
BEHAVE WG M. Bagnulo
Internet-Draft UC3M
Intended status: Standards Track A. Sullivan
Expires: September 8, 2009 Shinkuro
 P. Matthews
 Alcatel-Lucent
 I. van Beijnum
 IMDEA Networks
 M. Endo
 Yokogawa Electric Corporation
 March 7, 2009

DNS64: DNS extensions for Network Address Translation from IPv6 Clients
 to IPv4 Servers

draft-bagnulo-behave-dns64-02

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79. This document may contain material
 from IETF Documents or IETF Contributions published or made publicly
 available before November 10, 2008. The person(s) controlling the
 copyright in some of this material may not have granted the IETF
 Trust the right to allow modifications of such material outside the
 IETF Standards Process. Without obtaining an adequate license from
 the person(s) controlling the copyright in such materials, this
 document may not be modified outside the IETF Standards Process, and
 derivative works of it may not be created outside the IETF Standards
 Process, except to format it for publication as an RFC or to
 translate it into languages other than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Bagnulo, et al. Expires September 8, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/draft-bagnulo-behave-dns64-02
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft DNS64 March 2009

 This Internet-Draft will expire on September 8, 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 DNS64 is a mechanism for synthesizing AAAA records from A records.
 DNS64 is used with NAT64, an IPv6 IPv4 translator to enable client-
 server communication between an IPv6-only client and an IPv4-only
 server, without requiring any changes to either the IPv6 or the IPv4
 node, for the class of applications that work through NATs. This
 document specifies DNS64, and provides suggestions on how it should
 be deployed in conjunction with NAT64.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bagnulo, et al. Expires September 8, 2009 [Page 2]

Internet-Draft DNS64 March 2009

Table of Contents

1. Introduction . 4
1.1. Overview . 4
1.2. Walkthrough . 6

 1.2.1. An-IPv6-network-to-IPv4-Internet setup with DNS64
 in DNS server mode 7
 1.2.2. An-IPv6-network-to-IPv4-Internet setup with DNS64
 in stub-resolver mode 8
 1.2.3. IPv6-Internet-to-an-IPv4-network setup DNS64 in
 DNS server mode 9

2. Terminology . 11
3. Normative Specification 13
3.1. DNS64 . 13
3.2. Handling PTR RRs . 14

4. Solution space analysis 14
4.1. Tagging synthetic RR 15
4.2. Dual stack nodes . 16

 4.2.1. Communication initiated from an IPv6-only node
 towards a dual stack node 16
 4.2.2. Communication initiated from a dual stack node
 toward an IPv4 only node 17

4.3. IPv6 nodes implementing DNSSEC 17
 4.3.1. Recursive resolvers and
 an-IPv6-network-to-IPv4-Internet 18
 4.3.1.1. Strategy 1: Response-specific DNSSEC
 information 19
 4.3.1.2. Strategy 2: Treat synthesized AAAA similarly
 to synthesized CNAMEs 20

4.3.2. IPv6-Internet-to-An-IPv4-network 20
4.4. Learning the Pref64::/96 prefix 21

 4.5. Supporting multiple NAT64 boxes with different
 associated prefixes 22

5. Security Considerations 23
6. IANA Considerations . 23
7. Changes from Previous Draft Versions 23
8. Contributors . 23
9. Acknowledgements . 24
10. References . 24
10.1. Normative References 24
10.2. Informative References 25

 Authors' Addresses . 26

Bagnulo, et al. Expires September 8, 2009 [Page 3]

Internet-Draft DNS64 March 2009

1. Introduction

 This document specifies DNS64, a mechanism that is part of the
 toolbox for IPv6-IPv4 transition and co-existence. DNS64, used
 together with NAT64, allows an IPv6-only client to initiate
 communications by name to an IPv4-only server.

 DNS64 is a mechanism for synthesizing AAAA resource records (RR) from
 A RRs. The synthesis is done by adding a /96 prefix to the IPv4
 address to create an IPv6 address, where the /96 prefix is assigned
 to a NAT64 device.

 NAT64 as defined in a companion document [I-D.bagnulo-behave-nat64]
 is a mechanism for translating IPv6 packets to IPv4 packets. The
 translation is done by translating the packet headers according to
 SIIT [RFC2765], translating the IPv4 server address by adding or
 removing a /96 prefix, and translating the IPv6 client address by
 installing mappings in the normal NAT manner.

 Together, these two mechanisms allow an IPv6-only client to initiate
 communications to an IPv4-only server using the FQDN of the server.

 These mechanisms are expected to play a critical role in the IPv4-
 IPv6 transition and co-existence. Due to IPv4 address depletion,
 it's likely that in the future, a lot of IPv6-only clients will want
 to connect to IPv4-only servers. These include hosts running IPv6-
 only applications, IPv6-only hosts as well as the cases where only
 IPv6-only connectivity is available between the client and the NAT64.
 In the general case, the approach only requires the deployment of
 NAT64-enabled devices that connect an IPv6-only network to the IPv4-
 only Internet, along with the deployment of one or more DNS64-enabled
 name servers in the IPv6-only network. However, some advanced
 features require performing the DNS64 function directly by the end-
 hosts themselves.

1.1. Overview

 This section provides a non-normative introduction to the DNS64
 mechanism.

 We assume that we have a NAT64 box connecting the IPv4 network and
 the IPv6 network. The NAT64 device provides translation services
 between the two networks enabling communication between IPv4-only
 hosts and IPv6-only hosts. NAT64, however, is not symmetric. In
 order to be able to perform IPv6 - IPv4 translation NAT64 requires
 state, binding an IPv6 address and port (hereafter called an IPv6
 transport address) to an IPv4 address and port (hereafter called an
 IPv4 transport address). Such binding state is created when the

https://datatracker.ietf.org/doc/html/rfc2765

Bagnulo, et al. Expires September 8, 2009 [Page 4]

Internet-Draft DNS64 March 2009

 first packet flowing from the IPv6 network to the IPv4 network is
 translated. After the binding state has been created, packets
 flowing in either direction that are part of that particular flow are
 translated. The result is that NAT64 only supports communications
 initiated by the IPv6-only node towards an IPv4-only node.

 To allow an IPv6 initiator to do the standard DNS lookup to learn the
 address of the responder, DNS64 is used to synthesize an AAAA record
 from the A record containing the real IPv4 address of the responder,
 whenever the DNS64 service cannot retrieve a AAAA record for the
 requested host name. DNS64 appears as a regular recursive resolver
 for the IPv6 initiator. The DNS64 node receives a AAAA DNS query
 generated by the IPv6 initiator. It first attempts a recursive
 resolution of the requested AAAA record. If there is no AAAA record
 available for the target node (which is the normal case when the
 target node is an IPv4-only node), DNS64 performs a query for the A
 record. If an A record is discovered, DNS64 creates a synthetic AAAA
 RR by adding the Pref64::/96 of a NAT64 to the responder's IPv4
 address (i.e. if the IPv4 node has IPv4 address X, then the synthetic
 AAAA RR will contain the IPv6 address formed as Pref64:X). The
 synthetic AAAA RR is passed back to the IPv6 initiator, which will
 initiate an IPv6 communication with the IPv6 address associated to
 the IPv4 receiver. The packet will be routed to the NAT64 device,
 which will create the IPv6 to IPv4 address mapping as described in
 [I-D.bagnulo-behave-nat64].

 The only shared state between the DNS64 and the NAT64 is the
 Pref64::/96 that must be configured to be the same on both; there is
 no communication between the DNS64 and NAT64 functions.

 There are two main different setups where DNS64+NAT64 approach is
 expected to be used (other setups are possible as well, but these two
 are the main ones identified at the time of this writing).

 One possible setup that is expected to be common is the case of an
 end site or an ISP that is providing IPv6-only connectivity or
 connectivity to IPv6-only hosts that wants to allow the
 communication from these IPv6-only connected hosts to the IPv4
 Internet. (This case is called An-IPv6-network-to-IPv4-Internet).
 In this case, the NAT64 is used to connect the end site or the ISP
 to the IPv4 Internet and the DNS64 function is provided by the end
 site or the ISP.

 The other possible setup that is expected is an IPv4 site that
 wants that its IPv4 servers to be reachable from the IPv6
 Internet. (This case is called IPv6-Internet-to-an-IPv4-network).
 It should be noted that the IPv4 addresses used in the IPv4 site
 can be either public or private. In this case, the NAT64 is used

Bagnulo, et al. Expires September 8, 2009 [Page 5]

Internet-Draft DNS64 March 2009

 to connect the IPv4 end site to the IPv6 Internet and the DNS64
 function is provided by the end site itself.

 The DNS64 function can be performed in two places.

 One option is to locate the DNS64 function in recursive name
 servers serving end hosts. In this case, when an IPv6 device
 queries the name server for a AAAA RR for an IPv4 only host, the
 name server can perform the synthesis to the AAAA RR and pass it
 back to the IPv6 only initiator. The main advantage of this mode
 is that current IPv6 nodes can use this mechanism without
 requiring any modification. This mode, called DNS64 in DNS server
 mode, is expected to be used in both An-IPv6-network-to-IPv4-
 Internet setup and IPv6-Internet-to-an-IPv4-network setup.

 The other option is to place the DNS64 function in the end hosts
 themselves, coupled to the local stub resolver. In this case, the
 stub resolver will try to obtain (real) AAAA RRs and in case they
 are not available, the DNS64 function will synthesize the AAAA RR
 for internal usage. This mode is compatible with some advanced
 functions like DNSSEC validation in the end host. The main
 drawback of this mode is its deployability, since it requires
 changes in the end hosts. This mode, called DNS64 in stub-
 resolver mode, is expected to be used only in the An-IPv6-network-
 to-IPv4-Internet setup case.

1.2. Walkthrough

 In this section we illustrate how the DNS64 behaves in the different
 scenarios that are expected to be common. We consider then 3
 possible scenarios, namely:

 1. An-IPv6-network-to-IPv4-Internet setup with DNS64 in DNS server
 mode

 2. An-IPv6-network-to-IPv4-Internet setup with DNS64 in stub-
 resolver mode

 3. IPv6-Internet-to-an-IPv4-network setup DNS64 in DNS server mode

 The notation used is the following: upper case letters are IPv4
 addresses; upper case letters with a prime(') are IPv6 addresses;
 lower case letters are ports; prefixes are indicated by "P::X", which
 is an IPv6 address built from an IPv4 address X by adding the prefix
 P, mappings are indicated as "(X,x) <--> (Y',y)".

Bagnulo, et al. Expires September 8, 2009 [Page 6]

Internet-Draft DNS64 March 2009

1.2.1. An-IPv6-network-to-IPv4-Internet setup with DNS64 in DNS server
 mode

 In this example, we consider an IPv6 node located in an IPv6-only
 site that initiates a communication to a IPv4 node located in the
 IPv4 Internet.

 The scenario for this case is depicted in the following figure:

 +---------------------------------------+ +-----------+
 |IPv6 site +-------------+ |IP Addr: | | | | | | |
 | +----+ | Name server | +-------+ T | IPv4 |
 | | H1 | | with DNS64 | | NAT64 |------| Internet |
 | +----+ +-------------+ +-------+ +-----------+
 | |IP addr: Y' | | | |IP addr: X
 | --------------------------------- | +----+
 +---------------------------------------+ | H2 |
 +----+

 The figure shows an IPv6 node H1 which has an IPv6 address Y' and an
 IPv4 node H2 with IPv4 address X.

 A NAT64 connects the IPv6 network to the IPv4 Internet. This NAT64
 has a /96 prefix (called Pref64::/96) associated to its IPv6
 interface and an IPv4 address T assigned to its IPv4 interface.

 The other element involved is the local name server. The name server
 is a dual-stack node, so that H1 can contact it via IPv6, while it
 can contact IPv4-only name servers via IPv4.

 The local name server needs to know the /96 prefix assigned to the
 local NAT64 (Pref64::/96). For the purpose of this example, we
 assume it learns this through manual configuration.

 For this example, assume the typical DNS situation where IPv6 hosts
 have only stub resolvers, and always query a name server that
 performs recursive lookups (henceforth called "the recursive
 nameserver").

 The steps by which H1 establishes communication with H2 are:

 1. H1 does a DNS lookup for FQDN(H2). H1 does this by sending a DNS
 query for an AAAA record for H2 to the recursive name server.
 The recursive name server implements DNS64 functionality.

 2. The recursive name server resolves the query, and discovers that
 there are no AAAA records for H2.

Bagnulo, et al. Expires September 8, 2009 [Page 7]

Internet-Draft DNS64 March 2009

 3. The recursive name server queries for an A record for H2 and gets
 back an A record containing the IPv4 address X. The name server
 then synthesizes an AAAA record. The IPv6 address in the AAAA
 record contains the prefix assigned to the NAT64 in the upper 96
 bits and the IPv4 address X in the lower 32 bits.

 4. H1 receives the synthetic AAAA record and sends a packet towards
 H2. The packet is sent from a source transport address of (Y',y)
 to a destination transport address of (Pref64:X,x), where y and x
 are ports chosen by H2.

 5. The packet is routed to the IPv6 interface of the NAT64 and the
 subsequent communication flows by means of the NAT64 mechanisms
 as described in the NAT64
 specification[I-D.bagnulo-behave-nat64].

1.2.2. An-IPv6-network-to-IPv4-Internet setup with DNS64 in stub-
 resolver mode

 The scenario for this case is depicted in the following figure:

 +---------------------------------------+ +-----------+
 |IPv6 site +-------+ |IP addr: | | | | | | |
 | +---------------+ | Name | +-------+ T | IPv4 |
 | | H1 with DNS64 | | Server| | NAT64 |------| Internet |
 | +---------------+ +-------+ +-------+ +-----------+
 | |IP addr: Y' | | | |IP addr: X
 | --------------------------------- | +----+
 +---------------------------------------+ | H2 |
 +----+

 The figure shows an IPv6 node H1 which has an IPv6 address Y' and an
 IPv4 node H2 with IPv4 address X. Node H1 is implementing the DNS64
 function.

 A NAT64 connects the IPv6 network to the IPv4 Internet. This NAT64
 has a /96 prefix (called Pref64::/96) associated to its IPv6
 interface and an IPv4 address T assigned to its IPv4 interface.

 H1 needs to know the /96 prefix assigned to the local NAT64
 (Pref64::/96). For the purpose of this example, we assume it learns
 this through manual configuration but we will discuss different
 options for doing this in the analysis section of this document.

 Also shown is a name server. For the purpose of this example, we
 assume that the name server is a dual-stack node, so that H1 can
 contact it via IPv6, while it can contact IPv4-only name servers via

Bagnulo, et al. Expires September 8, 2009 [Page 8]

Internet-Draft DNS64 March 2009

 IPv4.

 For this example, assume the typical situation where IPv6 hosts have
 only stub resolvers and always query a name server that provides
 recursive lookups (henceforth called "the recursive name server").
 The recursive name server does not perform the DNS64 function.

 The steps by which H1 establishes communication with H2 are:

 1. H1 does a DNS lookup for FQDN(H2). H1 does this by sending a DNS
 query for a AAAA record for H2 to the recursive name server.

 2. The recursive DNS server resolves the query, and returns the
 answer to H1. Because there are no AAAA records in the global
 DNS for H2, the answer is empty.

 3. The stub resolver at H1 then queries for an A record for H2 and
 gets back an A record containing the IPv4 address X. The DNS64
 function within H1 then synthesizes a AAAA record. The IPv6
 address in the AAAA record contains the prefix assigned to the
 NAT64 in the upper 96 bits and the IPv4 address X in the lower 32
 bits.

 4. H1 sends a packet towards H2. The packet is sent from a source
 transport address of (Y',y) to a destination transport address of
 (Pref64:X,x), where y and x are ports chosen by H2.

 5. The packet is routed to the IPv6 interface of the NAT64 and the
 subsequent communication flows using the NAT64 mechanisms as
 described in the NAT64 specification[I-D.bagnulo-behave-nat64].

1.2.3. IPv6-Internet-to-an-IPv4-network setup DNS64 in DNS server mode

 In this example, we consider an IPv6 node located in the IPv6
 Internet site that initiates a communication to a IPv4 node located
 in the IPv4 site.

 This scenario can be addressed without using any form of DNS64
 function. This is so because it is possible to assign a fixed IPv6
 address to each of the IPv4 servers. Such an IPv6 address would be
 constructed as the Pref64::/96 concatenated with the IPv4 address of
 the IPv4 server. Note that the IPv4 address can be a public or a
 private address; the latter does not present any additional
 difficulty. Once these IPv6 addresses have been assigned to
 represent the IPv4 servers in the IPv6 Internet, real AAAA RRs
 containing these addresses can be published in the DNS under the
 site's domain. This is the recommended approach to handle this
 scenario.

Bagnulo, et al. Expires September 8, 2009 [Page 9]

Internet-Draft DNS64 March 2009

 However, there are some more dynamic scenarios, where synthesizing
 AAAA RRs in this setup may be needed. In particular, when DNS Update
 [RFC2136] is used in the IPv4 site to update the A RRs for the IPv4
 servers, there are two options: One option is to modify the server
 that receives the dynamic DNS updates. That would normally be the
 authoritative server for the zone. So the authoritative zone would
 have normal AAAA RRs that are synthesized as dynamic updates occur.
 The other option is modify the authoritative server to generate
 synthetic AAAA records for a zone, possibly based on additional
 constraints, upon the reception of the DNS query for the AAAA RR.
 The first option, the synthesis upon the DynDNS update, recommended
 over the second option, i.e. the synthesis over the reception of the
 AAAA RR DNS query. The DNS64 behavior that we describe in this
 section covers the last case i.e. AAAA RR being synthesized when the
 DNS query arrives. Note that we don't recommend this approach over
 the previous one where AAAA RR are generated upon the dynamic
 registration. However, this is specified in this document because
 this is a part that is related to the DNS64 function.

 The scenario for this case is depicted in the following figure:

 +-----------+ +--+
 | | | IPv4 site +-------------+ | | | | | |
 | IPv6 | +-------+ +----+ | Name server | |
 | Internet |------| NAT64 | | H2 | | with DNS64 | |
 +-----------+ +-------+ +----+ +-------------+ |
 |IP addr: Y' | | |IP addr: X | |
 +----+ | ----------------------------------- |
 | H1 | +--+
 +----+

 The figure shows an IPv6 node H1 which has an IPv6 address Y' and an
 IPv4 node H2 with IPv4 address X.

 A NAT64 connects the IPv4 network to the IPv6 Internet. This NAT64
 has a /96 prefix (called Pref64::/96) associated to its IPv6
 interface.

 Also shown is the authoritative name server for the local domain with
 DNS64 functionality. For the purpose of this example, we assume that
 the name server is a dual-stack node, so that H1 can contact it via
 IPv6, while it can be contacted by IPv4-only nodes to receive dynamic
 DNS updates via IPv4.

 The local name server needs to know the /96 prefix assigned to the
 local NAT64 (Pref64::/96). For the purpose of this example, we
 assume it learns this through manual configuration.

https://datatracker.ietf.org/doc/html/rfc2136

Bagnulo, et al. Expires September 8, 2009 [Page 10]

Internet-Draft DNS64 March 2009

 The steps by which H1 establishes communication with H2 are:

 1. H1 does a DNS lookup for FQDN(H2). H1 does this by sending a DNS
 query for an AAAA record for H2. The query is eventually
 forwarded to the server in the IPv4 site. Assume the local name
 server is implementing DNS64 functionality.

 2. The local DNS server resolves the query (locally), and discovers
 that there are no AAAA records for H2.

 3. The name server verifies that FQDN(H2) and its A RR are among
 those that the local policy defines as allowed to generate a AAAA
 RR from. If that is the case, the name server synthesizes an
 AAAA record from the A RR and the relevant Pref64::/96. The IPv6
 address in the AAAA record contains the prefix assigned to the
 NAT64 in the first 96 bits and the IPv4 address X in the lower 32
 bits.

 4. H1 receives the synthetic AAAA record and sends a packet towards
 H2. The packet is sent from a source transport address of (Y',y)
 to a destination transport address of (Pref64:X,x), where y and x
 are ports chosen by H2.

 5. The packet is routed through the IPv6 Internet to the IPv6
 interface of the NAT64 and the communication flows using the
 NAT64 mechanisms as described in the NAT64
 specification[I-D.bagnulo-behave-nat64].

2. Terminology

 This section provides a definitive reference for all the terms used
 in document.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The following terms are used in this document:

 Authoritative server A DNS server that can answer authoritatively
 for a given DNS question.

 DNS64: A logical function that synthesizes AAAA records (containing
 IPv6 addresses) from A records (containing IPv4 addresses).

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Bagnulo, et al. Expires September 8, 2009 [Page 11]

Internet-Draft DNS64 March 2009

 DNS64 recursor: A recursive resolver that provides the DNS64
 functionality as part of its operation.

 Recursive resolver: A DNS server that accepts requests from one
 resolver, and asks another resolver for the answer on behalf of
 the first resolver. In the context of this document, "the
 recursive resolver" means a recursive resolver immediately next in
 the DNS resolution chain from an end point. The end point usually
 has only a stub resolver available.

 Synthetic RR: A DNS resource record (RR) that is not contained in
 any zone data file, but has been synthesized from other RRs. An
 example is a synthetic AAAA record created from an A record.

 Stub resolver: A resolver with minimum functionality, typically for
 use in end points that depend on a recursive resolver. Most end
 points on the Internet as of this writing use stub resolvers.

 NAT64: A device that translates IPv6 packets to IPv4 packets and
 vice-versa, with the provision that the communication must be
 initiated from the IPv6 side. The translation involves not only
 the IP header, but also the transport header (TCP or UDP).

 5-Tuple: The tuple (source IP address, source port, destination IP
 address, destination port, transport protocol). A 5-tuple
 uniquely identifies a session. When a session flows through a
 NAT64, each session has two different 5-tuples: one with IPv4
 addresses and one with IPv6 addresses.

 Transport Address: The combination of an IPv6 or IPv4 address and a
 port. Typically written as (IP address, port); e.g. (192.0.2.15,
 8001).

 Mapping: A mapping between an IPv6 transport address and a IPv4
 transport address. Used to translate the addresses and ports of
 packets flowing between the IPv6 host and the IPv4 host. In
 NAT64, the IPv4 transport address is always a transport address
 assigned to the NAT64 itself, while the IPv6 transport address
 belongs to some IPv6 host.

 For a detailed understanding of this document, the reader should also
 be familiar with DNS terminology [RFC1035] and current NAT
 terminology [RFC4787]. Some parts of this document assume
 familiarity with the terminology of the DNS Security extensions
 outlined in [RFC4035]

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4035

Bagnulo, et al. Expires September 8, 2009 [Page 12]

Internet-Draft DNS64 March 2009

3. Normative Specification

3.1. DNS64

 A DNS64 is a logical function that synthesizes AAAA records from A
 records. The DNS64 function may be implemented in a stub resolver,
 in a recursive resolver or in an authoritative name server.

 The only configuration parameter required by the DNS64 is the IPv6
 prefix assigned to a NAT64. This prefix is used to map IPv4
 addresses into IPv6 addresses, and is denoted Pref64. The DNS64
 learns this prefix through some means not specified here.

 When the DNS64 receives a query for RRs of type AAAA and class IN, it
 first attempts to retrieve non-synthetic RRs of this type and class,
 either by performing a recursive query or, in the case of an
 authoritative server, by examining its own results. If this query
 results in one or more AAAA records or in an error condition, this
 result is returned to the requesting client as per normal DNS
 semantics. If the query results in no error but an empty answer
 section in the response, the DNS64 resolver attempts to retrieve an A
 record for the name in question. If this query results in an empty
 result or in an error, this result is returned to the client. If the
 query results in one or more A RRs, the DNS64 synthesizes AAAA RRs
 based on the A RRs and the Pref64 prefix of the translator. The
 DNS64 resolver then returns the synthesized AAAA records to the
 client.

 DNS64 MAY perform the query for the AAAA RR and for the A RR in
 parallel, in order to minimize the delay. However, this would result
 in performing unnecessary A RR queries in the case that the AAAA RR
 exists. A possible trade-off would be to make them sequentially but
 with a very short interval between them, so if we obtain a fast
 reply, we avoid doing the additional query. (Note that this
 discussion is relevant only if the DNS64 function needs to perform
 external queries to fetch the RR. If the needed RR information is
 available locally, as in the case of an authoritative server, the
 issue is no longer relevant.)

 A synthetic AAAA record is created from an A record as follows:

 o The NAME field is set to the NAME field from the A record

 o The TYPE field is set to 28 (AAAA)

 o The CLASS field is set to 1 (IN)

Bagnulo, et al. Expires September 8, 2009 [Page 13]

Internet-Draft DNS64 March 2009

 o The TTL field is set to the TTL of the original A RR

 o The RDLENGTH field is set to 16

 o The RDATA field is set to the IPv6 address whose upper 96 bits are
 Pref64::/96 and whose lower 32 bits are the IPv4 address from the
 RDATA field of the A record.

3.2. Handling PTR RRs

 If the DNS64 receives a PTR query for the IP6.ARPA domain, the DNS64
 searches for the queried prefix on its own list of prefixes (i.e. one
 or more Pref64 available). If the prefix contained in the query is
 not included in its own list of prefixes, the DNS64 just forwards the
 query to the (internal or external) resolver. If the prefix is
 included in its own prefix list, then the DNS64 translates the QNAME
 field to the IN-ADDR.ARPA domain by removing the Pref64:/96, and
 extracting the IPv4 address in reversed order. The DNS64 then sends
 the translated query to the resolver. When the resulting query is
 resolved, the DNS64 restores the QNAME field to the IP6.ARPA domain,
 and sends the DNS response to the original client.

4. Solution space analysis

 So far the document describes the basic functionality that is needed
 to perform the DNS64 function. However, there are several open
 issues that require further discussion. This section present the
 issues and several approaches to deal with them.

 Having DNS synthesize AAAA records creates a number of issues, as
 described in [RFC4966]:

 o The synthesized AAAA records may leak outside their intended
 scope;

 o Dual-stack hosts may communicate with IPv4-only servers using IPv6
 which is then translated to IPv4, rather than using their IPv4
 connectivity;

 o Interaction with DNSSEC;

 o The DNS64 box needs to learn the Pref64::/96 used by the NAT64
 box;

 o Supporting the case of multiple NAT64 boxes with different
 associated prefixes.

https://datatracker.ietf.org/doc/html/rfc4966

Bagnulo, et al. Expires September 8, 2009 [Page 14]

Internet-Draft DNS64 March 2009

4.1. Tagging synthetic RR

 As a general architecture consideration, it seems a good approach to
 preserve the transparency when the semantics of an existent protocol
 is changed. In this case, it seems architecturally sound to tag the
 synthetic RR, so they can be identified as synthetic and act
 accordingly. There are several ways we can achieve that, but all of
 them impose some trade-offs between architectural cleanness and
 deployability.

 Tagging the synthetic RRs is relevant in the An-IPv6-network-to-IPv4-
 Internet setup, where the synthesis is not made by the authoritative
 name server and the following discussion applies. This is not the
 case when the synthesis is performed by the authoritative DNS server,
 such as in the case of the setup presented in IPv6-Internet-to-An-
 IPv4-network.

 Tagging is mostly useful for troubleshooting, and for translation-
 aware end points.

 One option to tag the synthetic RR would be to use a different RR
 type i.e. not to synthesize AAAA RR but to create a new RR type e.g.
 AAAASYNT that would be used in this cases. This seems
 architecturally clean, but the problem is that the host needs to
 explicitly ask for this new RR type and this is simply incompatible
 with existing IPv6 hosts. In order to support this, we would need to
 upgrade the hosts and if we are going to do that, we may as well
 simply use the DNS64 stub resolver mode. However, it is an explicit
 goal of DNS64/NAT64 to support unmodified IPv6 hosts, so this could
 be considered as an optimization but we would still need to
 synthesize AAAA RR and we still need to mark those. Therefore, this
 option is rejected.

 Another option is to create a new RR that would be included in the
 additional information part of the DNS response, basically saying
 that one or more of the RRs contained in the DNS response message are
 synthetic. So, in this case, we could create a new AAAASYNT RR type
 and queries could be accepted directly for this RR and when a AAAA RR
 is synthesized for the correspondent FQDN, the AAAASYNT would be
 included in the additional information part of the DNS response that
 contains the synthetic AAAA RR. Of course, in order to benefit from
 this mechanism, the receiving host needs to be upgraded to understand
 the new AAAASYNT RR, but this is backward compatible, in the sense
 that if the host does not understand the AAAASYNT RR it would still
 use the AAAA RR and it would be able to communicate. In addition, a
 host can query explicitly for the AAAASYNT RR and verify if a given
 AAAA RR is synthetic or not. This would result in a sort of public
 repository of synthetic AAAA RRs, which is useful for transparency.

Bagnulo, et al. Expires September 8, 2009 [Page 15]

Internet-Draft DNS64 March 2009

 One downside with this is that the tag is not directly associated
 with the synthetic AAAA RR but is some additional information
 contained in the DNS response. In this sense we are tagging the DNS
 response message rather than tagging the synthetic RR. Such
 additional information could be lost in caching servers or other
 means of relying DNS information, losing the tag.

 A similar option as the previous one would be to use an EDNS0 option
 [RFC2671] to tag the DNS responses that contain one or more synthetic
 AAAA RRs. There are however some additional issues with this. The
 EDNS0 option can only be included if the DNS query contained the
 EDNS0 option. It would also be possible to find out if a given AAAA
 RR is synthetic, since the querying party could ask for the AAAA RR
 and include the EDNS0 option.

 Another option would be to use a well known prefix as the
 Pref64::/96. In this case, we could assume that any AAAA RR
 containing the well know Pref64::/96 is synthetic. This would
 achieve tagging the RR itself, since this information can not be lost
 in caching servers. Additional discussion about the advantages and
 disadvantages of using a Well-Known prefix can be found
 [I-D.miyata-behave-prefix64].

4.2. Dual stack nodes

 When dual stack nodes are involved in the communication, the
 potential issue is that they end up using translated connectivity
 even though the native connectivity is available. There are multiple
 ways to try to deal with this issue, here we consider those related
 to DNS64.

 There are two different cases involving dual-stack nodes.
 Communication initiated from an IPv6-only node towards a dual stack
 node and communication initiated from a dual stack node towards an
 IPv4-only node. We will next consider each one of these cases.

4.2.1. Communication initiated from an IPv6-only node towards a dual
 stack node

 In this case, the IPv6 only node will query for the FQDN of the dual
 stack node. The DNS64 function will try first to get the AAAA RR.
 Since there is one available, it will return it and no AAAA RR will
 be synthesized from the A RR of the dual stack node. However, it
 should be noted that the DNS64 must first try to get the real AAAA RR
 before starting the synthesis, if not, it may result in the
 aforementioned problem.

https://datatracker.ietf.org/doc/html/rfc2671

Bagnulo, et al. Expires September 8, 2009 [Page 16]

Internet-Draft DNS64 March 2009

4.2.2. Communication initiated from a dual stack node toward an IPv4
 only node

 We consider now the case of a dual stack node is initiating a
 communication with a IPv4-only node that has a public IPv4 address
 published in an A RR. Dual stack nodes that have both IPv6 and IPv4
 connectivity and are configured with an address for a DNS64 as their
 resolving nameserver may receive responses containing synthetic AAAA
 resource records. If the node prefers IPv6 over IPv4, using the
 addresses in the synthetic AAAA RRs means that the node will attempt
 to communicate through the NAT64 mechanism first, and only fall back
 to native IPv4 connectivity if connecting through NAT64 fails (if the
 application tries the full set of destination addresses). We have
 multiple options to avoid this.

 One option would be to configure the dual stack nodes not to use the
 DNS64 mechanism. This would mean that the server they are using
 should not be performing this function (at least not for them). The
 drawback of this option is that the translated connectivity would not
 be usable for backup purposes if the native connectivity is down.

 The other option is that the dual stack nodes perform the DNS64 in
 stub resolver mode. In this case, they know which RRs are synthetic
 and so they know when the connectivity is translated and can be
 avoided. The problem with this option is that it only works for
 upgraded dual stack nodes and not with currently available nodes.

 Another option is that dual stack nodes identify synthetic AAAA RR
 from their tagging (whatever this is) and avoid using the translated
 connectivity associated with the synthetic RR. However, again, this
 option only works for upgraded nodes.

 Another option not specific to DNS64 includes using the RFC3484
 policy table e.g. configuring the Pref64::/96 as low priority
 preference in the table. This option requires some means to properly
 configure the policy table, which is not currently available (only
 manual configuration is currently defined) (see
 [I-D.ietf-6man-addr-select-sol] for more on this topic).

4.3. IPv6 nodes implementing DNSSEC

 DNSSEC presents a special challenge for DNS64, because DNSSEC is
 designed to detect changes to DNS answers, and DNS64 may alter
 answers coming from an authoritative server. This section outlines
 the various cases and discusses possible ways to address the problem.

https://datatracker.ietf.org/doc/html/rfc3484

Bagnulo, et al. Expires September 8, 2009 [Page 17]

Internet-Draft DNS64 March 2009

4.3.1. Recursive resolvers and an-IPv6-network-to-IPv4-Internet

 A recursive resolver can be security-aware or security-oblivious.
 Moreover, a security-aware recursive name server can be validating or
 non-validating, according to operator policy. For the purposes of
 notation, we call these Rso (recursing, security oblivious), Rsav
 (recursing, security aware and validating), and Rsan (recursing,
 security aware and non-validating). In the cases below, the
 recursive server is also performing DNS64, and has a local policy to
 validate. We call this general case vDNS64, but in all the cases
 below the DNS64 functionality should be assumed needed.

 DNSSEC includes some signalling bits that offer some indicators of
 what the query originator understands.

 If a query arrives at a vDNS64 with the DO bit set, the query
 originator is signalling that it understands DNSSEC. The DO bit does
 not indicate that the query originator will validate the response.
 It only means that the query originator can understand responses
 containing DNSSEC data. Conversely, if the DO bit is clear, that is
 evidence that the querying agent is not aware of DNSSEC.

 If a query arrives at a vDNS64 with the CD bit set, it is an
 indication that the querying agent wants all the validation data so
 it can do checking itself. By local policy, vDNS64 could still
 validate, but it must return all data to the querying agent anyway.

 Here are the possible cases:

 1. Rso recursor receives a query without the DO bit clear. In this
 case, DNSSEC is not a concern, because the querying agent does
 not understand DNSSEC responses.

 2. Rso receives a query with the DO bit set, and the CD bit clear.
 This is just like the case of a non-DNS64 case: the server
 doesn't support it, so the querying agent is out of luck.

 3. Rsan receives a query with the DO bit set and the CD bit clear.
 An Rsan is not validating responses, likely due to local policy
 (see [RFC4035], section 4.2). For that reason, this case amounts
 to the same as the previous case, and no validation happens.

 4. Rsan receives a query with DO bit set and the CD bit set. In
 this case, the Rsan is supposed to pass on all the data it gets
 to the query initiator (this is in section 3.2.2 of 4035). This
 is a case will be problematic for vNAT64. If it modifies the
 record, the client will get the data back and try to validate it,
 and the data will be invalid as far as the client is concerned.

https://datatracker.ietf.org/doc/html/rfc4035#section-4.2

Bagnulo, et al. Expires September 8, 2009 [Page 18]

Internet-Draft DNS64 March 2009

 5. Rsav receives a query with the DO bit clear and CD clear. In
 this case, the Rsav validates the data. If it fails, it returns
 RCODE 2 (SERVFAIL); otherwise, it returns the answer. This is
 the ideal case for vDNS64. The Rsav validates the data, and then
 synthesizes the new record and passes that to the client.

 6. Rsav receives a query with the DO bit set and CD clear. In
 principle, this ought to work like the previous case, except that
 the Rsav should also set the AD bit on the response. There is a
 potential difficulty with the AD bit; it is addressed below.

 7. Rsav receives a query with DO bit set and CD set. This is
 effectively the same as the case where an Rsan receives a similar
 query, and the same thing will happen: the downstream validator
 will mark the data as invalid.

4.3.1.1. Strategy 1: Response-specific DNSSEC information

 The vDNS64 can use the presence of the DO and CD bits to make some
 decisions about what the query originator needs, and can react
 accordingly:

 1. If CD is not set and DO is not set, vDNS64 SHOULD perform
 validation and do any translation it wants. The DNS64 MAY
 translate the A record to AAAA.

 2. If CD is not set and DO is set, then vDNS64 SHOULD perform
 validation. If the data validates, the server MAY perform
 translation, but it MUST NOT set the AD bit. This is acceptable,
 because whereas the original data validated, the answer that is
 actually returned to the originating client is not the validated
 data (and therefore would not itself validate). Similarly, if
 the data does not validate, the vDNS64 MUST respond with RCODE=2
 (server failure).
 A security-aware end point may want the security data, and may
 want to pass it up to an application, and this strategy will make
 that data unavailable. One could argue therefore that this
 approach is not desirable. But security aware stub resolvers
 MUST NOT place any reliance on data received from resolvers and
 validated on their behalf without certain criteria established by

[RFC4035], section 4.9.3.

 3. If the CD is set and DO is set, then vDNS64 MUST NOT perform
 validation, and MUST NOT perform translation. It MUST hand the
 data back to the query initiator, just like a regular recursing
 server, and depend on the client to do the validation and the
 translation itself.
 The disadvantage to this approach is that an end point that is

https://datatracker.ietf.org/doc/html/rfc4035#section-4.9.3

Bagnulo, et al. Expires September 8, 2009 [Page 19]

Internet-Draft DNS64 March 2009

 translation-oblivious but security-aware and validating simply
 won't be able to use the DNS64 functionality. In this case, the
 end point will not have the desired benefit of NAT64. In effect,
 this strategy means that any end point that wishes to do
 validation in a NAT64 context must be upgraded to be translation-
 aware as well.

4.3.1.2. Strategy 2: Treat synthesized AAAA similarly to synthesized
 CNAMEs

 An alternative to the strategy in the previous section is to emulate
 the approach used by DNAME to synthesize CNAMEs [RFC2672]. In this
 approach, the vDNS64 synthesizes the AAAA record from the A record.
 When replying to the query for the AAAA, the server includes the A
 record in one section of the response. The AAAA record is not signed
 (the DNS64 server does not have the capability to do so anyway, since
 it does not have the necessary key). The original A record would be
 returned in one of two sections:

 1. In the answer section: a server preparing an answer satisfied by
 the DNAME substitution includes a synthesized CNAME in the answer
 section, so by way of analogy a DNS64 server could add the
 synthesized AAAA to the original A record, and return all of this
 in the answer section.
 There are some significant differences, however, between this
 case and CNAME/DNAME. First, this will mean that clients will
 receive an A record in response to a AAAA query. Stub resolvers
 have always expected CNAMEs in response to A record queries; it
 might be surprising to receive an A record in response to a query
 for AAAA. In addition, it is likely that some validators will
 treat the unsigned AAAA record as bogus.

 2. In the additional section: a DNS64 server could replace the A
 record with the synthetic AAAA, and put the original A record in
 the additional section. A validating resolver could then find
 the A record in the additional, detect that the IP address it
 contains forms part of the synthetic address, and perform an
 additional validation step on that A record if so desired.
 The difficulty here is that the additional data is most likely to
 be truncated whenever it is necessary to avoid the protocol
 limits, and in a DNSSEC context that is more likely to happen.

4.3.2. IPv6-Internet-to-An-IPv4-network

 In this scenario, DNSSEC is naturally supported if the IPv4 network
 simply publishes the AAAA RR containing the IPv6 representations of
 the IPv4 address of its internal hosts. In this case, these AAAA RR
 are regular R, and the correspondent RRSIG and NSEC RRs can be

https://datatracker.ietf.org/doc/html/rfc2672

Bagnulo, et al. Expires September 8, 2009 [Page 20]

Internet-Draft DNS64 March 2009

 created as usual. This is the preferred approach.

 If we consider dynamic environments, where AAAA RR are created
 dynamically, the situation is more complex. In the case of a
 validating security-aware stub resolver, the main issue is how to
 sign the new synthetic AAAA RRs that are created. If the AAAA RRs
 are created when the query is received, this would imply that the
 AAAA RRs need to be signed on-the-fly right after the AAAA RR has
 been synthesized. This requires that the signing keys be online in
 the DNS64 server, and that the signing process be very fast, and is
 one of the reasons that it is better to configure AAAA records in a
 standard way, as though the authority server were answering AAAA
 queries for hosts using native IPv6. In the case of a non-validating
 security-aware stub resolvers contact it , there's no reason to sign
 synthetic records and the problem is no longer relevant.

 Probably we may want to recommend that if DNSSEC is used, the AAAA
 RRs for this case need to be generated manually or when the Dyn DNS
 update is performed. Question: how does Dyn DNS works with DNSSEC?

4.4. Learning the Pref64::/96 prefix

 The only piece of information that needs to be shared between the
 devices performing the NAT64 function and the devices performing the
 DNS64 function is the prefix Pref64::/96. Note that the Pref64::/96
 must be distributed to all the hosts that are performing the DNS64
 function in stub-resolver mode and to all the name servers that are
 performing the DNS64 function.

 One option is to configure the Pref64::/96 manually in all these
 devices. While this may work for servers, it doesn't seem the best
 approach for stub-resolvers.

 Another option is to define a DHCP option to carry this information.
 The main issue here is the security, especially when this information
 is used in conjunction with DNSSEC.

 Another option is to store this information in a new RR under a well
 known name within each domain. This information can then be signed
 using DNSSEC so its distribution would be secured. One possibility
 is to use a well known name, such as pref64.example.com, or even in
 example.com. Another possibility is to put it in the reverse zone.
 So the DNS64-aware system, as part of its initiation step, asks for
 the reverse lookup of the configured-interface address (i.e.
 $reverseaddress.ip6.arpa) but with the new RRTYPE (call it 64PREFIX).
 This way, the data can be part of the signed reverse zone, it can get
 dynamically determined as part of the protocol establishing the
 address of the end point, and we don't have to reserve a new special

Bagnulo, et al. Expires September 8, 2009 [Page 21]

Internet-Draft DNS64 March 2009

 well-known name.

 For more extensive discussion on this topic, the reader is referred
 to [I-D.wing-behave-learn-prefix]

4.5. Supporting multiple NAT64 boxes with different associated prefixes

 This discussion applies to the An-IPv6-network-to-IPv4-Internet
 setup.

 Consider the case where we have a site with multiple NAT64 boxes.
 Each of these boxes has a different prefix associated, namely
 Pref64_1::/96, Pref64_2::/96, ..., Pref64_n::/96. suppose that the
 site is using one or more servers using providing the DNS64 function.
 The question that we consider in this section is how these prefixes
 are managed by the DNS64 function.

 One option would be to configure only one prefix to each DNS64
 device. In this case, we would achieve some form of load balance and
 traffic engineering features, since the hosts configured to use a
 given DNS64 server will use a given prefix and this means that their
 traffic will flow through a given NAT64 box. The problem is what
 happens if the NAT64 box fails. At that point, the DNS64 server
 should detect the failure and start using an alternative prefix.
 (Note that it is the NAT64 the one that have failed, but the DNS64
 server is still working, so the host would not try an alternative
 DNS64 in this failure mode). The failure could be detected by the
 DNS64 device pinging itself from its IPv6 address towards its IPv4
 address through the NAT64 in question.

 The other option would be to configure multiple prefixes in each
 DNS64 server. The next question is how these are managed? We can
 envision several ways of managing the prefixes in the DNS64 server:

 o One option is that the DNS64 synthesizes a single AAAA RR using a
 randomly chosen prefix. This would result in load sharing across
 the multiple NAT64 boxes. However, this would mean that a given
 IPv6 host can use different IPv4 transport addresses in the IPv4
 Internet. This is because the different synthesized AAAA RR
 contain different prefixes and this means that the communication
 is established through a different NAT64 box, hence using a
 different IPv4 address. Moreover, it is also possible that when
 an IPv6 hosts initiates two different communications using the
 same IPv6 transport source address, these are routed through
 different NAT64 boxes and they are presented to the IPv4 Internet
 as coming from different IPv4 transport source address. While the
 endpoint independence requirement doesn't cover the case of
 multiple NATs, it does seems that this option is against the

Bagnulo, et al. Expires September 8, 2009 [Page 22]

Internet-Draft DNS64 March 2009

 endpoint independent behavior and should be avoided.

 o Another option is to track the requesting hosts and always use the
 same prefix for a given host. In case of failure, the DNS64
 function should detect the NAT64 is down and start using a
 different prefix (associated to a working NAT64 box). The
 downside of this option is that the DNS64 function needs to keep
 track of the hosts and prefixes and working NAT64 boxes. Rather
 than actually tracking per-client state, the same result could be
 achieved by performing a hash over the client's address and return
 AAAA records synthesized using the same Pref64 for all addresses
 that hash to the same value.

 o Another option is for the DNS64 to return a list of synthesized
 AAAA RR, one per available prefix. Besides, the DNS64 function
 should keep track of the hosts, so the same prefix order is used
 in all the replies to the same host. In this case, the host will
 normally use the first one if it is working, so it will always use
 the same NAT64 box and if something fails, it should retry with an
 alternative address, effectively using a different NAT64 box.
 This would provide the fault tolerance capabilities required
 without need for the DNS64 to keep track of the state of the NAT64
 boxes.

5. Security Considerations

 See the discussion on the usage of DNSSEC and DNS64 described in the
 analysis section.

6. IANA Considerations

7. Changes from Previous Draft Versions

 Note to RFC Editor: Please remove this section prior to publication
 of this document as an RFC.

 [[This section lists the changes between the various versions of this
 draft.]]

8. Contributors

 Dave Thaler

Bagnulo, et al. Expires September 8, 2009 [Page 23]

Internet-Draft DNS64 March 2009

 Microsoft

 dthaler@windows.microsoft.com

9. Acknowledgements

 This draft has benefited from the review from Dave Thaler.

 This draft contains the result of discussions involving many people,
 including: Dan Wing, Jari Arkko, Mark Townsley, Fred Baker, Xing Li,
 Hiroshi Miyata, Brian Carpenter, Ed Jankiewicz, Magnus Westerlund, Ed
 Lewis, Rob Austein, Matthijs Mekking.

 Marcelo Bagnulo and Iljitsch van Beijnum are partly funded by
 Trilogy, a research project supported by the European Commission
 under its Seventh Framework Program.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)",
RFC 2671, August 1999.

 [RFC2672] Crawford, M., "Non-Terminal DNS Name Redirection",
RFC 2672, August 1999.

 [RFC2765] Nordmark, E., "Stateless IP/ICMP Translation Algorithm
 (SIIT)", RFC 2765, February 2000.

 [RFC4787] Audet, F. and C. Jennings, "Network Address Translation
 (NAT) Behavioral Requirements for Unicast UDP", BCP 127,

RFC 4787, January 2007.

 [I-D.ietf-behave-tcp]
 Guha, S., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP",

draft-ietf-behave-tcp-08 (work in progress),
 September 2008.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/rfc2672
https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/draft-ietf-behave-tcp-08

Bagnulo, et al. Expires September 8, 2009 [Page 24]

Internet-Draft DNS64 March 2009

 [I-D.ietf-behave-nat-icmp]
 Srisuresh, P., Ford, B., Sivakumar, S., and S. Guha, "NAT
 Behavioral Requirements for ICMP protocol",

draft-ietf-behave-nat-icmp-12 (work in progress),
 January 2009.

 [I-D.bagnulo-behave-nat64]
 Bagnulo, M., Matthews, P., and I. Beijnum, "NAT64: Network
 Address and Protocol Translation from IPv6 Clients to IPv4
 Servers", draft-bagnulo-behave-nat64-02 (work in
 progress), November 2008.

10.2. Informative References

 [RFC2766] Tsirtsis, G. and P. Srisuresh, "Network Address
 Translation - Protocol Translation (NAT-PT)", RFC 2766,
 February 2000.

 [RFC2136] Vixie, P., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",

RFC 2136, April 1997.

 [RFC1858] Ziemba, G., Reed, D., and P. Traina, "Security
 Considerations for IP Fragment Filtering", RFC 1858,
 October 1995.

 [RFC3128] Miller, I., "Protection Against a Variant of the Tiny
 Fragment Attack (RFC 1858)", RFC 3128, June 2001.

 [RFC3022] Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022,
 January 2001.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",

RFC 4033, March 2005.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",

RFC 4034, March 2005.

 [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, March 2005.

 [RFC4966] Aoun, C. and E. Davies, "Reasons to Move the Network
 Address Translator - Protocol Translator (NAT-PT) to
 Historic Status", RFC 4966, July 2007.

https://datatracker.ietf.org/doc/html/draft-ietf-behave-nat-icmp-12
https://datatracker.ietf.org/doc/html/draft-bagnulo-behave-nat64-02
https://datatracker.ietf.org/doc/html/rfc2766
https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc1858
https://datatracker.ietf.org/doc/html/rfc1858
https://datatracker.ietf.org/doc/html/rfc3128
https://datatracker.ietf.org/doc/html/rfc3022
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4035
https://datatracker.ietf.org/doc/html/rfc4966

Bagnulo, et al. Expires September 8, 2009 [Page 25]

Internet-Draft DNS64 March 2009

 [I-D.ietf-mmusic-ice]
 Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols",

draft-ietf-mmusic-ice-19 (work in progress), October 2007.

 [I-D.ietf-6man-addr-select-sol]
 Matsumoto, A., Fujisaki, T., Hiromi, R., and K. Kanayama,
 "Solution approaches for address-selection problems",

draft-ietf-6man-addr-select-sol-01 (work in progress),
 June 2008.

 [RFC3498] Kuhfeld, J., Johnson, J., and M. Thatcher, "Definitions of
 Managed Objects for Synchronous Optical Network (SONET)
 Linear Automatic Protection Switching (APS)
 Architectures", RFC 3498, March 2003.

 [I-D.wing-behave-learn-prefix]
 Wing, D., "Learning the Address Family Translator's IPv6
 Prefix", draft-wing-behave-learn-prefix-00 (work in
 progress), October 2008.

 [I-D.miyata-behave-prefix64]
 Miyata, H., "PREFIX64 Comparison",

draft-miyata-behave-prefix64-00 (work in progress),
 October 2008.

Authors' Addresses

 Marcelo Bagnulo
 UC3M
 Av. Universidad 30
 Leganes, Madrid 28911
 Spain

 Phone: +34-91-6249500
 Fax:
 Email: marcelo@it.uc3m.es
 URI: http://www.it.uc3m.es/marcelo

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-19
https://datatracker.ietf.org/doc/html/draft-ietf-6man-addr-select-sol-01
https://datatracker.ietf.org/doc/html/rfc3498
https://datatracker.ietf.org/doc/html/draft-wing-behave-learn-prefix-00
https://datatracker.ietf.org/doc/html/draft-miyata-behave-prefix64-00
http://www.it.uc3m.es/marcelo

Bagnulo, et al. Expires September 8, 2009 [Page 26]

Internet-Draft DNS64 March 2009

 Andrew Sullivan
 Shinkuro
 4922 Fairmont Avenue, Suite 250
 Bethesda, MD 20814
 USA

 Phone: +1 301 961 3131
 Email: ajs@shinkuro.com

 Philip Matthews
 Unaffiliated
 600 March Road
 Ottawa, Ontario
 Canada

 Phone: +1 613-592-4343 x224
 Fax:
 Email: philip_matthews@magma.ca
 URI:

 Iljitsch van Beijnum
 IMDEA Networks
 Av. Universidad 30
 Leganes, Madrid 28911
 Spain

 Phone: +34-91-6246245
 Email: iljitsch@muada.com

 Masahito Endo
 Yokogawa Electric Corporation

 Email: masahito.endou@jp.yokogawa.com

Bagnulo, et al. Expires September 8, 2009 [Page 27]

