
Network Working Group M. Bagnulo
Internet-Draft UC3M
Intended status: Standards Track February 12, 2014
Expires: September 3, 2014

Secure MPTCP
draft-bagnulo-mptcp-secure-00

Abstract

 This memo contains some initial thoughts about how to secure MPTCP.
 As currently defined, MPTCP provides basic security features to
 protect the MPTCP signaling and the data flows unprotected. In this
 note, we explore the possible use to tcpcrypt to provide enhanced
 security to MPTCP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 3, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bagnulo Expires August 3, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SMTCP January 2014

Table of Contents

1. Introduction . 2
2. Initial SMTCP connection 3
3. Adding new subflows . 4
4. Exchanging data . 5
5. Backward compatibility 6
6. Concluding remarks . 7
7. Security Considerations 7
8. IANA Considerations . 7
9. Acknowledgements . 7
10. References . 7
10.1. Normative References 8
10.2. Informative References 8

 Author's Address . 8

1. Introduction

 Multi-path TCP (MPTCP) [RFC6824] defines the extensions to TCP that
 allow transmitting data over multiple paths in a single TCP
 connection. This is achieved by opening multiple subflows within the
 same TCP connection. Each subflow is associated to a different
 address/port pair. As currently defined, MPTCP provides basic
 security for the signaling used to establish the subflows. A threat
 analysis for MPTCP is presented in [RFC6181] and a residual threat
 analysis is presented in [I-D.bagnulo-mptcp-attacks]. From these
 analysis we can extract that MPTCP as currently defined is vulnerable
 to attackers that can eavesdrop the initial connection establishment
 exchange and also to attackers that can intercept any subflow
 establishment exchange. In addition, MPTCP does not provide any
 protection to the data stream (other than splitting the data stream
 over multiple paths), as this was a non goal of the MPTCP design. In
 [I-D.bagnulo-mptcp-attacks] it is concluded that if a more secure
 version of MPTCP should be pursued, the path to follow would be to
 protect the data stream rather than trying to provide additional
 security to the signaling. The reader is referred to the
 aforementioned reference for additional insight why this is the case.
 The goal of this document is provide initial considerations about how
 to provide enhanced security to MPTCP by securing the data stream.

 In this note, we analyze the use of tcpcryp [I-D.bittau-tcp-crypt] to
 secure MPTCP. tcpcrypt defines extensions to TCP so opportunistically
 encrypt the data stream of a TCP connection. By using tcpcrypt in
 MPTCP, we would be able to provide enhanced security to MPTCP. We
 note however, that the resulting solution would still be vulnerable
 to Man-in-the-Middle attacks during the initial key negotiation.
 However, the attacker in this case must be active and must remain
 located along the path during the whole lifetime of the connection.

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6181

Bagnulo Expires August 3, 2014 [Page 2]

Internet-Draft SMTCP January 2014

 We call SMTCP to the integration of MPTCP with tcpcryp. This would
 provide stronger security of MPTCP, both for the signaling and for
 the data. Since all the MPTCP signaling will be protected by
 tcpcrypt (i.e. encrypted and its integrity protected) there is no
 need for the existent MPTCP security mechanisms when used with
 tcpcrypt. This means that there is no need to negotiate a the
 current MPTCP key and that the HMAC protection provided by the MPTCP
 protocol is not needed (except for backward compatibility issues).
 All the protection will be achieved with the tcpcrypt extensions.

2. Initial SMTCP connection

 Suppose both A and B are SMTCP capable. Suppose A has both IPA1 and
 IPA2. Suppose A initiates a SMTCP connection with B. The exchange
 would look like as follows:

 A -> B: SYN + MP_CAPABLE (including A's key (ka) and C bit set) +
 CRYPT/Hello This contains 15 bytes of options (the motivation for
 including both the MP_CAPABLE and the CRYPT option is for backward
 compatibility, see Section 5). SYN packets usually carry as well
 MSS (4 bytes), SACK (2 bytes) and Window-Scale (3 bytes).
 Negotiating timestamps would be 10 more bytes. As options has a
 maximum length of 40 bytes, this would be compatible with all the
 mentioned options.

 B -> A: SYN/ACK + MP_CAPABLE (including B's key (kb) and the C bit
 set) + CRYPT/PKCONF (with pub-cipher-list) Assuming we have 2
 algorithms in the list, this is 10 bytes, making a total of 22
 bytes. This packet also usually carries the same options than the
 SYN packet, so in this case, not all the mentioned additional
 options would fit.

 A -> B: INIT (3 bytes of options) plus crypto data in the payload
 (The MP_CAPABLE option is needed since the keys are generated by
 tcpcrypt)

 B -> A: INIT (3 bytes of options) plus crypto data in the payload

 During the 3-way handshake MPTCP generates the following values:

 The key: session to key to protect the signaling (one per each
 side)

 The Token: used as connection identifier (one per each side)

 The IDSN: Initial Data Seq Number (one per each side)

 The idea would be to derive them from the tcpcrypt values.

Bagnulo Expires August 3, 2014 [Page 3]

Internet-Draft SMTCP January 2014

 o The keys: tcpcrypt generates 4 keys, kec, kac, kes and kas. These
 will be used to secure MPTCP, as discussed later on. for the
 purposes of MPTCP signaling, the keys that will be used are the
 authentication keys, so the keys for MPTCP are kac and kas.

 o The tokens: tcpcrypt generates a Session ID, which is the full
 length of a hash output. The thing is that tcpcrypt generates a
 single SID for both endpoints, while MPTCP generates one per
 endpoint. In addition, MPTCP needed to generate a pair of ISDNs.

 We could then generate the MPTCP values out of the tcpcrypt values as
 follows

 Key A= kac

 Key B= Kas

 Token A= 32 most significant bits of (hash(ka))

 Token B= 32 most significant bits of (hash(kb))

 IDSN A= 64 least significant bits of (hash(kac + SID))

 IDSN B= 64 least significant bits of (hash(kas + SID))

 DISCUSSION: We need to exchange ka in the MP_CAPABLE message because
 of backwards compatibility issues (see Section 5), so there is no
 easy way around it. However, the reason to exchange kb in the
 MP_CAPABLE is because we need to be able to generate Token B in a way
 that is unique in host B. This seems an overkill (exchanging a 64 bit
 key to achieve a 32 bit unique token). It could be possible to
 define a new MP_CAPABLE option that would exchange a 32 bit long
 token directly. We also need to understand the security implications
 of exchanging the token in the clear. Another alternative would be
 to generate the token as a hash of kas and the SID and if it happens
 to clash, restart the connection. Tis may make sense depending how
 likely is this to happen. TODO: work out the other flavors of
 tcpcrypt connection initiation, including the use of cached keys

3. Adding new subflows

 The options for this is whether to treat a new subflow as a new
 tcpcrypt connection or not, the implication being that a new tcpcrypt
 connection uses a different shared secret and hence different keys
 (even though not new public key operations are needed). Probably
 this is not the way to go. All the flows of a MPTCP connection
 should be part of the same tcpcrypt session. (the other option would

Bagnulo Expires August 3, 2014 [Page 4]

Internet-Draft SMTCP January 2014

 imply that there are different keys for the same MPTCP session, which
 may be cumbersome?)

 So, one simple way of doing this would be to simply use the existent
 MPTCP exchange to add a new subflow with the MPTCP security measures.
 This implies sending an MP_JOIN containing the receiver's token and a
 random number which will be responded with another MP_JOIN and the
 final JOIN message. The tcpcrypt keys are used instead of the
 regular MPTCP keys.

 (similar approach can be used for the ADD_ADDR option, which is
 secure using an HMAC using the tcpcryp derived key)

 A alternative approach would be to drop completely the MPTCP security
 mechanisms and use the tcpcryp MAC option to secure the MPTCP
 signaling. This implies that the tcpcryp MAC option would need also
 to protect the MPTCP MP_JOIN option

4. Exchanging data

 Once the keys and the other values have been negotiated, data can
 flow. All data in the MPTCP connection will be encrypted with
 tcpcrypt keys and its integrity protected using the tcpcrypt MAC
 option. This adds 22 bytes of options (assuming 160 bits long hash).

 Question: do we need to have a 160 bit long hash or can we live with
 less?

 Now, MPTCP includes the DSS option in order to synchronize the data
 sequence number with the sequence numbers of the subflows. The DSS
 option max length is 28 bytes. The results it that the MAC option
 plus the DSS option are 50 bytes, which is a problem.

 The good news is that the DSS does not need to be sent in every
 segment and that 28 bytes is the maximum length.

 Currently the DSS option includes information both about DSN mapping
 to subflow seq number and data ack. In order to limit the size of
 the option, one option is to prevent that both Data Ack and DSN to
 subflow seq numbers mappings are sent in the same option. This would
 result that when Data acks are sent, the DSS option has a maximum of
 12 bytes and when DSN to subflow seq number mapping are sent, the max
 length is 20 bytes. This is still 2 bytes too long. There are two
 ways we can shrink this. One option is to prevent the use of
 Checksum when tcpcrypt is used. checksum is optional, so this could
 be done. Moreover, it makes sense to do this, because all the
 information protected in this checksum is protected by the tcpcrypt
 MAC option. this results that the DSS option is now 18 bytes, which

Bagnulo Expires August 3, 2014 [Page 5]

Internet-Draft SMTCP January 2014

 with the tcpcrypt MAC option will make up to 40 bytes of tcp options.
 The other possible way to shrink this is to use the 4 bytes seq
 numbers rather than the 8 ones. This would reduce the DSS option to
 14 bytes for the DSN to subflow seq number mapping and to 8 bytes in
 the case of Data acks.

 The DSS option will be sent in the clear i.e. not encrypted by
 tcpcrypt. The MAC option must cover the DSS option (correct?). This
 implies that we need to add to the MAC data structure the DSS option.

 Question: how often the DSS needs to be sent? I mean, if we send the
 DSS and the MAC options, we will be using all the TCP option room,
 so, not SACK can be sent, which is bad.

5. Backward compatibility

 There will be the following 5 types of node:

 MPTCP nodes: supports MPTCP as defined in RFC6824 or RFC6824bis
 but does not support tcpcrypt,

 tcpcryp nodes: supports tcpcrypt but does not support MPTCP,

 SMTCP capable nodes: support MPTCP and tcpcrypt and the use of
 tcpcrypt to secure MPTCP,

 legacy nodes: dont support neither tcpcrypt nor MPTCP,

 MPTCP/tcpcrypt nodes: supports both tcpcrypt and MPTCP but does
 not support the use of tcpcrypt to protect MPTCP.

 The expected behavior is as following:

 a. SMTCP contacts a SMTCP node, SMTCP should be used

 b. SMTCP contacts a MPTCP node, MPTCP should be used

 c. SMTCP contacts a tcpcrypt node, tcpcrypt should be used

 d. SMTCP contacts a MPTCP/tcpcrypt node, not sure what should
 happen... should MPTCP and tcpcrypt be used in a non integrated
 fashion? (not sure if there is enough space in the TCP options
 for this...)

 e. SMTCP contacts a legacy node, TCP should be used.

 In order to achieve, we use the following approach. In the initial
 SYN of the initial 3-way handshake, both the CRYPT/Hello option (3

https://datatracker.ietf.org/doc/html/rfc6824

Bagnulo Expires August 3, 2014 [Page 6]

Internet-Draft SMTCP January 2014

 bytes) plus the MP_CAPABLE option including the initiator's key (12
 bytes) should be sent. This allows supporting b), c) and e) i.e.
 the receiver can discard either of the two options or both of them
 resulting in each of the mentioned cases.

 In order to support case a) (and to distinguish it from case d), we
 need to signal it in an explicit way. I guess the easiest way is to
 use one of the flags C to H in the MP_CAPABLE message. Let's assume
 it is the C(rypt) flag. If the C flag is set and the CRYPT/Hello
 option is present, this means SMTCP (i.e. use tcpcrypt to protect
 MPTCP signaling and data).

6. Concluding remarks

 One main challenge in order to use tcpcrypt to secure MPTCP is the
 option space. There is little room for TCP options and this approach
 would consume most of it, which would prevent the use of other
 options like SACK. One way to address this would be that tcpcrypt is
 changed to send the MAC as part of the data stream rather than an
 option. As tcpcrypt is being discussed, this can be an option.

 A second issue to consider is how this would work with TSO.
 Currently MPTCP is compatible with TSO and it would be important that
 SMPTCP is also compatible.

 Another comment is that it would be possible to secure MPTCP using
 something like TLS opportunistically and transparently to the
 application. This is TBD as an alternative approach.

7. Security Considerations

 This whole document is about securing MPTCP. In future versions of
 the document, this section could include a residual threat analysis.

8. IANA Considerations

 TBD

9. Acknowledgements

 The authors thank ...

10. References

Bagnulo Expires August 3, 2014 [Page 7]

Internet-Draft SMTCP January 2014

10.1. Normative References

 [I-D.bittau-tcp-crypt]
 Bittau, A., Boneh, D., Hamburg, M., Handley, M., Mazieres,
 D., and Q. Slack, "Cryptographic protection of TCP Streams
 (tcpcrypt)", draft-bittau-tcp-crypt-03 (work in progress),
 September 2012.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

10.2. Informative References

 [I-D.bagnulo-mptcp-attacks]
 Bagnulo, M., Paasch, C., Gont, F., Bonaventure, O., and C.
 Raiciu, "Analysis of MPTCP residual threats and possible
 fixes", draft-bagnulo-mptcp-attacks-01 (work in progress),
 October 2013.

 [RFC6181] Bagnulo, M., "Threat Analysis for TCP Extensions for
 Multipath Operation with Multiple Addresses", RFC 6181,
 March 2011.

Author's Address

 Marcelo Bagnulo
 Universidad Carlos III de Madrid
 Av. Universidad 30
 Leganes, Madrid 28911
 SPAIN

 Phone: 34 91 6249500
 Email: marcelo@it.uc3m.es
 URI: http://www.it.uc3m.es

https://datatracker.ietf.org/doc/html/draft-bittau-tcp-crypt-03
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/draft-bagnulo-mptcp-attacks-01
https://datatracker.ietf.org/doc/html/rfc6181
http://www.it.uc3m.es

Bagnulo Expires August 3, 2014 [Page 8]

