.org/blog"

10.3. Access Denied Because of Illegal Token Format

 The service provider MUST answer 400 (Bad Request) if the token or
 parts of the token do not conform to this document.

https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc2617#section-1.2

Baer & Haberstumpf Expires March 3, 2016 [Page 18]

Internet-Draft LTA 1.0 August 2015

10.4. Access Denied Because of Signature Mismatch

 The service provider MUST answer 401 (Unauthorized) if the token
 signature and does not match the token payload.

10.5. Access Denied Because of Unsupported Signing Mechanism

 If the service provider does not understand the encryption algorithm
 or hash function used for signing the token it MUST answer 400 (Bad
 Request).

 The response MUST contain a header field listing the supported hash
 algorithms:

 accept-hash-header = "Accept-Token-Hashes:" SP hash *("," SP hash)

 The response MUST contain a header field listing the supported
 ciphers:

 accept-cipher-header = "Accept-Token-Ciphers:" SP cipher *("," SP
 cipher)

 Example:

 Accept-Token-Hashes: sha-1, sha-256
 Accept-Token-Ciphers: rsa

10.6. Access Denied Because of Expired Token

 The service provider MUST answer 401 (Unauthorized) if the token
 expired.

10.7. Access Denied Because of Insufficient Permissions

 The service provider MUST answer 403 (Forbidden) if the rights
 specified in the token are not sufficient to execute the service
 request.

10.8. Supported Signing Mechanisms

 LTA is designed to support different token representations in order
 to be able to replace the signing mechanism when a more efficient or
 more secure algorithm is available.

 This document therefore contains only a very short list of supported
 hashes and cyphers. While requiring mandatory implementations is
 good for interoperability, it would be unwise to use mechanisms that
 are not cryptographically secure anymore.

Baer & Haberstumpf Expires March 3, 2016 [Page 19]

Internet-Draft LTA 1.0 August 2015

 The hash function textual names are as defined in in the IANA
 registry. [IANA1]

 Examples:

 o sha-1

 o sha-256

 The textual names for encryptions follow the same style.

 Examples

 o rsa

 o ecc

 As long as AP and SP agree, they can use implementations not listed
 here.

10.9. Using a Signature container

 Signature container formats contain the signature plus the meta
 information on how to verify it and can be used as an alternative to
 encoding the hash function an encryption algorithm. While in
 principle any container format could be used, some technical
 restrictions apply:

 1. The signature containers encoding must only contain characters
 allowed in an HTTP header field.

 2. The container should be small because it otherwise conflicts with
 the goal of low network overhead.

 The benefit for using standard containers is that they often come
 with a full infrastructure for key distribution and revoking (both
 mechanisms outside of the scope of this document).

10.10. Error reporting in the response body

 When connecting to web services, it is useful to have clear error
 messages in case something went wrong. The following recommendations
 apply to both, the authentication provider and the service provider.

 The response body of a response with an "4xx" error code should
 contain a clear text description of the error cause.

Baer & Haberstumpf Expires March 3, 2016 [Page 20]

Internet-Draft LTA 1.0 August 2015

 The error message SHOULD respect the language requested if an Accept-
 Language header was set in the request. At least English error
 messages SHOULD be supported.

 Unless specified explicitly, the error messages do not have to be
 machine readable.

 Error messages MUST NOT disclose confidential information to the
 consumer. Especially error messages MUST NOT contain information
 that helps an attacker to guess credentials.

11. Optimizations

11.1. Authentication Provider Optimizations

11.1.1. Authentication Provider Sets Cache Header of a Token

 The authentication provider MAY set the following cache header:

 cache-control = "cache-control:" SP "private," SP "max-age="
 time-to-use

 The cache directive "private" tells all involved parties that caching
 is only supposed to happen in the consumer.

 Where the time to use in seconds is used as maximum cache age of the
 response.

 time-to-use = 1*DIGIT

 Example:

 cache-control: private, max-age=25

 This is useful for consumers that do not implement their own consumer
 side token cache and rely on the caching their HTTP client library
 offers. Otherwise it is superfluous.

11.1.2. Issuing a new Token Shortly Before the Existing Token Expires

 The authentication provider SHOULD introduce a configurable time span
 (TTU) that is smaller than the difference of token issuing time to
 expiration time. The TTU is used to determine when a new token must
 be issued. This helps to avoid situations where the consumer gets a
 token that is almost expired.

Baer & Haberstumpf Expires March 3, 2016 [Page 21]

Internet-Draft LTA 1.0 August 2015

11.1.3. Token Representation Compatibility with Service Provider

 The applicable token formats are dictated by the common denominator
 between authentication provider and service provider. For each
 service the authentication provider SHOULD store and respect the
 token representations the service provider understands.

11.2. Service Provider Optimizations

11.2.1. Token Cache on Service Provider Side

 Service providers MAY cache the result of a token evaluation until
 the token expires, especially for services where a series of request
 can be expected during the life time of a token.

 Note that in a clustered service this would have to be centralized
 potentially introducing a new point of failure and requiring
 additional network communication.

 Therefore in clustered environments a node-local token cache is
 recommended in combination with consumer affinity (e.g. IP
 affinity).

11.3. Consumer Optimizations

11.3.1. Caching the Token Request URIs

 The Consumer SHOULD cache the token request URIs listed by the
 authentication provider. This removes unnecessary subsequent
 discovery traffic.

 The recommended way is doing this is on application layer.

 If a token request fails, a consumer MUST invalidate its token
 request URI cache, because it is likely that either the URI or the
 consumers permissions changed.

 For security reasons the consumers MUST NOT cache the token request
 URIs indefinitely. The recommended caching time is a day.

 Example:

 An embedded device requests the token offer list and keeps the result
 cached in RAM until the next power cycle or day.

Baer & Haberstumpf Expires March 3, 2016 [Page 22]

Internet-Draft LTA 1.0 August 2015

11.3.2. Using Tokens until They Expire

 Although it is possible that consumers request a token before each
 service request, this introduces unnecessary network traffic if the
 last token is not yet expired.

 The Consumer SHOULD reuse the token until the token expired.

12. Limitations

12.1. No Token Cache on Authentication Provider Side

 While returning cached resources on GET requests usually is a desired
 behaviour, in case of an LTA token this is not the case. The reason
 is the way the TTU works (see Section 8.3).

 Consumers use the TTU to calculate the remaining time the token can
 be used based on the time they received the token. If a consumer
 decides to send a subsequent request for a token to the
 authentication provider and got a cached token, this simple mechanism
 would break. Therefore authentication providers MUST answer each
 token request with a fresh token.

13. Permission Handling

13.1. Service identification URIs

 A service identification URI (short "SIU") uniquely identifies a
 service. It MUST be agreed upon by both, the service provider and
 the authentication provider.

 If permissions on a sub-service level are necessary, then the service
 provider MUST define a service permission URI for each permission.

13.2. Choosing Service Identification URIs and Permission URIs

 It is not mandatory that service identification URIs or permission
 URIs are can be dereferenced.

 While it is easier to understand if the service identification URI is
 identical to the URI the service can be reached, it is not required.

 Note that the token - and therefore the SIUs are transmitted in the
 HTTP header. Although the HTTP specification does not define a size
 limit on the HTTP headers, in real-world scenarios the web servers
 use default limits between four and eight kilobytes.

Baer & Haberstumpf Expires March 3, 2016 [Page 23]

Internet-Draft LTA 1.0 August 2015

 This fact and the goal that LTA should be resource-friendly both
 suggest that service providers define short URIs to identify
 services.

 Permission URIs should be relative to the service identification URI
 to save more space.

 Examples:

 1. Sub-service level permissions for a restful HTTP service could be
 the request verbs "get", "put" or "delete".

 2. For an accounting system permissions could be on artifact level
 "invoices", "cancellations" or "customers".

 3. A service could also use roles instead of permissions "admin",
 "user" or "guest".

13.3. Permission URI wildcard

 If no sub-service level permissions are needed, the authentication
 provider should use the wildcard "*" instead of listing of all
 permissions.

 Example:

 A service provider defines dash-notation URIs for its services like
 "org-example-wiki". The service provider does not impose
 restrictions on the use of the service and marks this with the "*"
 wildcard.

13.4. Parameterized Permissions

 Imagine a user payed for a storing ten photos with a total size of
 not more than 20 MiB on a service. The service provider and the
 authentication provider agreed on a common scheme for representing
 this as a permission URI which looks like:

 store?max-items=10&max-size=20M

 It is a valid URI and it contains parameters. Given that the
 authentication provider knows how to build this URI and the service
 provider knows how to interpret it.

Baer & Haberstumpf Expires March 3, 2016 [Page 24]

Internet-Draft LTA 1.0 August 2015

14. Examples

14.1. Token Requests

 Consumer:

 GET https://example.com/ap/https%3A%2F%2Fexample.org%2Fblog
 Authorization: Basic ZXhhbXBsZV91c2VyOmV4YW1wbGVfcGFzc3dvcmQ=
 [...]

 Authentication provider:

 HTTP/1.1 200 OK
 Date: Mon, 01 Jan 2015 14:21:16 GMT
 Content-Type: application/lta
 Content-Length: 451

 1.0 https://example.org/blog|get|post|delete 2015-01-01T14:21:46Z 25
 sha-1|rsa|iQEcBAABAgAGBQJT/yYfAAoJEBYE2BQYko+r47sH/jZNWgVpzoVXwfdFMVd
 FkZYG69qDnYNy3rfxw8HtYWa7x1VEngo9x79G+Bk5GhlG62rNpyZAFc63pi9/9eddZEO
 BBBwqWu7RA/h24DHfp0ngT0MO+H0zLldzTMSLCVkYYp+O3K5HlIqGhA9Rj32XKYBwjiM
 wPBoIYAcTzbUOb9kih0Ru3jGp/7+K/FbQPZHYK98znvKN/r81PqK0LM3KFpBi1SL+gpv
 IDm1sz/GjXGlAtBfMViHPcY6Vw6kjhpbuYEqPkOWty5gjhUntrrCyKpA069COR64bLqC
 eIM7++3E5rZvH1dIYZ86u629xNna5Tj+TJSkev7Jnlfw0YFoc+s=

 Note that the line breaks in the example HTTP body have been added
 for readability and are _not_ present in an actual token.

14.2. Service Request with LTA Token

 Consumer:

 GET https://example.org/blog/2015/01/01/img42.jpg

 Authorization: Token 1.0 https://example.org/blog|get|post|delete
 2015-01-01T14:21:46Z 25 sha-1|rsa|iQEcBAABAgAGBQJT/yYfAAoJEBYE2BQYko+
 r47sH/jZNWgVpzoVXwfdFMVdFkZYG69qDnYNy3rfxw8HtYWa7x1VEngo9x79G+Bk5Ghl
 G62rNpyZAFc63pi9/9eddZEOBBBwqWu7RA/h24DHfp0ngT0MO+H0zLldzTMSLCVkYYp+
 O3K5HlIqGhA9Rj32XKYBwjiMwPBoIYAcTzbUOb9kih0Ru3jGp/7+K/FbQPZHYK98znvK
 N/r81PqK0LM3KFpBi1SL+gpvIDm1sz/GjXGlAtBfMViHPcY6Vw6kjhpbuYEqPkOWty5g
 jhUntrrCyKpA069COR64bLqCeIM7++3E5rZvH1dIYZ86u629xNna5Tj+TJSkev7Jnlfw
 0YFoc+s=
 [...]

 Again the line breaks are for readability an do not exist in a real
 token.

 Service provider:

Baer & Haberstumpf Expires March 3, 2016 [Page 25]

Internet-Draft LTA 1.0 August 2015

 HTTP/1.1 200 OK
 Date: Mon, 01 Jan 2015 14:21:17 GMT
 Content-Type: image/jpeg
 Content-Length: 513017

 [...]

15. Acknowledgements

 This document's structure is based on a template by Elwyn Davies
 (initial version by Pekka Savola).

 We'd like to thank Peer Sterner for his thorough reviews of the early
 drafts.

 Thomas Fleischmann

16. IANA Considerations

 This document uses the existing IANA registry for "Hash Function
 Textual Names" in Section 10.8 which was introduced in [RFC4572] (see
 [IANA1] for a list of values) .

 This document defines a public key protocol value in Section 10.8 .
 Figure 1 contains the initial values.

 Public Key Algorithm Reference
 -------------------- ---------
 "rsa" RFC2313

 Figure 1: IANA Public Key Algorithm Textual Name Registry

 The mime type "vnd/uri-map" was registered with IANA on July 21st
 2015.

 The mime type "application/lta" will be requested at the the IANA at
 the end of the review process for the LTA in order to be able to
 react on changes proposed by the reviewers.

17. Security Considerations

 The following section lists possible attack vectors and mitigation
 strategies (if applicable).

https://datatracker.ietf.org/doc/html/rfc4572
https://datatracker.ietf.org/doc/html/rfc2313

Baer & Haberstumpf Expires March 3, 2016 [Page 26]

Internet-Draft LTA 1.0 August 2015

17.1. Attack Vectors

17.1.1. Flooding of the Service Provider

 Since tokens described in this document are intentionally designed to
 be reused until they expire, they do not grant any protection against
 flooding of the service provider

 Tokens with a usage limit would either require the service provider
 to consult the authentication provider for each service request or
 require holding a connection state at the service providers.

 Service providers must implement their own flood protection
 mechanisms - independently of the LTA.

17.1.2. Time Synchronization Attack

 Depending on the expiry delay a few seconds difference in the token
 expiration between what the authentication provider specified and the
 expiry in the service provider are no problem. Whereas minutes or
 more would open a potential attack vector where outdated tokens could
 be used.

 Therefore proper time synchronization of the AP and SP is crucial.

 Attackers could try to fake the time source of either the AP or SP.
 Therefore both must make sure to use a secure and trusted time
 source.

17.1.3. Token Hijacking

 One of the goals of the LTA is to provide anonymization of the
 consumer towards the service provider. Since the service provider
 does not know the sender, it can not verify if the token belongs to
 the sender or was copied from another consumer.

 For this reason it is recommended to use LTA alone only for services
 that do not disclose personal or confidential data. If service
 designers plan to use LTA for such a service it is recommended that
 they use additional user authentication.

17.1.4. Man-in-the-Middle

 If an attacker manages to intercept the communication between the SP
 and the AP, the attacker could try to impose an authentication
 provider towards the unknowing consumer. The consumer would then
 either disclose its credentials to the attacker or the attacker would
 intercept and abuse the issued token.

Baer & Haberstumpf Expires March 3, 2016 [Page 27]

Internet-Draft LTA 1.0 August 2015

 In a different scenario the attacker could impose a service provider
 to collect tokens which it could redeem at the real service provider.

 Consumers need to verify the identity of both, authentication
 provider and service provider in order to prevent man-in-the-middle
 attack.

17.1.5. Replay Attacks

 If attackers are able to record a token during transmission, they can
 try to run a replay attack. Tokens that are not expired can be used
 in a replay attack.

 The first countermeasure is the mandatory use of TLS to prevent
 eavesdropping. If you are really concerned about replay attacks, the
 service provider may use the token cache to accept each token only
 once. The tradeoff is that this contradicts the design goal of
 keeping the number of requests to the authentication provider down.

17.1.6. Service Permission Information Leaking

 Since tokens contain service identification URIs, an attacker could
 try to get tokens to gather information about the services a consumer
 is using and the associated permissions.

 Consumers are responsible for protecting their token on the local
 machine and making sure they are addressing them at the authentic
 service provider.

 Losing a token has - at least for the time the token is valid - the
 same effect as losing other credentials like user name and password.

17.1.7. Addressing a Token to the Wrong Service

 Token based authentication without callback to the authentication
 provider from the service provider carries the risk of a malicious
 consumer trying to feed a token to the service provider that is a
 valid token addressed at a different service provider. See also

Section 9.2 for more information.

 Therefore service providers must check the service identification URI
 in the token.

17.1.8. Using Token Request URIs That Are Not Valid Anymore

 If the consumer cached a token request URI which is not used anymore
 by an authentication provider and that URI belongs to a different
 domain there is the chance of an attacker to impose the

Baer & Haberstumpf Expires March 3, 2016 [Page 28]

Internet-Draft LTA 1.0 August 2015

 authentication provider. For this the attacker would need to gain
 control over the domain, create a matching certificate and deploy
 what looks like the token granting part of the authentication
 provider.

 It is an unlikely scenario but theoretically possible. To mitigate
 the potential damage consumers SHOULD NOT cache token request URIs
 indefinitely.

17.1.9. Compromized Authentication Provider or Stolen AP Secrets

 If attackers successfully take over an authentication provider or
 copy the authentication providers secret, they can use this to create
 valid tokens.

 It is recommended to use a signing mechanism that supports the
 revocation of encryption keys so that at least after the attack was
 discovered, the compromised key can be rejected.

17.2. Anonymization Limitations

 A malicious service provider can collect and compare meta-data of a
 service request in order to break the anonymization. In the simplest
 case IP addresses already help narrowing down the consumer. More
 sophisticated methods include fingerprinting (e.g. by using
 additional HTTP headers or timing)

 If anonymity is an important requirement then consumers can only
 prevent metadata exploitation by adding additional anonymization
 measures (like using the TOR network).

18. References

18.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3339
http://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246

Baer & Haberstumpf Expires March 3, 2016 [Page 29]

Internet-Draft LTA 1.0 August 2015

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI
 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

18.2. Informative References

 [IANA1] IANA, "Textual names for hash functions", 2015,
 <https://www.iana.org/assignments/hash-function-text-

names/hash-function-text-names.xhtml>.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <http://www.rfc-editor.org/info/rfc2045>.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, DOI 10.17487/RFC2617, June 1999,
 <http://www.rfc-editor.org/info/rfc2617>.

 [RFC4572] Lennox, J., "Connection-Oriented Media Transport over the
 Transport Layer Security (TLS) Protocol in the Session
 Description Protocol (SDP)", RFC 4572, DOI 10.17487/

RFC4572, July 2006,
 <http://www.rfc-editor.org/info/rfc4572>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/

RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

Authors' Addresses

 Sebastian Baer
 Elektrobit
 Am Wolfsmantel 46
 Erlangen 91058
 Germany

 Email: sebastian.baer@elektrobit.com

https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://www.iana.org/assignments/hash-function-text-names/hash-function-text-names.xhtml
https://www.iana.org/assignments/hash-function-text-names/hash-function-text-names.xhtml
https://datatracker.ietf.org/doc/html/rfc2045
http://www.rfc-editor.org/info/rfc2045
https://datatracker.ietf.org/doc/html/rfc2617
http://www.rfc-editor.org/info/rfc2617
https://datatracker.ietf.org/doc/html/rfc4572
https://datatracker.ietf.org/doc/html/rfc4572
http://www.rfc-editor.org/info/rfc4572
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc5905
http://www.rfc-editor.org/info/rfc5905

Baer & Haberstumpf Expires March 3, 2016 [Page 30]

Internet-Draft LTA 1.0 August 2015

 Bernd Haberstumpf
 Elektrobit
 Am Wolfsmantel 46
 Erlangen 91058
 Germany

 Email: bernd.haberstumpf@elektrobit.com

Baer & Haberstumpf Expires March 3, 2016 [Page 31]

