
Active Queue Management F. Baker
Internet-Draft R. Pan
Intended status: Informational Cisco Systems
Expires: December 15, 2014 June 13, 2014

On Queuing, Marking, and Dropping
draft-baker-aqm-sfq-implementation-00

Abstract

 This note discusses implementation strategies for coupled queuing and
 mark/drop algorithms.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 15, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Baker & Pan Expires December 15, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft June 2014

Table of Contents

1. Introduction . 2
2. Fair Queuing: Algorithms and History 2
2.1. Generalized Processor Sharing 3
2.1.1. GPS Comparisons: transmission quanta 3
2.1.2. GPS Comparisons: flow definition 4
2.1.3. GPS Comparisons: unit of measurement 5

2.2. GPS Approximations 5
2.2.1. Definition of a queuing algorithm 5
2.2.2. Round Robin Models 6
2.2.3. Calendar Queue Models 7

 2.2.4. Work Conserving Models and Stochastic Fairness
 Queuing . 8

2.2.5. Non Work Conserving Models and Virtual Clock 9
3. Queuing, Marking, and Dropping 10
3.1. Queuing with Tail Mark/Drop 10
3.2. Queuing with CoDel Mark/Drop 10
3.3. Queuing with PIE Mark/Drop 11

4. Conclusion . 12
5. IANA Considerations . 12
6. Security Considerations 12
7. Acknowledgements . 12
8. References . 13
8.1. Normative References 13
8.2. Informative References 13

Appendix A. Change Log . 14
 Authors' Addresses . 14

1. Introduction

 In the discussion of Active Queue Management, there has been
 discussion of the coupling of queue management algorithms such as
 Stochastic Fairness Queuing [SFQ] with mark/drop algorithms such as
 CoDel [I-D.nichols-tsvwg-codel] or PIE [I-D.pan-tsvwg-pie]. In the
 interest of clarifying the discussion, we document possible
 implementation approaches to that, and analyze the possible effects
 and side-effects. The language and model derive from the
 Architecture for Differentiated Services [RFC2475].

2. Fair Queuing: Algorithms and History

 There is extensive history in the set of algorithms collectively
 referred to as "Fair Queuing". The model was initially discussed in
 [RFC0970], which proposed it hypothetically as a solution to the TCP
 Silly Window Syndrome issue in BSD 4.1. The problem was that, due to
 a TCP implementation bug, some senders would settle into sending a
 long stream of very short segments, which unnecessarily consumed

https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc0970

Baker & Pan Expires December 15, 2014 [Page 2]

Internet-Draft June 2014

 bandwidth on TCP and IP headers and occupied short packet buffers,
 thereby disrupting competing sessions. Nagle suggested that if
 packet streams were sorted by their source address and the sources
 treated in a round robin fashion, a sender's effect on end-to-end
 latency and increased loss rate would primarily affect only itself.
 This touched off perhaps a decade of work by various researchers on
 what was and is termed "Fair Queuing," philosophical discussions of
 the meaning of the word "fair," operational reasons that one might
 want a "weighted" or "predictably unfair" queuing algorithm, and so
 on.

2.1. Generalized Processor Sharing

 Conceptually, any Fair Queuing algorithm attempts to implement some
 approximation to the Generalized Processor Sharing [GPS] model.

 The GPS model, in its essence, presumes that a set of identified data
 streams, called "flows", pass through an interface. Each flow has a
 rate when measured over a period of time; A voice session might, for
 example, require 64 KBPS plus whatever overhead is necessary to
 deliver it, and a TCP session might have variable throughput
 depending on where it is in its evolution. The premise of
 Generalized Processor Sharing is that on all time scales, the flow
 occupies a predictable bit rate, so that if there is enough bandwidth
 for the flow in the long term, it also lacks nothing in the short
 term. "All time scales" is obviously untenable in a packet network -
 and even in a traditional TDM circuit switch network - because a
 timescale shorter than he duration of a packet will only see one
 packet at a time. But it provides an ideal for other models to be
 compared against.

 There are a number of attributes of approximations to the GPS model
 that bear operational consideration, including at least the
 transmission quanta, the definition of a "flow", the unit of
 measurement. Implementation algorithms have different practical
 impacts as well.

2.1.1. GPS Comparisons: transmission quanta

 The most obvious comparison between the GPS model and common
 approximations to it is that real world data is not delivered
 uniformly, but in some quantum. The smallest quantum, in a packet
 network, is a packet. But quanta can be larger; for example, in
 video applications it is common to describe data flow in frames per
 second, where a frame describes a picture on a screen or the changes
 made from a previous one. A single video frame is commonly on the
 order of tens of packets. If a codec is delivering thirty frames per
 second, it is conceivable that the packets comprising a frame might

Baker & Pan Expires December 15, 2014 [Page 3]

Internet-Draft June 2014

 be sent as thirty bursts per second, with each burst sent at the
 interface rate of the camera or other sender. Similarly, TCP
 exchanges have an initial window, which might be any number of
 packets; common values are 1, 2, 3, 4, and 10, and there are also
 reports of bursts of 65K bytes at the relevant MSS, which is to say
 about 45 packets in one burst, presumably coming from TCP offload
 engines. After that initial burst, TCP senders commonly send pairs
 of packets, but may send either smaller or larger bursts, and the
 rate at which they send is governed by the arrival rate of
 acknowledgements from the receiver.

2.1.2. GPS Comparisons: flow definition

 An important engineering trade-off relevant to GPS is the definition
 of a "flow". A flow is, by definition, a defined data stream.
 Common definitions include:

 o Packets in a single transport layer session ("microflow"),
 identified by a five-tuple [RFC2990],

 o Packets between a single pair of addresses, identified by a source
 and destination address or prefix,

 o Packets from a single source address or prefix [RFC0970],

 o Packets to a single destination address or prefix,

 o Packets to or from a single subscriber, customer, or peer
 [RFC6057]. In Service Provider operations, this might be a
 neighboring Autonomous System; in broadband, a residential
 customer.

 The difference should be apparent. Consider a comparison between
 sorting by source address or destination address, to pick two
 examples, in the case that a given router interface has N application
 sessions going through it between N/2 local destinations and N remote
 sources. Sorting by source, or in this case by source/destination
 pair, would give each remote peer an upper bound guarantee of 1/N of
 the available capacity, which might be distributed very unevenly
 among the local destinations. Sorting by destination would give each
 local destination an upper bound guarantee of 2/N of the available
 capacity, which might be distributed very unevenly among the remote
 systems and correlated sessions. Who is one fair to? In both cases,
 they deliver equal service by their definition, but that might not be
 someone else's definition.

https://datatracker.ietf.org/doc/html/rfc2990
https://datatracker.ietf.org/doc/html/rfc0970
https://datatracker.ietf.org/doc/html/rfc6057

Baker & Pan Expires December 15, 2014 [Page 4]

Internet-Draft June 2014

2.1.3. GPS Comparisons: unit of measurement

 And finally, there is the question of what is measured for rate. If
 the sole objective is to force packet streams to not dominate each
 other, it is sufficient to count packets. However, if the issue is
 the bit rate of an SLA, one must consider the sizes of the packets
 (the aggregate throughput of a flow, measured in bits or bytes). And
 if predictable unfairness is a consideration, the value must be
 weighted accordingly.

2.2. GPS Approximations

 Carrying the matter further, a queuing algorithm may also be termed
 "Work Conserving" or "Non Work Conserving". A "work conserving"
 algorithm, by definition, is either empty, in which case no attempt
 is being made to dequeue data from it, or contains something, in
 which case it continuously tries to empty the queue. A work
 conserving queue that contains queued data, at an interface with a
 given rate, will deliver data at that rate until it empties. A non-
 work-conserving queue might stop delivering even through it still
 contains data. A common reason for doing this is to impose an
 artificial upper bound on a class of traffic that is lower than the
 rate of the underlying physical interface.

2.2.1. Definition of a queuing algorithm

 In the discussion following, we assume a basic definition of a
 queuing algorithm. A queuing algorithm has, at minimum:

 o Some form of internal storage for the elements kept in the queue,

 o If it has multiple internal classifications,

 * a method for classifying elements,

 * additional storage for the classifier and implied classes,

 o a method for creating the queue,

 o a method for destroying the queue,

 o a method, called "enqueue", for placing packets into the queue or
 queuing system

 o a method, called "dequeue", for removing packets from the queue or
 queuing system

Baker & Pan Expires December 15, 2014 [Page 5]

Internet-Draft June 2014

 There may also be other information or methods, such as the ability
 to inspect the queue. It also often has inspectable external
 attributes, such as the total volume of packets or bytes in queue,
 and may have limit thresholds, such as a maximum number of packets or
 bytes the queue might hold.

 For example, a simple FIFO queue has a linear data structure,
 enqueues packets at the tail, and dequeues packets from the head. It
 might have a maximum queue depth and a current queue depth,
 maintained in packets or bytes.

2.2.2. Round Robin Models

 One class of implementation approaches, generically referred to as
 "Weighted Round Robin", implements the structure of the queue as an
 array or ring of queues associated with flows, for whatever
 definition of a flow is important.

 On enqueue, the enqueue function classifies a packet and places it
 into a simple FIFO sub-queue.

 On dequeue, the sub-queues are searched in round-robin order, and
 when a sub-queue is identified that contains data, removes a
 specified quantum of data from it. That quantum is at minimum a
 packet, but it may be more. If the system is intended to maintain a
 byte rate, there will be memory between searches of the excess
 previously dequeued.

 +-+
 +>|1|
 | +-+
 | |
 | +-+ +-+
 | |1| +>|3|
 | +-+ | +-+
 | | | |
 | +-+ +-+ | +-+
 | |1| +>|2| | |3|
 | +-+ | +-+ | +-+
 | A | A | A
 | | | | | |
 ++--++ ++--++ ++--++
 +->| Q |-->| Q |-->| Q |--+
 | +----+ +----+ +----+ |
 +----------------------------+

 Figure 1: Round Robin Queues

Baker & Pan Expires December 15, 2014 [Page 6]

Internet-Draft June 2014

 If a hash is used as a classifier, the modulus of the hash might be
 used as an array index, selecting the sub-queue that the packet will
 go into. One can imagine other classifiers, such as using a DSCP
 value as an index into an array containing the queue number for a
 flow, or more complex access list implementations.

 In any event, a sub-queue contains the traffic for a flow, and data
 is sent from each sub-queue in succession.

2.2.3. Calendar Queue Models

 Another class of implementation approaches, generically referred to
 as "Weighted Fair Queues" or "Calendar Queue Implementations",
 implements the structure of the queue as an array or ring of queues
 (often called "buckets") associated with time or sequence; Each
 bucket contains the set of packets, which may be null, intended to be
 sent at a certain time or following the emptying of the previous
 bucket. The queue structure includes a look-aside table that
 indicates the current depth (which is to say, the next bucket) of any
 given class of traffic, which might similarly be identified using a
 hash, a DSCP, an access list, or any other classifier. Conceptually,
 the queues each contain zero or more packets from each class of
 traffic. One is the queue being emptied "now"; the rest are
 associated with some time or sequence in the future.

 On enqueue, the enqueue function classifies a packet and determines
 the current depth of that class, with a view to scheduling it for
 transmission at some time or sequence in the future. If the unit of
 scheduling is a packet and the queuing quantum is one packet per sub-
 queue, a burst of packets arrives in a given flow, and at the start
 the flow has no queued data, the first packet goes into the "next"
 queue, the second into its successor, and so on; if there was some
 data in the class, the first packet in the burst would go into the
 bucket pointed to by the look-aside table. If the unit of scheduling
 is time, the explanation in Section 2.2.5 might be simplest to
 follow, but the bucket selected will be the bucket corresponding to a
 given transmission time in the future. A necessary side-effect,
 memory being finite, is that there exist a finite number of "future"
 buckets. If enough traffic arrives to cause a class to wrap, one is
 forced to drop something (tail-drop).

 On dequeue, the buckets are searched at their stated times or in
 their stated sequence, and when a bucket is identified that contains
 data, removes a specified quantum of data from it and, by extension,
 from the associated traffic classes. A single bucket might contain
 data from a number of classes simultaneously.

Baker & Pan Expires December 15, 2014 [Page 7]

Internet-Draft June 2014

 +-+
 +>|1|
 | +-+
 | |
 | +-+ +-+
 | |2| +>|2|
 | +-+ | +-+
 | | | |
 | +-+ | +-+ +-+
 | |3| | |1| +>|1|
 | +-+ | +-+ | +-+
 | A | A | A
 | | | | | |
 ++--++ ++--++ ++--++
 "now"+->| Q |-->| Q |-->| Q |-->...
 +----+ +----+ +----+
 A A A
 |3 |2 |1
 +++++++++++++++++++++++
 |||| Flow ||||
 +++++++++++++++++++++++

 Figure 2: Calendar Queue

 In any event, a sub-queue contains the traffic for a point in time or
 a point in sequence, and data is sent from each sub-queue in
 succession. If sub-queues are associated with time, an interesting
 end case develops: If the system is draining a given sub-queue, and
 the time of the next sub-queue arrives, what should the system do?
 One potentially valid line of reasoning would have it continue
 delivering the data in the present queue, on the assumption that it
 will likely trade off for time in the next. Another potentially
 valid line of reasoning would have it discard any waiting data in the
 present queue and move to the next.

2.2.4. Work Conserving Models and Stochastic Fairness Queuing

 McKenney's Stochastic Fairness Queuing [SFQ] is an example of a work
 conserving algorithm. This algorithm measures packets, and considers
 a "flow" to be an equivalence class of traffic defined by a hashing
 algorithm over the source and destination IPv4 addresses. As packets
 arrive, the enqueue function performs the indicated hash and places
 the packet into the indicated sub-queue. The dequeue function
 operates as described in Section 2.2.2; sub-queues are inspected in
 round-robin sequence, and if they contain one or more packets, a
 packet is removed.

Baker & Pan Expires December 15, 2014 [Page 8]

Internet-Draft June 2014

 Shreedhar's Deficit Round Robin [DRR] model modifies the quanta to
 bytes, and deals with variable length packets. A sub-queue
 descriptor contains a waiting quantum (the amount intended to be
 dequeued on the previous dequeue attempt that was not satisfied), a
 per-round quantum (the sub-queue is intended to dequeue a certain
 number of bytes each round), and a maximum to permit (some multiple
 of the MTU). In each dequeue attempt, the dequeue method sets the
 waiting quantum to the smaller of the maximum quantum and the sum of
 the waiting and incremental quantum. It then dequeues up to the
 waiting quantum, in bytes, of packets in the queue, and reduces the
 waiting quantum by the number of bytes dequeued. Since packets will
 not normally be exactly the size of the quantum, some dequeue
 attempts will dequeue more than others, but they will over time
 average the incremental quantum per round if there is data present.

 McKenny or Shreedhar's models could be implemented as described in
Section 2.2.3. The weakness of a WRR approach is the search time

 expended when the queuing system is relatively empty, which the
 calendar queue model obviates.

2.2.5. Non Work Conserving Models and Virtual Clock

 Zhang's Virtual Clock [VirtualClock] is an example of a non-work-
 conserving algorithm. It is trivially implemented as described in

Section 2.2.3. It associates buckets with intervals in time, with
 durations on the order of microseconds to tens of milliseconds. Each
 flow is assigned a rate in bytes per interval. The flow entry
 maintains a point in time the "next" packet in the flow should be
 scheduled.

 On enqueue, the method determines whether the "next schedule" time is
 "in the past"; if so, the packet is scheduled "now", and if not, the
 packet is scheduled at that time. It then calculates the new "next
 schedule" time, as the current "next schedule" time plus the length
 of the packet divided by the rate; if the resulting time is also in
 the past, the "next schedule" time is set to "now", and otherwise to
 the calculated time. As noted in Section 2.2.3, there is an
 interesting point regarding "too much time in the future"; if a
 packet is scheduled too far into the future, it may be marked or
 dropped in the AQM procedure, and if it runs beyond the end of the
 queuing system, may be defensively tail dropped.

 On dequeue, the bucket associated with the time "now" is inspected.
 If it contains a packet, the packet is dequeued and transmitted. If
 the bucket is empty and the time for the next bucket has not arrived,
 the system waits, even if there is a packet in the next bucket. As
 noted in Section 2.2.3, there is an interesting point regarding the
 queue associated with "now". If a subsequent bucket, even if it is

Baker & Pan Expires December 15, 2014 [Page 9]

Internet-Draft June 2014

 actually empty, would be delayed by the transmission of a packet, one
 could imagine marking the packet ECN CE [RFC3168] [RFC6679] or
 dropping the packet.

3. Queuing, Marking, and Dropping

 Queuing, marking, and dropping are integrated in any system that has
 a queue. If nothing else, as memory is finite, a system has to drop
 as discussed in Section 2.2.3 and Section 2.2.5 in order to protect
 itself. However, host transports interpret drops as signals, so AQM
 algorithms use that as a mechanism to signal.

 It is useful to think of the effects of queuing as a signal as well.
 In TCP, SCTP, and protocols like them, delay experienced by a packet
 can be used to guess the rate available at a given time on a path
 even though the characteristics of the path and competing traffic
 remain unknown [PacketPair]. The mathematical side of that is that
 if two packets were sent at the same time, the ratio of the size of
 the second packet divided by the difference in arrival times of the
 two packets cannot exceed the capacity of the link (although it may
 well be lower). From an engineering perspective, the receiver sends
 acknowledgements as data is received, so the arrival of
 acknowledgements at the sender paces the sender at approximately the
 average rate it is able to achieve through the network. This is true
 even if the sender keeps an arbitrarily large amount of data stored
 in network queues, and is the basis for delay-based congestion
 control algorithms. So, delaying a packet momentarily in order to
 permit another session to improve its operation has the effect of
 signaling a slightly lower capacity to the sender.

3.1. Queuing with Tail Mark/Drop

 In the default case, in which a FIFO queue is used with defensive
 tail-drop only, the effect is therefore to signal to the sender in
 two ways:

 o Ack Clocking, pacing the sender to send at approximately the rate
 it can deliver data to the receiver, and

 o Defensive loss, when a sender sends faster than available capacity
 (such as by probing network capacity when fully utilizing that
 capacity) and overburdens a queue.

3.2. Queuing with CoDel Mark/Drop

 In any case wherein a queuing algorithm is used along with CoDel
 [I-D.nichols-tsvwg-codel], the sequence of events is that a packet is
 time-stamped, enqueued, dequeued, compared to a subsequent reading of

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc6679

Baker & Pan Expires December 15, 2014 [Page 10]

Internet-Draft June 2014

 the clock, and then acted on, whether by dropping it, marking and
 forwarding it, or simply forwarding it. This is to say that the only
 drop algorithm inherent in queuing is the defensive drop when the
 queue's resources are overrun. However, the intention of marking or
 dropping is to signal to the sender much earlier, when a certain
 amount of delay has been observed,. The CoDel algorithm is completely
 separate from the queuing algorithm. Hence, in a FIFO+CoDel,
 SFQ+CoDel, or Virtual Clock+CoDel implementation, the queuing
 algorithm is completely separate from the AQM algorithm. Using them
 in series results in four signals to the sender:

 o Ack Clocking, pacing the sender to send at approximately the rate
 it can deliver data to the receiver through a queue,

 o Lossless signaling that a certain delay threshold has been
 reached, if ECN [RFC3168][RFC6679] is in use,

 o Intentional signaling via loss that a certain delay threshold has
 been reached, if ECN is not in use, and

 o Defensive loss, when a sender sends faster than available capacity
 (such as by probing network capacity when fully utilizing that
 capacity) and overburdens a queue.

3.3. Queuing with PIE Mark/Drop

 In any case wherein a queuing algorithm is used along with PIE
 [I-D.pan-tsvwg-pie], RED, or other such algorithms, the sequence of
 events is that a queue is inspected, a packet is dropped, marked, or
 left unchanged, enqueued, dequeued, compared to a subsequent reading
 of the clock, and then forwarded on. This is to say that the AQM
 Mark/Drop Algorithm precedes enqueue; if it has not been effective
 and as a result the queue is out of resources anyway, the defensive
 drop algorithm steps in, and failing that, the queue operates in
 whatever way it does. Hence, in a FIFO+PIE, SFQ+PIE, or Virtual
 Clock+PIE implementation, the queuing algorithm is again completely
 separate from the AQM algorithm. Using them in series results in
 four signals to the sender:

 o Ack Clocking, pacing the sender to send at approximately the rate
 it can deliver data to the receiver through a queue,

 o Lossless signaling that a queue depth that corresponds to a
 certain delay threshold has been reached, if ECN is in use,

 o Intentional signaling via loss that a queue depth that corresponds
 to a certain delay threshold has been reached, if ECN is not in
 use, and

https://datatracker.ietf.org/doc/html/rfc3168

Baker & Pan Expires December 15, 2014 [Page 11]

Internet-Draft June 2014

 o Defensive loss, when a sender sends faster than available capacity
 (such as by probing network capacity when fully utilizing that
 capacity) and overburdens a queue.

4. Conclusion

 To summarize, in Section 2, implementation approaches for several
 classes of queueing algorithms were explored. Queuing algorithms
 such as SFQ, Virtual Clock, and FlowQueue-Codel
 [I-D.hoeiland-joergensen-aqm-fq-codel] have value in the network, in
 that they delay packets to enforce a rate upper bound or to permit
 competing flows to compete more effectively. ECN Marking and loss
 are also useful signals if used in a manner that enhances TCP/SCTP
 operation or restrains unmanaged UDP data flows.

 It is, however, incorrect to discuss a scheduler and a mark/drop
 algorithm working together as a single algorithm, even if they are
 coded that way and even if there might be optimizations that can be
 done between the two. Conceptually, they operate in series, as
 discussed in Section 3. The observed effects also differ; while
 defensive loss protects the intermediate system and provides a
 signal, AQM mark/drop works to reduce mean latency, and the
 scheduling of flows works to modify flow interleave and
 acknowledgement pacing. Certain features like flow isolation are
 provided by fair queueing related designs, not the effect of the mark
 /drop algorithm.

5. IANA Considerations

 This memo asks the IANA for no new parameters.

6. Security Considerations

 This memo adds no new security issues; it observes on implementation
 strategies for Diffserv implementation.

7. Acknowledgements

 This note grew out of, and is in response to, mailing list
 discussions in AQM, in which some have pushed an algorithm the
 compare to AQM marking and dropping algorithms, but which includes
 SFQ. The authors think highly of queuing algorithms that can ensure
 certain behaviors, but in this context believe that coupling queuing
 and marking or dropping is unwarranted and masks issues with the mark
 /drop algorithm in question.

Baker & Pan Expires December 15, 2014 [Page 12]

Internet-Draft June 2014

8. References

8.1. Normative References

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, December 1998.

8.2. Informative References

 [DRR] Microsoft Corporation and Washington University in St.
 Louis, "Efficient fair queueing using deficit round
 robin", ACM SIGCOMM 1995, October 1995,
 <http://ieeexplore.ieee.org/stamp/

stamp.jsp?tp=&arnumber=502236>.

 [GPS] Xerox PARC, University of California, Berkeley, and Xerox
 PARC, "Analysis and simulation of a fair queueing
 algorithm", ACM SIGCOMM 1989, September 1989,
 <http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/

89/fq.pdf>.

 [I-D.hoeiland-joergensen-aqm-fq-codel]
 Hoeiland-Joergensen, T., McKenney, P., Taht, D., Gettys,
 J., and E. Dumazet, "FlowQueue-Codel", draft-hoeiland-

joergensen-aqm-fq-codel-00 (work in progress), March 2014.

 [I-D.nichols-tsvwg-codel]
 Nichols, K. and V. Jacobson, "Controlled Delay Active
 Queue Management", draft-nichols-tsvwg-codel-01 (work in
 progress), February 2013.

 [I-D.pan-tsvwg-pie]
 Pan, R., Natarajan, P., Piglione, C., and M. Prabhu, "PIE:
 A Lightweight Control Scheme To Address the Bufferbloat
 Problem", draft-pan-tsvwg-pie-00 (work in progress),
 December 2012.

 [PacketPair]
 University of California Berkeley, "Congestion Control in
 Computer Networks", UC Berkeley TR-654 1991, September
 1991, <http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/

data/91/ch4.pdf>.

 [RFC0970] Nagle, J., "On packet switches with infinite storage", RFC
970, December 1985.

https://datatracker.ietf.org/doc/html/rfc2475
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=502236
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=502236
http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/89/fq.pdf
http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/89/fq.pdf
https://datatracker.ietf.org/doc/html/draft-hoeiland-joergensen-aqm-fq-codel-00
https://datatracker.ietf.org/doc/html/draft-hoeiland-joergensen-aqm-fq-codel-00
https://datatracker.ietf.org/doc/html/draft-nichols-tsvwg-codel-01
https://datatracker.ietf.org/doc/html/draft-pan-tsvwg-pie-00
http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/91/ch4.pdf
http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/91/ch4.pdf
https://datatracker.ietf.org/doc/html/rfc970
https://datatracker.ietf.org/doc/html/rfc970

Baker & Pan Expires December 15, 2014 [Page 13]

Internet-Draft June 2014

 [RFC2990] Huston, G., "Next Steps for the IP QoS Architecture", RFC
2990, November 2000.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP", RFC

3168, September 2001.

 [RFC6057] Bastian, C., Klieber, T., Livingood, J., Mills, J., and R.
 Woundy, "Comcast's Protocol-Agnostic Congestion Management
 System", RFC 6057, December 2010.

 [RFC6679] Westerlund, M., Johansson, I., Perkins, C., O'Hanlon, P.,
 and K. Carlberg, "Explicit Congestion Notification (ECN)
 for RTP over UDP", RFC 6679, August 2012.

 [SFQ] SRI International, "Stochastic Fairness Queuing", IEEE
 Infocom 1990, June 1990, <http://www2.rdrop.com/~paulmck/

scalability/paper/sfq.2002.06.04.pdf>.

 [VirtualClock]
 Xerox PARC, "Virtual Clock", ACM SIGCOMM 1990, September
 1990,
 <http://www.cs.ucla.edu/~lixia/papers/90sigcomm.pdf>.

Appendix A. Change Log

 Initial Version: June 2014

Authors' Addresses

 Fred Baker
 Cisco Systems
 Santa Barbara, California 93117
 USA

 Email: fred@cisco.com

 Rong Pan
 Cisco Systems
 Milpitas, California 95035
 USA

 Email: ropan@cisco.com

https://datatracker.ietf.org/doc/html/rfc2990
https://datatracker.ietf.org/doc/html/rfc2990
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc6057
https://datatracker.ietf.org/doc/html/rfc6679
http://www2.rdrop.com/~paulmck/scalability/paper/sfq.2002.06.04.pdf
http://www2.rdrop.com/~paulmck/scalability/paper/sfq.2002.06.04.pdf
http://www.cs.ucla.edu/~lixia/papers/90sigcomm.pdf

Baker & Pan Expires December 15, 2014 [Page 14]

