
BEHAVE WG M. Bagnulo
Internet-Draft UC3M
Intended status: Standards Track P. Matthews
Expires: March 23, 2009 Unaffiliated
 I. van Beijnum
 IMDEA Networks
 September 19, 2008

NAT64/DNS64: Network Address and Protocol Translation from IPv6 Clients
 to IPv4 Servers

draft-bagnulo-behave-nat64-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on March 23, 2009.

Abstract

 NAT64 is a mechanism for translating IPv6 packets to IPv4 packets and
 vice-versa. DNS64 is a mechanism for synthesizing AAAA records from
 A records. These two mechanisms together enable client-server
 communication between an IPv6-only client and an IPv4-only server,
 without requiring any changes to either the IPv6 or the IPv4 node,
 for the class of applications that work through NATs. They also
 enable peer-to-peer communication between an IPv4 and an IPv6 node,
 where the communication can be initiated by either end using

Bagnulo, et al. Expires March 23, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/draft-bagnulo-behave-nat64-01
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft NAT64 and DNS64 September 2008

 existing, NAT-traversing, peer-to-peer communication techniques.
 This document specifies NAT64 and DNS64, and gives suggestions on how
 they should be deployed.

Table of Contents

1. Introduction . 3
1.1. Features of NAT64 . 3
1.2. Overview . 4
1.2.1. NAT64 solution elements 5
1.2.2. Walkthough . 7
1.2.3. Dual stack nodes 9
1.2.4. IPv6 nodes implementing DNSSEC 10
1.2.5. Filtering . 10

2. Terminology . 10
3. Normative Specification 12
3.1. Synthentic AAAA RRs 12
3.2. The EDNS SAS option 13
3.3. DNS64 . 14
3.4. NAT64 . 15
3.4.1. Determining the Incoming 5-tuple 17
3.4.2. Filtering and Updating Session Information 17
3.4.2.1. UDP Session Handling 18
3.4.2.2. TCP Session Handling 18

3.4.3. Computing the Outgoing 5-Tuple 18
3.4.4. Translating the Packet 20
3.4.5. Handling Hairpinning 21

3.5. FTP ALG . 21
4. Application scenarios . 21
4.1. Enterprise IPv6 only network 21
4.2. Reaching servers in private IPv4 space 22

5. Discussion . 23
 5.1. About the Prefix used to map the IPv4 address space
 into IPv6 . 23

6. Security Considerations 25
7. IANA Considerations . 27
8. Changes from Previous Draft Versions 27
9. Contributors . 27
10. Acknowledgements . 28
11. References . 28
11.1. Normative References 28
11.2. Informative References 29

 Authors' Addresses . 29
 Intellectual Property and Copyright Statements 31

Bagnulo, et al. Expires March 23, 2009 [Page 2]

Internet-Draft NAT64 and DNS64 September 2008

1. Introduction

 This document specifies NAT64 and DNS64, two mechanisms for IPv6-IPv4
 transition and co-existence. Together, these two mechanisms allow a
 IPv6-only client to initiate communications to an IPv4-only server,
 and also allow peer-to-peer communication between IPv6-only and IPv4-
 only hosts.

 NAT64 is a mechanism for translating IPv6 packets to IPv4 packets.
 The translation is done by translating the packet headers according
 to SIIT [RFC2765], translating the IPv4 server address by adding or
 removing a /96 prefix, and translating the IPv6 client address by
 installing mappings in the normal NAT manner.

 DNS64 is a mechanism for synthesizing AAAA resource records (RR) from
 A RR. The synthesis is done by adding a /96 prefix to the IPv4
 address to create an IPv6 address, where the /96 prefix is assigned
 to a NAT64 device.

 Together, these two mechanisms allow a IPv6-only client to initiate
 communications to an IPv4-only server.

 These mechanisms are expected to play a critical role in the IPv4-
 IPv6 transition and co-existence. Due to IPv4 address depletion,
 it's likely that in the future, a lot of IPv6-only clients will want
 to connect to IPv4-only servers. The NAT64 and DNS64 mechanisms are
 easily deployable, since they require no changes to either the IPv6
 client nor the IPv6 server. For basic functionality, the approach
 only requires the deployment of NAT64-enabled devices connecting an
 IPv6-only network to the IPv4-only Internet, along with the
 deployment of a few DNS64-enabled name servers in the IPv6-only
 network. However, some advanced features require software updates to
 the IPv6-only hosts.

 The NAT64 and DNS64 mechanisms are related to the NAT-PT mechanism
 defined in [RFC2766], but significant differences exist. First,
 NAT64 does not define the NATPT mechanisms used to support IPv6 only
 servers to be contacted by IPv4 only clients, but only defines the
 mechanisms for IPv6 clients to contact IPv4 servers and its potential
 reuse to support peer to peer communications through standard NAT
 traversal techniques. Second, NAT64 includes a set of features that
 overcomes many of the reasons the original NAT-PT specification was
 moved to historic status [RFC4966].

1.1. Features of NAT64

 The features of NAT64 and DNS64 are:

https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc2766
https://datatracker.ietf.org/doc/html/rfc4966

Bagnulo, et al. Expires March 23, 2009 [Page 3]

Internet-Draft NAT64 and DNS64 September 2008

 o It enables IPv6-only nodes to initiate a client-server connection
 with an IPv4-only server, without needing any changes on either
 IPv4 or IPv6 nodes. This works for the same class of applications
 that work through IPv4-to-IPv4 NATs.

 o It supports peer-to-peer communication between IPv4 and IPv6
 nodes, including the ability for IPv4 nodes to initiate
 communcation with IPv6 nodes using peer-to-peer techniques (i.e.,
 using a rendezvous server and ICE). To this end, NAT64 is
 compliant with the recommendations for how NATs should handle UDP
 [RFC4787], TCP [I-D.ietf-behave-tcp], and ICMP
 [I-D.ietf-behave-nat-icmp].

 o Compatible with ICE.

 o Supports additional features with some changes on nodes. These
 features include:

 * Support for DNSSec

 * Some forms of IPSec support

 * Increased ability to detect when there is a communication path
 that does not involve translating between IPv6 and IPv4. This
 is achieved by marking synthetic DNS AAAA resource records
 which usage would result in translated connectivity, so that
 the sender can prefer using non-synthetic records when it is
 possible.

1.2. Overview

 This section provides a non-normative introduction to the mechanisms
 of NAT64 and DNS64.

 NAT64 mechanism is implemented in an NAT64 box which has two
 interfaces, an IPv4 interface connected to the the IPv4 network, and
 an IPv6 interface connected to the IPv6 network. Packets generated
 in the IPv6 network for a receiver located in the IPv4 network will
 be routed within the IPv6 network towards the NAT64 box. The NAT64
 box will translate them and forward them as IPv4 packets through the
 IPv4 network to the IPv4 receiver. The reverse takes place for
 packets generated in the IPv4 network for an IPv6 receiver. NAT64,
 however, is not symmetric. In order to be able to perform IPv6 -
 IPv4 translation NAT64 requires state, binding an IPv6 address and
 port (hereafter called an IPv6 transport address) to an IPv4 address
 and port (hereafter called an IPv4 transport address).

 Such binding state is created when the first packet flowing from the

https://datatracker.ietf.org/doc/html/rfc4787

Bagnulo, et al. Expires March 23, 2009 [Page 4]

Internet-Draft NAT64 and DNS64 September 2008

 IPv6 network to the IPv4 network is translated. After the binding
 state has been created, packets flowing in either direction on that
 particular flow are translated. The result is that NAT64 only
 supports communications initiated by the IPv6-only node towards an
 IPv4-only node. Some additional mechanisms, like ICE, can be used in
 combination with NAT64 to provide support for communications
 initiated by the IPv4-only node to the IPv6-only node. The
 specification of such mechanisms, however, is out of the scope of
 this document.

1.2.1. NAT64 solution elements

 In this section we describe the different elements involved in the
 NAT64 approach.

 The main component of the proposed solution is the translator itself.
 The translator has essentially two main parts, the address
 translation mechanism and the protocol translation mechanism.

 Protocol translation from IPv4 packet header to IPv6 packet header
 and vice-versa is performed according to SIIT [RFC2765].

 Address translation maps IPv6 transport addresses to IPv4 transport
 addresses and vice-versa. In order to create these mappings the
 NAT64 box has two pools of addresses i.e. an IPv6 address pool (to
 represent IPv4 addresses in the IPv6 network) and an IPv4 address
 pool (to represent IPv6 addresses in the IPv4 network). Since there
 is enough IPv6 address space, it is possible to map every IPv4
 address into a different IPv6 address.

 NAT64 creates the required mappings by using as the IPv6 address pool
 a /96 IPv6 prefix (hereafter called Pref64::/96). This allows each
 IPv4 address to be mapped into a different IPv6 address by simply
 concatenating the /96 prefix assigned as the IPv6 address pool of the
 NAT64, with the IPv4 address being mapped (i.e. an IPv4 address X is
 mapped into the IPv6 address Pref64:X). The NAT64 prefix Pref64::/96
 is assigned by the administrator of the NAT64 box from the global
 unicast IPv6 address block assigned to the site. It should be noted
 that the the prefix used as the IPv6 address pool is assigned to a
 specific NAT64 box and if there are multiple NAT64 boxes, each box is
 allocated a different prefix. Assigning the same prefix to multiple
 boxes may lead to communication failures due to internal routing
 fluctuations.

 The IPv4 address pool, however, is a set of IPv4 addresses, normally
 a small prefix assigned by the local administrator to the NAT64's
 external (IPv4) interface. Since IPv4 address space is a scarce
 resource, the IPv4 address pool is small and typicaly not sufficient

https://datatracker.ietf.org/doc/html/rfc2765

Bagnulo, et al. Expires March 23, 2009 [Page 5]

Internet-Draft NAT64 and DNS64 September 2008

 to establish permanent one-to-one mappings with IPv6 addresses. So,
 mappings using the IPv4 address pool will be created and released
 dynamically. Moreover, because of the IPv4 address scarcity, the
 usual practice for NAT64 is likely to be the mapping of IPv6
 transport addresses into IPv4 transport addresses, instead of IPv6
 addresses into IPv4 addresses directly, which enable a higher
 utilization of the limited IPv4 address pool.

 Because of the dynamic nature of the IPv6 to IPv4 address mapping and
 the static nature of the IPv4 to IPv6 address mapping, it is easy to
 understand that it is far simpler to allow communication initiated
 from the IPv6 side toward an IPv4 node, which address is permanently
 mapped into an IPv6 address, than communications initiated from IPv4-
 only nodes to an IPv6 node in which case IPv4 address needs to be
 associated with it dynamically. For this reason NAT64 supports only
 communications initiated from the IPv6 side.

 An IPv6 initiator can know or derive in advance the IPv6 address
 representing the IPv4 target and send packets to that address. The
 packets are intercepted by the NAT64 device, which associates an IPv4
 transport address of its IPv4 pool to the IPv6 transport address of
 the initiator, creating binding state, so that reply packets can be
 translated and forwarded back to the initiator. The binding state is
 kept while packets are flowing. Once the flow stops, and based on a
 timer, the IPv4 transport address is returned to the IPv4 address
 pool so that it can be reused for other communications.

 To allow an IPv6 initiator to do the standard DNS lookup to learn the
 address of the responder, DNS64 is used to synthesize an AAAA record
 (pronounced "quad-A" and containing an IPv6 address) from the A
 record (containing the real IPv4 address of the responder). DNS64
 receives the DNS queries generated by the IPv6 initiator. If there
 is no AAAA record available for the target node (which is the normal
 case when the target node is an IPv4-only node), DNS64 performs a
 query for the A record. If an A record is discovered, DNS64 creates
 a synthetic AAAA RR by adding the Pref64::/96 of a NAT64 to the
 responder's IPv4 address (i.e. if the IPv4 node has IPv4 address X,
 then the synthetic AAAA RR will contain the IPv6 address formed as
 Pref64:X). The synthetic AAAA RR is passed back to the IPv6
 initiator, which will initiate an IPv6 communication with the IPv6
 address associated to the IPv4 receiver. The packet will be routed
 to the NAT64 device, which will create the IPv6 to IPv4 address
 mapping as described before.

 Having DNS synthesize AAAA records creates a number of problems, as
 described in [RFC4966]:

https://datatracker.ietf.org/doc/html/rfc4966

Bagnulo, et al. Expires March 23, 2009 [Page 6]

Internet-Draft NAT64 and DNS64 September 2008

 o The synthesized AAAA records may leak outside their intended
 scope;

 o Dual-stack hosts may communicate with IPv4-only servers using IPv6
 which is then translated to IPv4, rather than using their IPv4
 connectivity;

 o The IPv6-only hosts will be unable to use DNSSEC to verify the
 legitimacy of the synthetic AAAA records.

 In order to avoid these issues, responses containing synthesized
 addresses are tagged with an Extended DNS [RFC2671] option defined in
 this document, called the SAS option, so the AAAA records can be
 recognized as synthetic. This allows caching nameservers, dual stack
 nodes and nodes implementing DNSSEC to ignore synthetic addresses and
 perform an additional request for the original address records.

1.2.2. Walkthough

 In this example, we consider an IPv6 node located in a IPv6-only site
 that initiates a communication to a IPv4 node located in the IPv6
 Internet.

 The notation used is the following: upper case letters are IPv4
 addresses; upper case letters with a prime(') are IPv6 addresses;
 lower case letters are ports; prefixes are indicated by "P::X", which
 is a IPv6 address built from an IPv4 address X by adding the prefix
 P, mappings are indicated as "(X,x) <--> (Y',y)".

 The scenario for this case is depicted in the following figure:

 +---------------------------------------+ +-----------+
 |IPv6 site +-------------+ | | | | | | | |
 | +----+ | Name server | +-------+ | IPv4 |
 | | H1 | | with DNS64 | | NAT64 |----| Internet |
 | +----+ +-------------+ +-------+ +-----------+
 | |IP addr: Y' | | | |IP addr: X
 | --------------------------------- | +----+
 +---------------------------------------+ | H2 |
 +----+

 The figure shows a IPv6 node H1 which has an IPv6 address Y' and an
 IPv4 node H2 with IPv4 address X.

 A NAT64 connects the IPv6 network to the IPv4 Internet. This NAT64
 has a /96 prefix (called Pref64::/96) associated to its IPv6
 interface and an IPv4 address T assigned to its IPv4 interface.

https://datatracker.ietf.org/doc/html/rfc2671

Bagnulo, et al. Expires March 23, 2009 [Page 7]

Internet-Draft NAT64 and DNS64 September 2008

 Also shown is a local name server with DNS64 functionality. For the
 purpose of this example, we assume that the name server is a dual-
 stack node, so that H1 can contact it via IPv6, while it can contact
 IPv4-only name servers via IPv4.

 The local name server needs to know the /96 prefix assigned to the
 local NAT64 (Pref64::/96). For the purpose of this example, we
 assume it learns this through manual configuration.

 For this example, assume the typical DNS situation where IPv6 hosts
 have only stub resolvers and the local name server does the recursive
 lookups.

 The steps by which H1 establishes communication with H2 are:

 1. H1 does a DNS lookup for the IPv6 address of H2. H1 does this by
 sending a DNS query for an AAAA record for H2 to the local name
 server. Assume the local name server is implementing DNS64
 functionality.

 2. The local DNS server resolves the query, and discovers that there
 are no AAAA records for H2.

 3. The name server queries for a A record for H2 and gets back an A
 record containing the IPv4 address X. The name server then
 synthesizes an AAAA record. The IPv6 address in the AAAA record
 contains the prefix assigned to the NAT64 in the first 96 bits
 and the IPv4 address X in the lower 32 bits.

 4. The name server sends a response back to H1. If H1 has
 indicated, in its query, that it supports the EDNS0, then the
 name server will use the SAS option to indicate that the AAAA
 record is synthetic.

 5. H1 receives the synthetic AAAA record and sends a packet towards
 H2. The packet is sent from a source transport address of (Y',y)
 to a destination transport address of (Pref64:X,x), where y and x
 are ports chosen by H2.

 6. The packet is routed to the IPv6 interface of the NAT64 (since
 Pref64::/96 has been associated to this interface).

 7. The NAT64 receives the packet and performs the following actions:

 * The NAT64 selects an unused port t on its IPv4 address T and
 creates the mapping entry (Y',y) <--> (T,t)

Bagnulo, et al. Expires March 23, 2009 [Page 8]

Internet-Draft NAT64 and DNS64 September 2008

 * The NAT64 translates the IPv6 header into an IPv4 header using
 SIIT.

 * The NAT64 includes (T,t) as source transport address in the
 packet and (X,x) as destination transport address in the
 packet. Note that X is extracted directly from the lower 32
 bits of the destination IPv6 address of the received IPv6
 packet that is being translated.

 The NAT64 sends the translated packet out its IPv4 interface and
 the packet arrives at H2.

 8. H2 node responds by sending a packet with destination transport
 address (T,t) and source transport address (X,x).

 9. The packet is routed to the NAT64 box, which will look for an
 existing mapping containing (T,t). Since the mapping (Y',y) <-->
 (T,t) exists, the NAT64 performs the following operations:

 * The NAT64 translates the IPv4 header into an IPv6 header using
 SIIT.

 * The NAT64 includes (Y',y) as source transport address in the
 packet and (Pref64:X,x) as destination transport address in
 the packet. Note that X is extracted directly from the source
 IPv4 address of the received IPv4 packet that is being
 translated.

 The translated packet is sent out the IPv6 interface to H2.

 The packet exchange between H1 and H2 continues and packets are
 translated in the different directions as previously described.

 It is important to note that the translation still works if the IPv6
 initiator H1 learns the IPv4 address through some scheme other than a
 DNS look-up. This is because the DNS64 processing does NOT result in
 any state installed in the NAT64 box and because the mapping of the
 IPv4 address into an IPv6 address is the result of concatenating the
 prefix defined within the site for this purpose (called Pref64::/96
 in this document) to the original IPv4 address.

1.2.3. Dual stack nodes

 Nodes that have both IPv6 and IPv4 connectivity and are configured
 with an address for a DNS64 as their resolving nameserver may receive
 responses containing synthetic AAAA resource records. If the node
 prefers IPv6 over IPv4, using the addresses in the synthetic AAAA RRs
 means that the node will attempt to communicate through the NAT64

Bagnulo, et al. Expires March 23, 2009 [Page 9]

Internet-Draft NAT64 and DNS64 September 2008

 mechanism first, and only fall back to native IPv4 connectivity if
 connecting through NAT64 fails (if the application tries the full set
 of destination addresses). To avoid this, dual stack nodes can
 ignore all replies to DNS requests that contain the EDNS SAS option,
 and use the destination addresses found in the responses for A
 resource record requests instead.

1.2.4. IPv6 nodes implementing DNSSEC

 Synthesizing resource records is incompatible with DNSSEC. So like
 dual stack nodes, IPv6 nodes implementing DNSSec must not use
 synthetic address records as indicated by the EDNS SAS option. In
 this case, the node should perform the DNSSec validation on the
 original A RR and then locally synthesize the AAAA RR. This
 basically means that the DNS64 functionality should be implemented in
 the local host for those hosts that want to be able to perform DNSSec
 validation. In order to do that, hosts implementing DNS64
 functionality should be able to discover Pref64::/96 prefix that is
 needed to synthesize AAAA RR. The means used to discover the prefix
 are out of the scope of this document. So for the purposes of
 DNSSEC, the synthetic response doesn't exist, an IPv6 node
 implementing DNSSEC has to request the original A resource records
 and perform the normal DNSSEC validation steps. When this is done,
 an IPv6 address is synthesized from the validated IPv4 address and
 the translator /96 prefix locally.

1.2.5. Filtering

 A NAT64 box may do filtering, which means that it only allows a
 packet in through an interface if the appropriate permission exists.
 A NAT64 may do no filtering, or it may filter on its IPv4 interface.
 Filtering on the IPv6 interface is not supported, as mappings are
 only created by packets traveling in the IPv6 --> IPv4 direction.

 If a NAT64 filters on its IPv4 interface, then an incoming packet is
 dropped unless a packet has been recently sent out the interface with
 a destination IP address equal to the source IP address of the
 incoming packet.

 NAT64 filtering is consistent with the recommendations of RFC 4787.

2. Terminology

 This section provides a definitive reference for all the terms used
 in document.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

https://datatracker.ietf.org/doc/html/rfc4787

Bagnulo, et al. Expires March 23, 2009 [Page 10]

Internet-Draft NAT64 and DNS64 September 2008

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The following terms are used in this document:

 DNS64: A logical function that synthesizes AAAA records (containing
 IPv6 addresses) from A records (containing IPv4 addresses).

 Synthetic RR: A DNS resource record (RR) that is not contained in
 any zone data file, but has been synthesized from other RRs. An
 example is a synthetic AAAA record created from an A record.

 SAS Option: An Extended DNS (EDNS) option used in DNS responses.
 Its primary purpose is to indicate that the set of AAAA RR
 contained in a DNS response are synthetic.

 NAT64: A device that translates IPv6 packets to IPv4 packets and
 vice-versa, with the provision that the communication must be
 initiated from the IPv6 side. The translation involves not only
 the IP header, but also the transport header (TCP or UDP).

 Session: A TCP or UDP session. In other words, the bi-directional
 flow of packets between two ports on two different hosts. In
 NAT64, typically one host is an IPv4 host, and the other one is an
 IPv6 host.

 5-Tuple: The tuple (source IP address, source port, destination IP
 address, destination port, transport protocol). A 5-tuple
 uniquely identifies a session. When a session flows through a
 NAT64, each session has two different 5-tuples: one with IPv4
 addresses and one with IPv6 addresses.

 Session table: A table of sessions kept by a NAT64. Each NAT64 has
 two session tables, one for TCP and one for UDP.

 Transport Address: The combination of an IPv6 or IPv4 address and a
 port. Typically written as (IP address, port); e.g. (192.0.2.15,
 8001).

 Mapping: A mapping between an IPv6 transport address and a IPv4
 transport address. Used to translate the addresses and ports of
 packets flowing between the IPv6 host and the IPv4 host. In
 NAT64, the IPv4 transport address is always a transport address
 assigned to the NAT64 itself, while the IPv6 transport address
 belongs to some IPv6 host.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Bagnulo, et al. Expires March 23, 2009 [Page 11]

Internet-Draft NAT64 and DNS64 September 2008

 BIB: Binding Information Base. A table of mappings kept by a NAT64.
 Each NAT64 has two BIBs, one for TCP and one for UDP.

 Endpoint-Independent Mapping: In NAT64, using the same mapping for
 all sessions between an IPv6 that have the same IPv6 transport
 address endpoint. Endpoint-independent mapping is important for
 peer-to-peer communication. See [RFC4787] for the definition of
 the different types of mappings in IPv4-to-IPv4 NATs.

 Hairpinning: Having a packet do a "U-turn" inside a NAT and come
 back out the same interface as it arrived on. Hairpinning support
 is important for peer-to-peer applications, as there are cases
 when two different hosts on the same side of a NAT can only
 communicate using sessions that hairpin though the NAT.

 For a detailed understand of this document, the reader should also be
 familiar with DNS terminology [RFC1035] and current NAT terminology
 [RFC4787].

3. Normative Specification

3.1. Synthentic AAAA RRs

 A synthentic RR is an RR that does not appear in the master zone
 file.

 The rules on the usage of synthetic AAAA RRs are:

 Synthetic AAAA RRs MAY be included in the answer section of a
 response.

 Synthetic AAAA RRs MUST NOT be included in sections other than the
 answer section.

 A synthetic AAAA RR MUST NOT be included if the responder knows of
 at least one non-synthetic RR of the same type and class.

 If a synthetic AAAA RR is included in the answer section, then all
 RRs included in the answer section MUST be synthetic.

 If a synthetic AAAA RR is _not_ explicitly marked as synthetic
 (using the SAS option), then its TTL MUST be 0.

 If a synthetic AAAA RR is explicitly marked as synthetic (using
 the SAS option), then its TTL SHOULD be 0.

 TBD: Can/should the AA bit be set in a response containing synthetic

https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc4787

Bagnulo, et al. Expires March 23, 2009 [Page 12]

Internet-Draft NAT64 and DNS64 September 2008

 RRs?

 TBD: Do we always want synthetic RRs to have a TTL of 0? Is it ever
 reasonable or desirable to cache them?

3.2. The EDNS SAS option

 EDNS [RFC2671] defines a mechanism to add options to the DNS
 [RFC1035] protocol. This section defines the SAS (Status of Answer
 Section) option that indicates the status (real or synethetic) of RRs
 in the answer section.

 The format of the SAS option is:
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | OPTION-CODE |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | OPTION-LENGTH |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | |
 / OPTION-DATA /
 | |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 The fields are defined as follows:

 o OPTION-CODE: (to be allocated by IANA)

 o OPTION-LENGTH: the size (in octets) of the OPTION-DATA part of the
 option

 o OPTION-DATA: variable length field. No values for this field are
 defined by this document.

 For any OPTION-DATA defined in the future, the maximum length of the
 OPTION-DATA field in the SAS option is 12 bytes, and any SAS option
 with a OPTION-LENGTH of more than 8 SHOULD be silently ignored.

 The rules on the usage of the SAS option are:

 A requestor that understands the SAS option SHOULD include the OPT
 RR in all queries.

 A responder can include the SAS option in a response only if the
 OPT RR appeared in the corresponding query.

 Any options not understood or not meaningful in the current
 context MUST be ignored.

https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/rfc1035

Bagnulo, et al. Expires March 23, 2009 [Page 13]

Internet-Draft NAT64 and DNS64 September 2008

 A responder MUST include the SAS option in the response if it
 knows that all the RRs in the answer section are synthetic.

 The presence of the OPT RR in a query indicates that the requestor
 understands the OPT extension.

3.3. DNS64

 A DNS64 is a logical function that synthesizes AAAA records from A
 records. The DNS64 function may be implemented in a resolver, in a
 local recursive name server, or in some other device such as a NAT64.

 The only configuration parameter required by the DNS64 is the /96
 IPv6 prefix assigned to a NAT64. This prefix is used to map IPv4
 addresses into IPv6 addresses, and is denoted Pref64::/96. The DNS64
 learns this prefix through some means not specified here.

 When the DNS64 receives a query for RRs of type AAAA and class IN, it
 firsts attempts to retrieve non-synthetic RRs of this type and class
 (where "non-synthetic RRs" means RRs not explicitly marked as
 synthetic). If this query results in one or more AAAA records or in
 an error condition, this result is returned to the client as per
 normal DNS semantics. If the query is successful, but doesn't return
 any answers, the DNS64 resolver executes a recursive A RR lookup for
 the name in question. If this query results in an empty result or in
 an error, this result is returned to the client. If the query
 results in one or more A RRs, the DNS64 synthesizes AAAA RRs based on
 the A RRs and the /96 prefix of the translator. The synthetic AAAA
 RRs get a TTL of 0 second. The DNS64 resolver then returns the
 synthesized AAAA records to the client. If the client included the
 EDNS0 OPT RR in the query, the DNS64 resolver MUST include an EDNS0
 OPT RR that contains the SAS option. When synthesizing the answer to
 a query for ANY, the DNS64 MUST include the A records from which the
 AAAA records were synthesized.

 To ensure endpoint-independent mapping behavior, a given IPv6 host
 must always use the same NAT64. This, in turn, means that any
 synthetic AAAA records used by the host must always use the same
 prefix. To ensure this, if a DNS64 has multiple Pref64::/96 prefixes
 configured, it SHOULD ensure that the same prefix is used for all
 AAAA records returned to a given host across all queries. A
 reasonable exception would be when the DNS64 knows, through some
 unspecified means, that the NAT64 associated with a Pref64::/96
 prefix is no longer functional.

 Furthermore, it is highly desirable to synthesize the AAAA records as
 close as possible to the host that will use them. This helps ensure
 that a given host always uses the same NAT64.

Bagnulo, et al. Expires March 23, 2009 [Page 14]

Internet-Draft NAT64 and DNS64 September 2008

 The DNS64 MUST obey the rules for synthetic RRs (Section 3.1) and the
 SAS option (Section 3.2).

 A synthetic AAAA record is created from an A record as follows:

 o The NAME field is set to the NAME field from the A record

 o The TYPE field is set to 28 (AAAA)

 o The CLASS field is set to 1 (IN)

 o The TTL field is set as described in Section 3.1

 o The RDLENGTH field is set to 16

 o The RDATA field is set to the IPv6 address whose upper 96 bits are
 Pref64::/96 and whose lower 32 bits are the IPv4 address from the
 RDATA field of the A record.

 TBD: What does a DNS64 do when a query for an A record returns a
 CNAME record and an A record? The SAS option, as currently defined,
 flags ALL records in the answer section as synthetic. Does the DNS64
 return just a CNAME record? Does it return just an AAAA record? Or
 does it return a real CNAME record and a synthetic AAAA record in the
 answer section -- something that the current rules do not allow.

3.4. NAT64

 A NAT64 is a device with one IPv6 interface and one IPv4 interface.
 The IPv6 interface MUST have a unicast /96 IPv6 prefix assigned to
 it, denoted Pref64::/96. The IPv4 interface MUST have one or more
 unicast IPv4 addresses assigned to it.

 A NAT64 uses the following dynamic data structures:

 o UDP BIB

 o UDP Session Table

 o TCP BIB

 o TCP Session Table

 A NAT64 has two Binding Information Bases: one for TCP and one for
 UDP. Each BIB entry specifies a mapping between an IPv6 transport
 address and an IPv4 transport address:

Bagnulo, et al. Expires March 23, 2009 [Page 15]

Internet-Draft NAT64 and DNS64 September 2008

 (X',x) <--> (T,t)

 where X' is some IPv6 address, T is an IPv4 address, and x and t are
 ports. T will always be one of the IPv4 addresses assigned to the
 IPv4 interface of the NAT64. A given IPv6 or IPv4 transport address
 can appear in at most one entry in a BIB: for example, (2001:db8::17,
 4) can appear in at most one TCP and at most one UDP BIB entry. TCP
 and UDP have separate BIBs because the port number space for TCP and
 UDP are distinct.

 A NAT64 also has two session tables: one for TCP sessions and one for
 UDP sessions. Each entry keeps information on the state of the
 corresponding session: see Section 3.4.2. The NAT64 uses the session
 state information to determine when the session is completed, and
 also uses session information for ingress filtering. A session can
 be uniquely identified by either an incoming 5-tuple or an outgoing
 5-tuple.

 For each session, there is a corresponding BIB entry, uniquely
 specified by either the source IPv6 transport address (in the IPv6
 --> IPv4 direction) or the destination IPv4 transport address (in the
 IPv4 --> IPv6 direction). However, a single BIB entry can have
 multiple corresponding sessions. When the last corresponding session
 is deleted, the BIB entry is deleted.

 The processing of an incoming IP packet takes the following steps:

 1. Determining the incoming 5-tuple

 2. Filtering and updating session information

 3. Computing the outgoing 5-tuple

 4. Translating the packet

 5. Handling hairpinning

 The details of these steps are specified in the following
 subsections.

 This breakdown of the NAT64 behavior into processing steps is done
 for ease of presentation. A NAT64 MAY perform the steps in a
 different order, or MAY perform different steps, as long as the
 externally visible outcome in the same.

 TBD: Add support for ICMP Query packets. (ICMP Error packets are
 handled).

Bagnulo, et al. Expires March 23, 2009 [Page 16]

Internet-Draft NAT64 and DNS64 September 2008

3.4.1. Determining the Incoming 5-tuple

 This step associates a incoming 5-tuple (source IP address, source
 port, destination IP address, destination port, transport protocol)
 with every incoming IP packet for use in subsequent steps.

 If the incoming IP packet contains a complete (un-fragmented) UDP or
 TCP protocol packet, then the 5-tuple is computed by extracting the
 appropriate fields from the packet.

 If the incoming IP packet contains a complete (un-fragmented) ICMP
 message, then the 5-tuple is computed by extracting the appropriate
 fields from the IP packet embedded inside the ICMP message. However,
 the role of source and destination is swapped when doing this: the
 embedded source IP address becomes the destination IP address in the
 5-tuple, the embedded source port becomes the destination port in the
 5-tuple, etc. If it is not possible to determine the 5-tuple
 (perhaps because not enough of the embedded packet is reproduced
 inside the ICMP message), then the incoming IP packet is silently
 discarded.

 NOTE: The transport protocol is always one of TCP or UDP, even if
 the IP packet contains an ICMP message.

 If the incoming IP packet contains a fragment, then more processing
 may be needed. This specification leaves open the exact details of
 how a NAT64 handles incoming IP packets containing fragments, and
 simply requires that a NAT64 handle fragments arriving out-of-order.
 A NAT64 MAY elect to queue the fragments as they arrive and translate
 all fragments at the same time. Alternatively, a NAT64 MAY translate
 the fragments as they arrive, by storing information that allows it
 to compute the 5-tuple for fragments other than the first. In the
 latter case, the NAT64 will still need to handle the situation where
 subsequent fragments arrive before the first.

 Implementors of NAT64 should be aware that there are a number of
 well-known attacks against IP fragmentation; see [RFC1858] and
 [RFC3128].

 Assuming it otherwise has sufficient resources, a NAT64 MUST allow
 the fragments to arrive over a time interval of at least 10 seconds.
 A NAT64 MAY require that the UDP, TCP, or ICMP header be completely
 contained within the first fragment.

3.4.2. Filtering and Updating Session Information

 This step updates the per-session information stored in the
 appropriate session table. This affects the lifetime of the session,

https://datatracker.ietf.org/doc/html/rfc1858
https://datatracker.ietf.org/doc/html/rfc3128

Bagnulo, et al. Expires March 23, 2009 [Page 17]

Internet-Draft NAT64 and DNS64 September 2008

 which in turn affects the lifetime of the corresponding BIB entry.
 This step may also filter incoming packets, if desired.

 The details of this step depend on the transport protocol (UDP or
 TCP).

3.4.2.1. UDP Session Handling

 The state information stored for a UDP session is a timer that tracks
 the remaining lifetime of the UDP session. The NAT64 decrements this
 timer at regular intervals. When the timer expires, the UDP session
 is deleted.

 The incoming packet is processed as follows:

 1. If the packet arrived on the IPv4 interface and the NAT64 filters
 on its IPv4 interface, then the NAT64 checks to see if the
 incoming packet is allowed according to the address-dependent
 filtering rule. To do this, it searches for a session table
 entry with a source IPv4 address equal to the source IPv4 address
 in the incoming 5-tuple. If such an entry is found (there may be
 more than one), packet processing continues. Otherwise, the
 packet is discarded. If the packet is discarded, then an ICMP
 message SHOULD be sent to the original sender of the packet,
 unless the discarded packet is itself an ICMP message. The ICMP
 message, if sent, has a type of 3 (Destination Unreachable) and a
 code of 13 (Communication Administratively Prohibited).

 2. The NAT64 searches for the session table entry corresponding to
 the incoming 5-tuple. If no such entry if found, a new entry is
 created.

 3. The NAT64 sets or resets the timer in the session table entry to
 maximum session lifetime. By default, the maximum session
 lifetime is 5 minutes, but for specific destination ports in the
 Well-Known port range (0..1023), the NAT64 MAY use a smaller
 maximum lifetime.

3.4.2.2. TCP Session Handling

 TBD: Describe the state machine required to track the state of the
 TCP session. This is a simplified version of the state machine used
 by the endpoints.

3.4.3. Computing the Outgoing 5-Tuple

 This step computes the outgoing 5-tuple by translating the addresses
 and ports in the incoming 5-tuple. The transport protocol in the

Bagnulo, et al. Expires March 23, 2009 [Page 18]

Internet-Draft NAT64 and DNS64 September 2008

 outgoing 5-tuple is always the same as that in the incoming 5-tuple.

 In the text below, a reference to the "the BIB" means either the TCP
 BIB or the UDP BIB as appropriate, as determined by the transport
 protocol in the 5-tuple.

 NOTE: Not all addresses are translated using the BIB. BIB entries
 are used to translate IPv6 source transport addresses to IPv4
 source transport addresses, and IPv4 destination transport
 addresses to IPv6 destination transport addresses. They are NOT
 used to translate IPv6 destination transport addresses to IPv4
 destination transport addresses, nor to translate IPv4 source
 transport addresses to IPv6 source transport addresses. The
 latter cases are handled by adding or removing the /96 prefix.
 This distinction is important; without it, hairpinning doesn't
 work correctly.

 When translating in the IPv6 --> IPv4 direction, let the incoming
 source and destination transport addresses in the 5-tuple be (S',s)
 and (D',d) respectively. The outgoing source transport address is
 computed as follows:

 If the BIB contains a entry (S',s) <--> (T,t), then the outgoing
 source transport address is (T,t).

 Otherwise, create a new BIB entry (S',s) <--> (T,t) as described
 below. The outgoing source transport address is (T,t).

 The outgoing destination address is computed as follows:

 If D' is composed of the NAT64's prefix followed by an IPv4
 address D, then the outgoing destination transport address is
 (D,d).

 Otherwise, discard the packet.

 When translating in the IPv4 --> IPv6 direction, let the incoming
 source and destination transport addresses in the 5-tuple be (S,s)
 and (D,d) respectively. The outgoing source transport address is
 computed as follows:

 The outgoing source transport address is (Pref64::S,s).

 The outgoing destination transport address is computed as follows:

 If the BIB contains an entry (X',x) <--> (D,d), then the outgoing
 destination transport address is (X',x).

Bagnulo, et al. Expires March 23, 2009 [Page 19]

Internet-Draft NAT64 and DNS64 September 2008

 Otherwise, discard the packet.

 If the rules specify that a new BIB entry is created for a source
 transport address of (S',s), then the NAT64 allocates an IPv4
 transport address for this BIB entry as follows:

 If there exists some other BIB entry containing S' as the IPv6
 address and mapping it to some IPv4 address T, then use T as the
 IPv4 address. Otherwise, use any IPv4 address assigned to the
 IPv4 interface.

 If the port s is in the Well-Known port range 0..1023, then
 allocate a port t from this same range. Otherwise, if the port s
 is in the range 1024..65535, then allocate a port t from this
 range. Furthermore, if port s is even, then t must be even, and
 if port s is odd, then t must be odd.

 In all cases, the allocated IPv4 transport address (T,t) MUST NOT
 be in use in another entry in the same BIB, but MAY be in use in
 the other BIB.

 If it is not possible to allocate an appropriate IPv4 transport
 address or create a BIB entry for some reason, then the packet is
 discarded.

 TBD: Do we delete the session entry if we cannot create a BIB entry?

 If the rules specify that the packet is discarded, then the NAT64
 SHOULD send an ICMP reply to the original sender, unless the packet
 being translated contains an ICMP message. The type should be 3
 (Destination Unreachable) and the code should be 0 (Network
 Unreachable in IPv4, and No Route to Destination in IPv6).

3.4.4. Translating the Packet

 This step translates the packet from IPv6 to IPv4 or vica-versa.

 The translation of the packet is as specified in section 3 and
section 4 of SIIT [RFC2765], with the following modifications:

 o When translating an IP header (sections 3.1 and 4.1), the source
 and destination IP address fields are set to the source and
 destination IP addresses from the outgoing 5-tuple.

 o When the protocol following the IP header is TCP or UDP, then the
 source and destination ports are modified to the source and
 destination ports from the 5-tuple. In addition, the TCP or UDP
 checksum must also be updated to reflect the translated addresses

https://datatracker.ietf.org/doc/html/rfc2765

Bagnulo, et al. Expires March 23, 2009 [Page 20]

Internet-Draft NAT64 and DNS64 September 2008

 and ports; note that the TCP and UDP checksum covers the pseudo-
 header which contains the source and destination IP addresses. An
 algorithm for efficently updating these checksums is described in
 [RFC3022].

 o When the protocol following the IP header is ICMP (sections 3.4
 and 4.4) the source and destination transport addresses in the
 embedded packet are set to the destination and source transport
 addresses from the outgoing 5-tuple (note the swap of source and
 destination).

3.4.5. Handling Hairpinning

 This step handles hairpinning if necessary.

 If the destination IP address is an address assigned to the NAT64
 itself (i.e., is one of the IPv4 addresses assigned to the IPv4
 interface, or is covered by the /96 prefix assigned to the IPv6
 interface), then the packet is a hairpin packet. The outgoing
 5-tuple becomes the incoming 5-tuple, and the packet is treated as if
 it was received on the outgoing interface. Processing of the packet
 continues at step 2.

 TBD: Is there such a thing as a hairpin loop (likely not naturally,
 but perhaps through a special-crafted attack packet with a spoofed
 source address)? If so, need to drop packets that hairpin more than
 once.

3.5. FTP ALG

 TBD: Describe the FTP ALG, a mechanism for translating the embedded
 IP addresses inside FTP commands, that enables FTP sessions to pass
 through NAT64.

4. Application scenarios

 In this section, we describe how to apply NAT64/DNS64 to the suitable
 scenarios described in draft-arkko-townsley-coexistence.

4.1. Enterprise IPv6 only network

 The Enterprise IPv6 only network basically has IPv6 hosts (those that
 are currently available) and because of different reasons including
 operational simplicity, wants to run those hosts in IPv6 only mode,
 while still providing access to the IPv4 Internet. The scenario is
 depicted in the picture below.

https://datatracker.ietf.org/doc/html/rfc3022
https://datatracker.ietf.org/doc/html/draft-arkko-townsley-coexistence

Bagnulo, et al. Expires March 23, 2009 [Page 21]

Internet-Draft NAT64 and DNS64 September 2008

 +----+ +-------------+
 | +------------------+IPv6 Internet+
 | | +-------------+
 IPv6 host-----------------+ GW |
 | | +-------------+
 | +------------------+IPv4 Internet+
 +----+ +-------------+

 |-------------------------public v6-----------------------------|
 |-------public v6---------|NAT|----------public v4--------------|

 The proposed NAT64/DNS64 is perfectly suitable for this particular
 scenario. The deployment of the NAT64/DNS64 would be as follows: The
 NAT64 function should be located in the GW device that connects the
 IPv6 site to the IPv4 Internet. The DNS64 functionality can be
 placed in different places. Probably the best trade-off between
 architectural cleanness deployment simplicity would be to place it in
 the local recursive DNS server of the enterprise site. The option
 that is easier to deploy would be to co-locate it with the NAT64 box.
 The cleanest option would be included in the local resolver of the
 IPv6 hosts, but this option seems the harder to deploy cause it
 implies changes to the hosts.

 The proposed NAT64/DNS64 approach satisfies the requirements of this
 scenario, in particular cause it doesn't require any changes to
 current IPv6 hosts in the site to obtain basic functionality.

4.2. Reaching servers in private IPv4 space

 The scenario of servers using IPv4 private addresses and being
 reached from the IPv6 Internet basically includes the cases that for
 whatever reason the servers cannot be upgraded to IPv6 and they don't
 have public VIPv4 addresses and it would be useful to allow IPv6
 nodes in the IPv6 Internet to reach those servers. This scenario is
 depicted in the figure below.

 +----+
 IPv6 Host(s)-------(Internet)-----+ GW +------Private IPv4 Servers
 +----+

 |---------public v6---------------|NAT|------private v4----------|

 This scenario can again be perfectly served by the NAT64 approach.
 In this case the NAT64 functionality is placed in the GW device
 connecting the IPv6 Internet to the server's site. In this case, the

Bagnulo, et al. Expires March 23, 2009 [Page 22]

Internet-Draft NAT64 and DNS64 September 2008

 DNS64 functionality is not needed. Since the server's site is
 running the NAT64 and the servers, it can publish in its own DNS
 server the AAAA RR corresponding to the servers i.e. AAAA RR
 associating the FQDN of the server and the Pref64:ServerIPv4Addr. In
 this case, there is no need to synthesize AAAA RR cause the site can
 configure them in the DNS itself.

 Again, this scenario is satisfied by the NAT64 since it supports the
 required functionality without requiring changes in the IPv4 servers
 nor in the IPv6 clients.

5. Discussion

5.1. About the Prefix used to map the IPv4 address space into IPv6

 In the NAT64 approach, we need to represent the IPv4 addresses in the
 IPv6 Internet. Since there is enough address space in IPv6, we can
 easily embed the IPv4 address into an IPv6 address, so that the IPv4
 address information can be extracted from the IPv6 address without
 requiring additional state. One way to that is to use an IPv6 prefix
 Pref64::/96 and juxtapose the IPv4 address at the end (there are
 other ways of doing it, but we are not discussing the different
 formats here). In this document the Pref64::/96 prefix is extracted
 from the address block assigned to the site running the NAT64 box.
 However, one could envision the usage of other prefixes for that
 function. In particular, it would be possible to define a well-known
 prefix that can be used by the NAT64 devices to map IPv4 (public)
 addresses into IPv6 addresses, irrespectively of the address space of
 the site where the NAT64 is located. In this section, we discuss the
 pro and cons of the different options.

 the different options for Pref64::/96 are the following

 Local: A locally assigned prefix out of the address block of the
 site running the NAT64 box

 Well-known: A well know prefix that is reserved for this purpose.
 We have the following different options:

 IPv4 mapped prefix

 IPv4 compatible prefix

 A new prefix assigned by IANA for this purpose

 The reasons why using a well-known prefix is attractive are the
 following: Having a global well-know prefix would allow to identify

Bagnulo, et al. Expires March 23, 2009 [Page 23]

Internet-Draft NAT64 and DNS64 September 2008

 which addresses are "real" IPv6 addresses with native connectivity
 and which addresses are IPv6 addresses that represent an IPv4
 address. From an architectural perspective, it seems the right thing
 to do to make this visible since hosts an applications could react
 accordingly and avoid or prefer such type of connectivity if needed.
 From the DNS64 perspective, using the well-know prefix would imply
 that the same synthetic AAAA RR will be created throughout the IPv6
 Internet, which would result in consistent view of the RR
 irrespectively of the location in the topology. From a more
 practical perspective, having a well-know prefix would allow to
 completely decouple the DNS64 from the NAT64, since the DNS64 would
 always use the well-know prefix to create the synthetic AAAA RR and
 there is no need to configure the same Pref64::/96 both in the DNS64
 and the NAT64 that work together.

 Among the different options available for the well-know prefix, the
 option of using a pre-existing prefix such as the IPv4-mapped or
 IPv4-compatible prefix has the advantage that would potentially allow
 the default selection of native connectivity over translated
 connectivity for legacy hosts in communications involving dual-stack
 hosts. This is because current RFC3484 default policy table include
 entries for the IPv4-mapped prefix and the IPv4-compatible prefix,
 implying that native IPv6 prefixes will be preferred over these.
 However, current implementations do not use the IPv4-mapped prefix on
 the wire, beating the purpose of support unmodified hosts. The IPv4-
 compatible prefix is used by hosts on the wire, but has a higher
 priority than the IPv4-mapped prefix, which implies that current
 hosts would prefer translated connectivity over native IPv4
 connectivity (represented by the IPv4-mapped prefix in the default
 policy table). So neither of the prefixes that are present in the
 default policy table would result in the legacy hosts preferring
 native connectivity over translated connectivity, so it doesn't seem
 to be a compelling reason to re-use neither the IPv4-mapped not the
 IPv4-compatible prefix for this. So, we conclude that among the the
 well know prefix options, the preferred option would be to ask for a
 new prefix from IANA to be allocated for this.

 However, there are several issues when considering using the well-
 know prefix option, namely:

 The well-know prefix is suitable only for mapping IPv4 public
 addresses into IPv6. IPv4 public addresses can be mapped using
 the same prefix cause they are globally unique. However, the
 well-known prefix is not suitable for mapping IPv4 private
 addresses. This is so because we cannot leverage on the
 uniqueness of the IPv4 address to achieve uniqueness of the IPv6
 address, so we need to use a different IPv6 prefix to disambiguate
 the different private IPv4 address realms. As we describe above,

https://datatracker.ietf.org/doc/html/rfc3484

Bagnulo, et al. Expires March 23, 2009 [Page 24]

Internet-Draft NAT64 and DNS64 September 2008

 there is a clear use case for mapping IPv4 private addresses, so
 there is a pressing need to map IPv4 private addresses. In order
 to do so we will need to use at least for IPv4 private addresses,
 IPv6 local prefixes. In that case, the architectural goal of
 distinguishing the "real" IPv6 addresses from the IPv6 addresses
 that represent IPv4 addresses can no longer be achieved in a
 general manner, making this option less attractive.

 The usage of a single well-known prefix to map IPv4 addresses
 irrespectively of the NAT64 used, may results in failure modes in
 sites that have more than one NAT64 device. The main problem is
 that intra-site routing fluctuations that result in packets of an
 ongoing communication flow through a different NAT64 box that the
 one they were initially using (e.g. a change in an ECMP load
 balancer), would break ongoing communications. This is so because
 the different NAT64 boxes will use a different IPv4 address, so
 the IPv4 peer of the communications will receive packets coming
 from a different IPv4 address. This is avoided using a local
 address, since each NAT64 box can have a different Pref64::/06
 associated, to routing fluctuations would not result in using a
 different NAT64 box.

 The usage of a well-known prefix is also problematic in the case
 that different routing domains want to exchange routing
 information involving these routes. Consider the case of an IPv6
 site that has multiple providers and that each of these providers
 provides access to the IPv4 Internet using the well know prefix.
 Consider the hypothetical case that different parts of the IPv4
 Internet are reachable through different IPv6 ISPs (yes, this
 means that in a futuristic scenario, the IPv4 Internet is
 partitioned). In order to reach the different parts through the
 different ISPs, more specific routes representing the different
 IPv4 destinations reachable need to be injected in the IPv6 sites.
 This basically means that such configuration would imply to import
 the IPv4 routing entropy into the IPv6 routing system. If
 different local prefixes are used, then each ISP only announces
 its own local prefix, and then the burden of defining which IPv4
 destination is reachable through which ISP is placed somewhere
 else (e.g. in the DNS64).

6. Security Considerations

 Implications on end-to-end security, IPSec and TLS.

 Any protocol that protect IP header information are essentially
 incompatible with NAT64. So, this implies that end to end IPSec
 verification will fail when AH is used (both transport and tunnel

Bagnulo, et al. Expires March 23, 2009 [Page 25]

Internet-Draft NAT64 and DNS64 September 2008

 mode) and when ESP is used in transport mode. This is inherent to
 any network layer translation mechanism. End-to-end IPsec protection
 can be restored, using UDP encapsulation as described in [RFC2765].

 TBD: TLS implications

 Implications on DNS security and DNSSec.

 NAT64 uses synthetic DNS RR to enable IPv6 clients to initiate
 communications with IPv4 servers using the DNS. This essentially
 means that the DNS64 component generates synthetic AAAA RR that are
 not contained in the master zone file. From a DNSSec perspective,
 this means that the straight DNSSec verification of such RR would
 fail. However, it is possible to restore DNSSec functionality if the
 verification is performed right before the DNS64 processing directly
 using the original A RR of the IPv4 server. So, in order to jointly
 use the NAT64 appraoch described in thei specification and DNSSec
 validation, the DNS64 functionality should be performed in the
 resolver of the IPv6 client. In this case, the IPv6 client would
 receive the original A RR with DNSSec information and it would first
 perform the DNSSec validation. If it is succcessful, it would then
 proceed the synthetize the AAAA RR according to the mechanism
 described in this document. It should be noted that the synthetic
 AAAA RR would stay within the IPv6 client and it would not leak
 outside, making further DNSSec validations unnecesary.

 Filtering.

 NAT64 creates binding state using packets flowing from the IPv6 side
 to the IPv4 side. So, NAT64 implements by definition, at least,
 endpoint independent filtering, meaning that in order to enable any
 packet to flow from the IPv4 side to the IPv6 side, there must have
 been a packet flowing from the IPv6 side to the IPv4 side the created
 the binding information to be used for packets in the other
 direction. Endpoint independent filtering allows that once a binding
 is created, it can be used by any node on the IPv4 side to send
 packets to the IPv6 transport address that created the binding. This
 basically means that as long a the IPv6 node does not open a hole in
 the NAT64, incoming communications are blocked and that once that the
 IPv6 node has sent the first packet, this packet opens the door for
 any node on the IPv4 side to send packets to that IPv6 transport
 address. It is possible to configure the NAT64 to implement more
 stringent security policy, if endpoint independent mapping is
 considered not secure enough. In particular, if the security policy
 of the NAT64 requires it, is it possible to configure the NAT64 to
 perform address dependent filtering. This basically means that the
 binding state created can only be used by to send packets from the
 IPv4 address to which the original packet that created the binding

https://datatracker.ietf.org/doc/html/rfc2765

Bagnulo, et al. Expires March 23, 2009 [Page 26]

Internet-Draft NAT64 and DNS64 September 2008

 was sent to. This basically means that the door is open only for
 that IPv4 address to send packet to the IPv6 transport address.

 Attacks to NAT64.

 The NAT64 device itself is a potential victim of different type of
 attacks. In particular, the NAT64 can be a victim of DoS attacks.
 The NAT64 box has a limited number of resources that can be consumed
 by attackers creating a DoS attack. The NAT64 has a limited number
 of IPv4 address that is uses to create the bindings. Even though the
 NAT64 performs address and port translation, it is possible for an
 attacker to consume all the IPv4 transport addresses by sending IPv6
 packets with different source IPv6 transport address. It should be
 noted that this attack can only be launched from the IPv6 side, since
 IPv4 packets are not used to create binding state. DoS attacks can
 also affect other limited resource available in the NAT64 such as
 memory or link capacity. For instance, if the NAT64 implements
 reassembly of fragmented packets, it is possible for an attacker to
 launch a DoS attack to the memory of the NAT64 device by sending
 fragments that the NAT64 will store for a given period. If the
 number of fragments if high enough, the memory of the NAT64 could be
 exhausted. NAT64 devices should implement proper protection against
 such attacks, for instance allocating a limited amount of memory for
 fragmented packet storage.

7. IANA Considerations

 The IANA is requested to assign an EDNS Option Code value for the SAS
 option.

 TBD: Set up an IANA registry for SAS flags??

8. Changes from Previous Draft Versions

 Note to RFC Editor: Please remove this section prior to publication
 of this document as an RFC.

 [[This section lists the changes between the various versions of this
 draft.]]

9. Contributors

 George Tsirtsis

Bagnulo, et al. Expires March 23, 2009 [Page 27]

Internet-Draft NAT64 and DNS64 September 2008

 Qualcomm

 tsirtsis@googlemail.com

10. Acknowledgements

 Dave Thaler, Dan Wing, Alberto Garcia-Martinez and Joao Damas
 reviewed the document and provided useful comments to improve it.

 The content of the draft was improved thanks to discussions with Fred
 Baker and Jari Arkko.

 Marcelo Bagnulo and Iljitsch van Beijnum are partly funded by
 Trilogy, a research project supported by the European Commission
 under its Seventh Framework Program.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)",
RFC 2671, August 1999.

 [RFC2765] Nordmark, E., "Stateless IP/ICMP Translation Algorithm
 (SIIT)", RFC 2765, February 2000.

 [RFC4787] Audet, F. and C. Jennings, "Network Address Translation
 (NAT) Behavioral Requirements for Unicast UDP", BCP 127,

RFC 4787, January 2007.

 [I-D.ietf-behave-tcp]
 Guha, S., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP",

draft-ietf-behave-tcp-08 (work in progress),
 September 2008.

 [I-D.ietf-behave-nat-icmp]
 Srisuresh, P., Ford, B., Sivakumar, S., and S. Guha, "NAT
 Behavioral Requirements for ICMP protocol",

draft-ietf-behave-nat-icmp-08 (work in progress),

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/draft-ietf-behave-tcp-08
https://datatracker.ietf.org/doc/html/draft-ietf-behave-nat-icmp-08

Bagnulo, et al. Expires March 23, 2009 [Page 28]

Internet-Draft NAT64 and DNS64 September 2008

 June 2008.

11.2. Informative References

 [RFC2766] Tsirtsis, G. and P. Srisuresh, "Network Address
 Translation - Protocol Translation (NAT-PT)", RFC 2766,
 February 2000.

 [RFC1858] Ziemba, G., Reed, D., and P. Traina, "Security
 Considerations for IP Fragment Filtering", RFC 1858,
 October 1995.

 [RFC3128] Miller, I., "Protection Against a Variant of the Tiny
 Fragment Attack (RFC 1858)", RFC 3128, June 2001.

 [RFC3022] Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022,
 January 2001.

 [RFC4966] Aoun, C. and E. Davies, "Reasons to Move the Network
 Address Translator - Protocol Translator (NAT-PT) to
 Historic Status", RFC 4966, July 2007.

 [I-D.ietf-mmusic-ice]
 Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols",

draft-ietf-mmusic-ice-19 (work in progress), October 2007.

 [RFC3498] Kuhfeld, J., Johnson, J., and M. Thatcher, "Definitions of
 Managed Objects for Synchronous Optical Network (SONET)
 Linear Automatic Protection Switching (APS)
 Architectures", RFC 3498, March 2003.

Authors' Addresses

 Marcelo Bagnulo
 UC3M
 Av. Universidad 30
 Leganes, Madrid 28911
 Spain

 Phone: +34-91-6249500
 Fax:
 Email: marcelo@it.uc3m.es
 URI: http://www.it.uc3m.es/marcelo

https://datatracker.ietf.org/doc/html/rfc2766
https://datatracker.ietf.org/doc/html/rfc1858
https://datatracker.ietf.org/doc/html/rfc1858
https://datatracker.ietf.org/doc/html/rfc3128
https://datatracker.ietf.org/doc/html/rfc3022
https://datatracker.ietf.org/doc/html/rfc4966
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-19
https://datatracker.ietf.org/doc/html/rfc3498
http://www.it.uc3m.es/marcelo

Bagnulo, et al. Expires March 23, 2009 [Page 29]

Internet-Draft NAT64 and DNS64 September 2008

 Philip Matthews
 Unaffiliated

 Email: philip_matthews@magma.ca
 URI:

 Iljitsch van Beijnum
 IMDEA Networks
 Av. Universidad 30
 Leganes, Madrid 28911
 Spain

 Phone: +34-91-6246245
 Email: iljitsch@muada.com

Bagnulo, et al. Expires March 23, 2009 [Page 30]

Internet-Draft NAT64 and DNS64 September 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Bagnulo, et al. Expires March 23, 2009 [Page 31]

