
Network Working Group P. Balasubramanian
Internet-Draft Y. Huang
Intended status: Informational M. Olson
Expires: January 9, 2020 Microsoft
 July 8, 2019

HyStart++: Modified Slow Start for TCP
draft-balasubramanian-tcpm-hystartplusplus-00

Abstract

 This experimental memo describes HyStart++, a simple modification to
 the slow start phase of TCP congestion control algorithms. HyStart++
 combines the use of one variant of HyStart and Limited Slow Start
 (LSS) to prevent overshooting of the ideal sending rate value, while
 also mitigating poor performance which can result from false
 positives when HyStart is used alone. This memo also describes the
 details of the current implementation in the Windows operating
 system.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Balasubramanian, et al. Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft HyStart++ July 2019

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. HyStart++ Algorithm . 3
3.1. Use of HyStart Delay Increase and Limited Slow Start . . 3
3.2. Algorithm Details . 3
3.3. Constant used and tuning 4

4. Security Considerations 5
5. IANA Considerations . 5
6. References . 5
6.1. Normative References 5
6.2. Informative References 5

 Authors' Addresses . 6

1. Introduction

 [RFC0793] and [RFC5681] describe the slow start mechanism for TCP.
 The slow start algorithm is used when congestion window (cwnd) is
 less than the slow start threshold (ssthresh). During slow start, a
 TCP increments cwnd by at most SMSS bytes. In the absence of packet
 loss signals, slow start effectively doubles the congestion window
 each round trip time.

 While traditional TCP slow start can ramp up very quickly, it
 frequently overshoots the ideal sending rate and causes a lot of
 unnecessary packet drops. TCP has several mechanisms for loss
 recovery, but they are only effective for moderate loss. When these
 techniques are unable to recover lost packets, a last-resort
 retransmission timeout (RTO) is used to trigger packet recovery. In
 most operating systems, the minimum RTO is set to a large value (200
 ms or 300ms) to prevent spurious timeouts. This results in a long
 idle time which drastically impairs flow completion times.

 HyStart++ adds delay increase as a signal to exit slow start before
 any packet loss occurs. This is one of two algorithms specified in
 [HyStart]. After the HyStart delay algorithm finds an exit point,
 LSS is used for further congestion window increases until the first
 packet loss occurs.

 This document describes HyStart++ as implemented in the Microsoft
 Windows operating system. HyStart++ is widely deployed on the public
 Internet. A precise documentation of running code enables follow-up

https://datatracker.ietf.org/doc/html/rfc5681

Balasubramanian, et al. Expires January 9, 2020 [Page 2]

Internet-Draft HyStart++ July 2019

 IETF Experimental or Standards Track RFCs. It also enables other
 implementations and sharing of results for various workloads.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. HyStart++ Algorithm

3.1. Use of HyStart Delay Increase and Limited Slow Start

 [HyStart] specifies two algorithms (a "Delay Increase" algorithm and
 an "Inter-Packet Arrival" algorithm) to be run in parallel to detect
 that the sending rate has reached capacity. In practice, the Inter-
 Packet Arrival algorithm does not perform well and is not able to
 detect congestion early, primarily due to ACK compression. The idea
 of the Delay Increase algorithm is to look for RTT spikes, which
 suggest that the bottleneck buffer is filling up.

 After the HyStart "Delay Increase" algorithm triggers an exit from
 slow start, LSS (described in [RFC3742]) is used to increase Cwnd
 until the first packet loss occurs. LSS is used because the HyStart
 exit is often premature as a result of RTT fluctuations or transient
 queue buildup. LSS grows the cwnd fast but much slower than
 traditional slow start. LSS helps avoid massive packet losses and
 subsequent time spent in loss recovery or retransmission timeout.

3.2. Algorithm Details

 A round is chosen to be approximately the Round-Trip Time (RTT).
 Round can be approximated using sequence numbers as follows:

 Define windowEnd as a sequence number initialize to SND.UNA

 When windowEnd is ACKed, the current round ends and windowEnd is
 set to SND.NXT

 At the start of each round during slow start:

 lastRoundMinRTT = currentRoundMinRTT

 currentRoundMinRTT = infinity

 For each arriving ACK in slow start, where N is the number of
 previously unacknowledged bytes acknowledged in the arriving ACK:

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3742

Balasubramanian, et al. Expires January 9, 2020 [Page 3]

Internet-Draft HyStart++ July 2019

 Update the cwnd

 cwnd = cwnd + min (N, SMSS)

 Keep track of minimum observed RTT.

 currentRoundMinRTT = min(currentRoundMinRTT, currRTT)

 where currRTT is the measured RTT based on the incoming ACK

 For rounds where cwnd is greater than or equal to MIN_SSTHRESH,
 check if delay increase triggers slow start exit

 if (cwnd is >= MIN_SSTHRESH)

 Eta = clamp(MIN_ETA, currentRoundMinRTT / 8, MAX_ETA)

 if (currentRoundMinRTT >= (lastRoundMinRTT + Eta))

 exit slow start and enter LSS

 For each arriving ACK in LSS, where N is the number of previously
 unacknowledged bytes acknowledged in the arriving ACK:

 K = cwnd / (LSS_DIVISOR * ssthresh)

 cwnd += N / K

 HyStart++ ends when cwnd exceeds ssthresh or when congestion is
 observed.

3.3. Constant used and tuning

 The Windows operating system implementation of HyStart++ uses the
 following constants:

 MIN_SSTHRESH = 16

 MIN_ETA = 4 msec

 MAX_ETA = 16 msec

 LSS_DIVISOR = 0.25

 An implementation MAY experiment with these constants and tune them
 for different network characteristics. Windows operating system
 implementation uses the same values for all connections.

Balasubramanian, et al. Expires January 9, 2020 [Page 4]

Internet-Draft HyStart++ July 2019

 An implementation MAY choose to use HyStart++ for all slow starts
 including the ones post a retransmission timeout, or a long idle
 period. The Windows operating system implementation uses HyStart++
 only for the initial slow start and uses traditional slow start for
 subsequent ones. This is acceptable because subsequent slow starts
 will use the discovered ssthresh value to exit slow start.

4. Security Considerations

 HyStart++ enhances slow start and inherits the general security
 considerations discussed in [RFC5681].

5. IANA Considerations

 This document has no actions for IANA.

6. References

6.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3742] Floyd, S., "Limited Slow-Start for TCP with Large
 Congestion Windows", RFC 3742, DOI 10.17487/RFC3742, March
 2004, <https://www.rfc-editor.org/info/rfc3742>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

6.2. Informative References

 [HyStart] Ha, S. and I. Ree, "Hybrid Slow Start for High-Bandwidth
 and Long-Distance Networks", DOI 10.1145/1851182.1851192,
 International Workshop on Protocols for Fast Long-
 Distance Networks, March 2010,
 <https://doi.org/10.1016/j.comnet.2011.01.014>.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3742
https://www.rfc-editor.org/info/rfc3742
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://doi.org/10.1016/j.comnet.2011.01.014

Balasubramanian, et al. Expires January 9, 2020 [Page 5]

Internet-Draft HyStart++ July 2019

Authors' Addresses

 Praveen Balasubramanian
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 USA

 Phone: +1 425 538 2782
 Email: pravb@microsoft.com

 Yi Huang
 Microsoft

 Phone: +1 425 703 0447
 Email: huanyi@microsoft.com

 Matt Olson
 Microsoft

 Phone: +1 425 538 8598
 Email: maolson@microsoft.com

Balasubramanian, et al. Expires January 9, 2020 [Page 6]

