
Internet-Draft Mark Baker
 November 2001

An Abstract Model for HTTP Resource State
draft-baker-http-resource-state-model-01.txt

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire in May, 2002.

Abstract

 The documented semantics of HTTP 1.1 methods, in particular POST,
 are not well understood, as demonstrated by debates such as whether
 IPP should have used POST or a new method, how to properly bind SOAP
 to HTTP, and the ever more common use of POST for tunneling new
 protocols such as XML-RPC. This note attempts to define an abstract
 model for the state of HTTP URI scheme addressable resources
 consistent with HTTP 1.1, but hopefully more descriptive.

1. Introduction

 The debate about the proper use of HTTP 1.1 [HTTP] and POST has been
 ongoing for quite some time. Public debate has yielded many
 interesting discussions and positions on the topic. Some of these
 include;

 o "Don't Go Postal[...]", an objection to the use of POST by IPP
 archived at
 <http://www.ics.uci.edu/pub/ietf/http/draft-cohen-http-ext-postal-00.txt>
 and "The Use of Post", a response to same, archived at
 <http://www.ics.uci.edu/pub/ietf/http/draft-debry-http-usepost-00.txt>

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
http://www.ics.uci.edu/pub/ietf/http/draft-cohen-http-ext-postal-00.txt
http://www.ics.uci.edu/pub/ietf/http/draft-debry-http-usepost-00.txt

 o Jim Whitehead's list of HTTP-extending possibilities
 <http://www.xent.com/FoRK-archive/feb98/0238.html>, and the
 minutes of a WebDAV meeting on the topic;
 <http://www.ics.uci.edu/pub/ietf/webdav/paloalto/minutes.html>
 o Discussion on the xml-dist-app mailing list about the correct
 HTTP response code to use for SOAP 1.2 faults, archived at;
 <http://lists.w3.org/Archives/Public/xml-dist-app/2001Jun/thread.html#15>
 o "On the use of HTTP as a Substrate for Other Protocols" an expired
 Internet-Draft (currently) available at;
 <http://www.ietf.org/internet-drafts/draft-moore-using-http-01.txt>
 and a response archived at;
 <http://lists.w3.org/Archives/Public/xml-dist-app/2000Dec/0061.html>

 This note aims to define an abstract model for the state of
 resources identified by HTTP URIs, that is consistent with the
 semantics of the HTTP methods defined in [HTTP], in the hopes that
 it might help better explain the meaning of the HTTP methods with a
 holistic approach.

2. Goals and Non-goals

 The primary goal to be met by this model is that it be consistent
 with the semantics of HTTP 1.1 as defined in [HTTP]. By
 "consistent", it is meant that it can not be used to describe
 invalid states or state transitions of an HTTP addressable resource.

 It is hoped that this model will be more or less complete with
 respect to HTTP 1.1 semantics, but it is explicitly a non-goal that
 it be so. By "complete", it is meant that the model be capable of
 describing all possible states or state transitions of any HTTP
 addressable resource.

3. The Model

 In this model, as with software component models such as OpenDoc
 (<http://www-4.ibm.com/software/ad/opendoc/>), Java Beans v1.2 (aka
 BeanContext, <http://java.sun.com/products/javabeans/>), Linda
 (<http://www.cs.yale.edu/Linda/linda.html>) (and other tuple space
 systems), all resources are modeled as containers for state.

 The pictorial representation of an HTTP addressable resource is as
 follows.

 R
 +-----+-------------+
 | | |
 | +-+-+ +---+ |
 POST <>-+-<>| P |<-->| S | |
 | +---+ | T | |
 | | A |--+--> GET
 PUT >--+----------->| T | |

http://www.xent.com/FoRK-archive/feb98/0238.html
http://www.ics.uci.edu/pub/ietf/webdav/paloalto/minutes.html
http://lists.w3.org/Archives/Public/xml-dist-app/2001Jun/thread.html#15
http://www.ietf.org/internet-drafts/draft-moore-using-http-01.txt
http://lists.w3.org/Archives/Public/xml-dist-app/2000Dec/0061.html
http://www-4.ibm.com/software/ad/opendoc/
http://java.sun.com/products/javabeans/
http://www.cs.yale.edu/Linda/linda.html

 | | E | |
 | +---+ |
 | |
 +-------------------+

 The perimeter of the resource is entirely opaque. Access to the
 state is provided only through the HTTP method set (shown here are
 the methods that operate on the resource directly). Encapsulated
 within the perimeter is the state of the resource, and a POST
 processing block "P" whose role is to take action based upon the
 content that is POSTed to the resource. Possible actions can
 include modifying the state of the resource, the creation of new
 subordinate resources, and manipulation of existing subordinate
 resources (or some combination thereof). The latter two are
 represented by "R" in the diagram.

3.1 Types of resources

 The following is a non-exhaustive list of some of the different types
 of HTTP addressable resources, when classified by the way in which
 changes in state occur.

3.1.1 Read only resources

 Many HTTP addressable resources today, such as the vast majority of
 HTML web pages, expose only the GET method. These resources are
 immutable with respect to HTTP clients on the Web, as no means is
 provided by which one may manipulate the state.

 +-------------------+
 | |
 | +---+ |
 | | S | |
 | | T | |
 | | A |--+--> GET
 | | T | |
 | | E | |
 | +---+ |
 | |
 +-------------------+

3.1.2 Simple state holding resources

 These resources use the PUT method to explicitly set the state
 of the resource to the state represented in the body of the
 invocation. GET is used to subsequently retrieve that state.

 +-------------------+
 | |
 | +---+ |
 | | S | |

 | | T | |
 | | A |--+--> GET
 PUT >--+----------->| T | |
 | | E | |
 | +---+ |
 | |
 +-------------------+

 Should the resource not exist, but the web server permit it, the
 invocation may result in the resource being created. If this is
 the case, then the initial state of the resource will be that
 provided in the body of the PUT invocation. Any existing state
 that may have existed before the PUT, will be unavailable for
 access through further invocation of HTTP methods on this same
 resource.

3.1.3 Composite state resources

 Resources exposing POST, when viewed through this model, and due to
 the definition of POST in [HTTP] section 9.5 as "accepting as a
 subordinate", present the notion of the state of the resource being
 composite; a function of the previous state of the resource, as well
 as the new resource representation being POSTed.

 In this model, this is represented through the relationship of "P"
 with the state of the resource. While the job of PUT is to set the
 state explicitly, POST changes the state relative to the current
 state, where the relative change is determined by "P".

 R
 +-----+-------------+
 | | |
 | +-+-+ +---+ |
 POST <>-+-<>| P |<-->| S | |
 | +---+ | T | |
 | | A |--+--> GET
 | | T | |
 | | E | |
 | +---+ |
 | |
 +-------------------+

3.1.3.1 Identity-preserving composite state resources

 A specialized type of "composite state resource" described in
section 3.1.3, this resource has the additional property that "P"

 assigns a new identity to the representation of the resource being
 POSTed, while making those resources available through "R".

 Pictorially, this is identical to 3.1.3. The sole semantic
 difference being that upon POSTing of the content, a 201 (Created)

 response status is returned, with a Location header value being the
 URI of the newly created resource.

 Bulletin boards or newsgroups are good examples of this type of
 resource, as they preserve the identity of the messages POSTed to
 them, thereby making them individually accessible by users of the
 bulletin board.

3.1.4 Processing resources

 Not all resources exposing the POST method need take full advantage
 of the expressiveness of the composite state view. Some, like
 virtually all processors of POSTed HTML forms in use today, are
 content to maintain no state themselves (thereby making GET
 unnecessary), but instead simply provide their functionality through
 the immediate effect of processing the form and returning the results
 of that processing (with the possibility of creating subordinate
 resources via "R", though that is also not in common use).

 R
 +-----+-------------+
 | | |
 | +-+-+ |
 POST <>-+-<>| P | |
 | +---+ |
 | |
 | |
 | |
 | |
 | |
 +-------------------+

4. Comparison with existing method definitions

 The meaning of GET and PUT are well understood. The view of them
 implicit in this model is believed to be clearly consistent with the
 definition in [HTTP]. That is not the case for POST, so this
 section will compare the authoritative definition with the one
 suggested by this model.

4.1. POST

 The definition of POST in [HTTP] section 9.5 describes four
 functions that POST is meant to provide;

 "- Annotation of existing resources;

 - Posting a message to a bulletin board, newsgroup, mailing list,
 or similar group of articles;

 - Providing a block of data, such as the result of submitting a
 form, to a data-handling process;

 - Extending a database through an append operation."

 The first, annotation, aims to augment the existing state of a
 resource with an annotated "note". For example, one might annotate
 an editorial with a comment. This would be represented in the
 composite state model as adding the POSTed comment to the resource.
 This may happen with or without the granting of that annotation
 a new identity.

 The second function above, of posting a message to a forum, can be
 easily described with this model. The forum, be it a bulletin board,
 a mailing list, or similar, is a resource whose state is comprised of
 all articles that have been posted to it (and perhaps other
 information). Posting a new message to that resource augments its
 existing state with the new message. This is likely to be done in an
 identity-preserving manner, as described in section 3.1.3.1.

 The third function is described by either section 3.1.4 (if there
 is no state maintained as a result of the processing), or by
 sections 3.1.3 or 3.1.3.1, should state be maintained.

 The fourth function, assuming "append" means, in the case of a
 relational database, to add a new table, is similarly described with
 the database as a container for tables. A new table is added
 to the existing set of tables (the state of that container), not as a
 replacement, hence the need for POST rather than PUT.

5. Author's Address

 Mark Baker
 Planetfred Inc.
 44 Byward Market, Suite 240
 Ottawa, Ontario, CANADA. K1N 7A2
 tel:+1-613-795-1818
 mailto:mbaker@planetfred.com

6. Acknowledgements

 The author would like to thank the following for their suggestions
 and corrections; Mike Dierken, Jeff Mogul, Mark Nottingham.

7. References

[HTTP] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

Appendix A. Changes

-01; added ascii art. Found that I needed to simplify the model to make
a reasonably simple diagram, so that worked out well despite requiring

https://datatracker.ietf.org/doc/html/rfc2616

a rewrite of much of the content. Added a section about consistency vs.
completeness.

