
Workgroup: Network Working Group

Internet-Draft:

draft-bagnulo-iccrg-iccrg-ledbat-bbr-

interop-00

Published: 8 February 2023

Intended Status: Informational

Expires: 12 August 2023

Authors: M. Bagnulo

UC3M

A. Garcia-Martinez

UC3M

LEDBAT++ BBR interoperability issues

Abstract

This document specifies describes some interoperability issues

identified between LEDBAT++ and BBR, resulting in unexpected

behaviour. Specifically, that under a set of common conditions,

LEDBAT++ fails to yield in front of both BBRv1 and BBRv2(instead of

the opposite expected behaviour).

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 August 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. BBR LEDBAT++ Interoperability issues

3. Proposed solution

4. Experiment data

5. Security Considerations

6. IANA Considerations

7. Acknowledgements

8. Informative References

Authors' Addresses

1. Introduction

BBR (Bottleneck Bandwidth and Round-trip propagation time)

[I-D.cardwell-iccrg-bbr-congestion-control] is a model-based

congestion control algorithm that attempts to improve the

performance of Internet communications by reducing the delay (when

bottleneck buffers are large) and increase the throughput (when

bottleneck buffers are small). BBR estimates the queueing delay by

monitoring the round-trip-time (RTT) and it detects congestion onset

when the queue in the bottleneck's buffer starts to build up. BBR

then adjusts its rate to send as fast as possible while avoiding the

formation of queues in the bottleneck, operating closer to the

optimal operation point. Two versions of BBR exist. BBRv1 is

included in Linux since version 4.9, and it is currently widely used

in the Internet. BBRv2 is being developed and it aims to overcome

some limitations identified for BBRv1.

LEDBAT++ (Low Extra Delay Background Transport ++)

[I-D.irtf-iccrg-ledbat-plus-plus] is a congestion-control algorithm

that implements a less-than-best-effort (LBE) traffic class. When

LEDBAT++ traffic shares a bottleneck with one or more TCP

connections using Cubic or other loss-based congestion control

algorithms, it reduces its sending rate earlier and more

aggressively than competing flows, allowing Cubic traffic to use

more of the available capacity. This effectively implements an LBE

traffic class that has less priority than Cubic-TCP/best-effort

traffic.

LEDBAT++ reacts both to packet loss and to variations in delay.

Regarding packet loss, LEDBAT++ reacts with a multiplicative

decrease, similar to most TCP congestion controllers. Regarding

delay, LEDBAT++ aims for a target queueing delay T (i.e., on top of

the base RTT), set to 60 ms.

¶

¶

¶

¶

Similarly to BBR, LEDBAT++ estimates the queueing delay by

monitoring the RTT. When the measured queueing delay is below the

target T, LEDBAT++ additively increases the sending rate and when

the delay is above the target T, it multiplicatively reduces the

sending rate. LEDBAT++ is the evolution of the original LEDBAT

algorithm [RFC6817] that overcomes multiple limitations identified

in the original specification.

Since BBR aims to provide a best effort service i.e. a traffic class

with similar priority than Cubic and New Reno and LEDBAT++ is

designed to provide a less-than-best-effort traffic class that

yields in front of best effort traffic, it is expected that LEDBAT

yields in front of BBR. On other other hand, BBR aims to operate

closer to the point where there is no queue while LEDBAT++ is

designed to operate with a queueing delay equal to thew target T,

which may hint that LEDBAT++ is more aggressive than BBR (as it is

willing to endure a longer queue). In the following sections, we

report the results of some experiments that confirm that indeed in

certain conditions, LEDBAT++ is more aggressive than BBR and because

of that, LEDBAT++ fails to yield in front of BBR traffic,

unfulfilling the design goals of both protocols. We detail the

conditions when this happens and propose a possible solution to the

identified interoperability problem.

2. BBR LEDBAT++ Interoperability issues

We performed a number of experiments to understand LEDBAT++ BBR

interaction. We provide details about the experimental setup in

section XX below. We found the following results:

Experiment 1: Two TCP connections with the same RTT, one of them

using BBRv1 and the other one using LEDBAT++, compete for the

capacity of the bottleneck link that is using a buffer that is large

enough to generate a queueing delay of at least LEDBAT++'s target.

We observe that:

For base RTTs larger than T, LEDBAT++ behaves as a scavenger

transport and yields in front of BBRv1.

For base RTTs smaller than T, LEDBAT++ does not yield and seizes

a significant share of the capacity (about half of the available

capacity, depending on the specific RTT).

Uncoordinated slowdowns of BBRv1 and LEDBAT++ flows are not

enough to enable both flows to have visibility of the base RTT.

BBRv1 is unable to seize all the available capacity when the RTT is

smaller than T because of its flightsize cap. Indeed, BBRv1 defines

a flightsize cap of twice the bandwidth-delay product. This implies

that the maximum queueing delay that a BBRv1 flow can generate is

¶

¶

¶

¶

*

¶

*

¶

*

¶

one (additional) RTT. LEDBAT++ on the other hand, can tolerate a

queuing delay of T. So, when the RTT is smaller than T, LEDBAT++

tolerates more queueing delay than BBRv1, which implies that the

LEDBAT++ flow will bot back off when competing against a BBRv1 flow,

explaining the observed behaviour.

Experiment 2: Two TCP connections with the same RTT, one of them

using BBRv1 and the other one using LEDBAT++, compete for the

capacity of the bottleneck link that is using a buffer that is

capable of generating a maximum queueing delay of B seconds, B being

smaller than LEDBAT++'s target T (i.e. same as Experiment 1 but with

B smaller than T). We observe that:

For base RTTs larger than B, LEDBAT++ behaves as a scavenger

transport and yields in front of BBRv1.

For base RTTs smaller than B, LEDBAT++ does not yield and seizes

a significant share of the capacity (about half of the available

capacity, depending on the specific RTT).

In this case, we observe a similar behaviour than in experiment 1,

only that the tipping point when LEDBAT++ starts to yield in front

of BBRv1 is determined by the buffer size. For RTTs smaller than the

buffer size, the same justification used for the Experiment 1

results apply to explain why BBRv1 yields. For RTTs larger than B,

then the BBRv1 flow is able to generate a queue that is alrge enough

to create losses, which forces LEDBAT++ into packet loss mode,

behaving less aggressively than Cubic and thus yielding in front of

BBRv1

Experiment 3: Two TCP connections with the same RTT, one of them

using BBRv2 and the other one using LEDBAT++, compete for the

capacity of the bottleneck link that is using a buffer that is large

enough to generate a queueing delay of at least LEDBAT++'s target.

We observe that:

For base RTTs larger than T, LEDBAT++ behaves as a scavenger

transport and yields in front of BBRv2.

For base RTTs smaller than T, BBRv2 yields in front of LEDBAT++,

behaving exactly the opposite than expected.

Most modifications introduced in BBRv2 are intended to make it less

aggressive, which is likely to explain the experiment's results. In

particular, in BBRv2 the flightsize is not limited only by the

flightsize cap, but also for the inflight model parameter that is

aiming for a small queue, which seem to be at odds with LEDBAT++

actions to bloat the queue up to the target T. Also, BBRv2 aims to

leave a headroom in the link to enable other flows to enter. It may

¶

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

the case that this headroom is filled by LEDBAT++ traffic, enabling

LEDBAT++ to seize more capacity.

Experiment 4: Two TCP connections with the same RTT, one of them

using BBRv2 and the other one using LEDBAT++, compete for the

capacity of the bottleneck link that is using a buffer that is

capable of generating a maximum queueing delay of B seconds, B being

smaller than LEDBAT++'s target T (i.e. same as Experiment 3 but with

B smaller than T). We observe that:

For base RTTs smaller than B, BBRv2 yields in front of LEDBAT++.

For base RTTs larger than B, BBRv2 gradually seizes a larger

share of the capacity, but it is not until much larger RTTs that

is able to seize all the capacity.

BBRv2 incorporates new mechanisms to react to losses. When using

buffers smaller that the target T, loss is the main congestion

signal and both BBRv2 and LEDBAT++ respond to it ad the new BBRv2

mechanism seem to make it more aggressive, leaving some room for

LEDBAT++ to seize.

3. Proposed solution

In our previous analysis, we posit that a BBR flow are unable to

seize all the available capacity when competing against a LEDBAT++

flow due to its self-imposed limitation on the flightsize. This

limitation is set to one additional BDP, and it is in place to limit

the size of the resulting queue. When the RTT is smaller than the

target T, the queue generated by the LEDBAT++ flow is larger than

the one BBR is willing to generate, hence BBR yields.

In order to address this issue, we propose to limit the queue

generated by LEDBAT++ to the minimum of the target T and the base

RTT. This should solve the problem since this would result in

LEDBAT++ refraining from generating queues larger than one BDP, so,

it would consequently yield in from of BBR. We believe this would

also positive for LEDBAT++ itself, as it would prevent it from

bloating the RTT in relative terms compared to the base RTT for

small base RTTs.

We have implemented the proposed solution and we have verified that

it addresses the identified issue i.e. with the proposed solution,

LEDBAT++ always yields in front of BBR.

4. Experiment data

In our experiments, we use the virtualised setup depicted in Figure

1, which features a dumbbell topology, that allows us to generate

both LEDBAT++ and BBR flows that compete for the capacity of a

¶

¶

* ¶

*

¶

¶

¶

¶

¶

bottleneck link. We configure the characteristics of the bottleneck

link, including the size of the buffer, the capacity and the delay.

We use this topology for our experiments, because any path, no

matter how complex it is, can be accurately modelled from the

transport layer perspective as a single link with the RTT of the

overall path and the capacity of the path's bottleneck link, which

is exactly what this simple topology represents.

Figure 1: The rLEDBAT architecture.

C1, R1, R2 and S1 are Linux systems while S2 is a Windows 2019

Server with LEDBAT++ capability. S1 has BBR enabled. BBRv1 is

already available in the Linux kernel and BBRv2 is installed.

Traffic is generated in S1 using the nc tool and in S2 using the

ctsTraffic tool (i.e., bulk transfer type of traffic in both cases).

The client in C1 uses nc.

The link connecting R2 with R1 is the bottleneck link of the

communications between S1 (S2) and C1. We set its capacity to

different values using the tbf queueing discipline for the tc

traffic control tool. A drop-tail buffer is configured in the R2-to-

R1 link, with a size that we vary on different experiments, to

represent different network setups. The links between S1 (S2) and R2

and the ones between C1 and R1 are configured with (much) larger

capacities than the bottleneck link. During the experiments, we set

the RTT of the path between S1 (S2) and C1 using tc netem.

In all the experiments, C1 connects to S1 and S2 nodes to perform

downloads. Each flow is greedy, in the sense that it aims to

transmit as much data as possible. Data is transferred using TCP,

using BBR between C1 and S1 and LEDBAT++ between C1 and S2. TCP flow

control never limits the communication rate, as we manually

configure a large receiver window. To compute the rates for each

flow, we start a tcpdump capture in C1. The MSS used is 1,390 bytes

while the MTU is 1,456 bytes.

Additional data about the experiments, including graphs with the

measurement results can be found at [COMNET]

¶

 +-----+

 +--| S1 |

+-----+ +-----+ +-----+ | +-----+

| C1 |------------| R1 |----------| R2 |-------------+

+-----+ | | | |-------------+

 +-----+ +-----+ | +-----+

 +--| S2 |

 +-----+

¶

¶

¶

¶

¶

¶

[COMNET]

[I-D.cardwell-iccrg-bbr-congestion-control]

[I-D.irtf-iccrg-ledbat-plus-plus]

[RFC6817]

5. Security Considerations

6. IANA Considerations

7. Acknowledgements

This work was supported by the EU through the StandICT CEL6 project.

8. Informative References

Bagnulo, M.B. and A.G. Garcia-Martinez, "When less is

more: BBR versus LEDBAT++", , Computer Networks Volume

219, 2022.

Cardwell, N., Cheng, Y., Yeganeh, S. H., Swett, I., and

V. Jacobson, "BBR Congestion Control", Work in Progress,

Internet-Draft, draft-cardwell-iccrg-bbr-congestion-

control-02, 7 March 2022, <https://www.ietf.org/archive/

id/draft-cardwell-iccrg-bbr-congestion-control-02.txt>.

Balasubramanian, P., Ertugay, O.,

and D. Havey, "LEDBAT++: Congestion Control for

Background Traffic", Work in Progress, Internet-Draft,

draft-irtf-iccrg-ledbat-plus-plus-01, 25 August 2020,

<https://www.ietf.org/archive/id/draft-irtf-iccrg-ledbat-

plus-plus-01.txt>.

Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,

"Low Extra Delay Background Transport (LEDBAT)", RFC

6817, DOI 10.17487/RFC6817, December 2012, <https://

www.rfc-editor.org/info/rfc6817>.

Authors' Addresses

Marcelo Bagnulo

UC3M

Email: marcelo@it.uc3m.es

Alberto Garcia-Martinez

UC3M

Email: alberto@it.uc3m.es

¶

https://www.ietf.org/archive/id/draft-cardwell-iccrg-bbr-congestion-control-02.txt
https://www.ietf.org/archive/id/draft-cardwell-iccrg-bbr-congestion-control-02.txt
https://www.ietf.org/archive/id/draft-irtf-iccrg-ledbat-plus-plus-01.txt
https://www.ietf.org/archive/id/draft-irtf-iccrg-ledbat-plus-plus-01.txt
https://www.rfc-editor.org/info/rfc6817
https://www.rfc-editor.org/info/rfc6817
mailto:marcelo@it.uc3m.es
mailto:alberto@it.uc3m.es

	LEDBAT++ BBR interoperability issues
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. BBR LEDBAT++ Interoperability issues
	3. Proposed solution
	4. Experiment data
	5. Security Considerations
	6. IANA Considerations
	7. Acknowledgements
	8. Informative References
	Authors' Addresses

