
Network Working Group N. Banks
Internet-Draft Microsoft Corporation
Intended status: Experimental December 23, 2020
Expires: June 26, 2021

QUIC Performance
draft-banks-quic-performance-00

Abstract

 The QUIC performance protocol provides a simple, general-purpose
 protocol for testing the performance characteristics of a QUIC
 implementation. With this protocol a generic server can support any
 number of client-driven performance tests and configurations.
 Standardizing the performance protocol allows for easy comparisons
 across different QUIC implementations.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 26, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Banks Expires June 26, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft QUIC-PERF December 2020

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Terms and Definitions 3

2. Specification . 3
2.1. Protocol Negotiation 3
2.2. Configuration . 3
2.3. Streams . 3
2.3.1. Encoding Server Response Size 4
2.3.2. Bidirectional vs Unidirectional Streams 4

3. Example Performance Scenarios 4
3.1. Single Connection Bulk Throughput 4
3.2. Requests Per Second 5
3.3. Handshakes Per Second 6
3.4. Throughput Fairness Index 6
3.5. Maximum Number of Idle Connections 7

4. Things to Note . 7
4.1. What Data Should be Sent? 7
4.2. Ramp up Congestion Control or Not? 7
4.3. Disabling Encryption 7

5. Security Considerations 8
6. IANA Considerations . 8
7. Normative References . 8

 Author's Address . 8

1. Introduction

 The various QUIC implementations are still quite young and not
 exhaustively tested for many different performance heavy scenarios.
 Some have done their own testing, but many are just starting this
 process. Additionally, most only test the performance between their
 own client and server. The QUIC performance protocol aims to
 standardize the performance testing mechanisms. This will hopefully
 achieve the following:

 o Remove the need to redesign a performance test for each QUIC
 implementation.

 o Provide standard test cases that can produce performance metrics
 that can be easily compared across different configurations and
 implementations.

 o Allow for easy cross-implementation performance testing.

Banks Expires June 26, 2021 [Page 2]

Internet-Draft QUIC-PERF December 2020

1.1. Terms and Definitions

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Specification

 The sections below describe the mechanisms used by a client to
 connect to a QUIC perf server and execute various performance
 scenarios.

2.1. Protocol Negotiation

 The ALPN used by the QUIC performance protocol is "perf". It can be
 used on any UDP port, but UDP port 443 is used by default, if no
 other port is specified. No SNI is required to connect, but may be
 optionally provided if the client wishes.

2.2. Configuration

 TODO - Possible options: use the first stream to exchange
 configurations data OR use a custom transport parameter.

2.3. Streams

 The performance protocol is primarily centered around sending and
 receiving data. Streams are the primary vehicle for this. All
 performance tests are client-driven:

 o The client opens a stream.

 o The client encodes the size of the requested server response.

 o The client sends any data it wishes to.

 o The client cleanly closes the stream with a FIN.

 When a server receives a stream does the following:

 o The server accepts the new stream.

 o The server processes the encoded response size.

 o The server drains the rest of the client data.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Banks Expires June 26, 2021 [Page 3]

Internet-Draft QUIC-PERF December 2020

 o The server then sends any response payload that was requested.

 Note - Should the server wait for FIN before replying?

2.3.1. Encoding Server Response Size

 Every stream opened by the client uses the first 8 bytes of the
 stream data to encode a 64-bit unsigned integer in network byte order
 to indicate the length of data the client wishes the server to
 respond with. An encoded value of zero is perfectly legal, and a
 value of MAX_UINT64 (0xFFFFFFFFFFFFFFFF) is practically used to
 indicate an unlimited server response. The client may then cancel
 the transfer at its convenience with a STOP_SENDING frame.

 On the server side, any stream that is closed before all 8 bytes are
 received should just be ignored, and gracefully closed on its end (if
 applicable).

2.3.2. Bidirectional vs Unidirectional Streams

 When a client uses a bidirectional stream to request a response
 payload from the server, the server sends the requested data on the
 same stream. If no data is requested by the client, the server
 merely closes its side of the stream.

 When a client uses a unidirectional stream to request a response
 payload from the server, the server opens a new unidirectional stream
 to send the requested data. If no data is requested by the client,
 the server need take no action.

3. Example Performance Scenarios

 All stream payload based tests below can be achieved either with
 bidirectional or unidirectional streams. Generally, the goal of all
 these performance tests is to measure the maximum load that can be
 achieved with the given QUIC implementation and hardware
 configuration. To that end, the network is not expected to be the
 bottleneck in any of these tests. To achieve that, the appropriate
 network hardware must be used so as to not limit throughput.

3.1. Single Connection Bulk Throughput

 Bulk data throughput on a single QUIC connection is probably the most
 common metric when first discussing the performance of a QUIC
 implementation. It uses only a single QUIC connection. It may be
 either an upload or download. It can be of any desired length.

Banks Expires June 26, 2021 [Page 4]

Internet-Draft QUIC-PERF December 2020

 For an upload test, the client need only open a single stream,
 encodes a zero server response size, sends the upload payload and
 then closes (FIN) the stream.

 For a download test, the client again opens a single stream, encodes
 the server's response size (N bytes) and then closes the stream.

 The total throughput rate is measured by the client, and is
 calculated by dividing the total bytes sent or received by difference
 in time from when the client created its initial stream to the time
 the client received the server's FIN.

3.2. Requests Per Second

 Another very common performance metric is calculating the maximum
 requests per second that a QUIC server can handle. Unlike the bulk
 throughput test above, this test generally requires many parallel
 connections (possibly from multiple client machines) in order to
 saturate the server properly. There are several variables that tend
 to directly affect the results of this test:

 o The number of parallel connections.

 o The size of the client's request.

 o The size of the server's response.

 All of the above variables may be changed to measure the maximum RPS
 in the given scenario.

 The test starts with the client connecting all parallel connections
 and waiting for them to be connected. It's recommended to wait an
 additional couple of seconds for things to settle down.

 The client then starts sending "requests" on each connection.
 Specifically, the client should keep at least one request pending
 (preferrably at least two) on each connection at all times. When a
 request completes (receive server's FIN) the client should
 immediately queue another request.

 The client continues to do this for a configured period of time.
 From my testing, ten seconds seems to be a good amount of time to
 reach the steady state.

 Finally, the client measures the maximum requests per second rate as
 the total number of requests completed divided by the total execution
 time of the requests phase of the connection (not including the
 handshake and wait period).

Banks Expires June 26, 2021 [Page 5]

Internet-Draft QUIC-PERF December 2020

3.3. Handshakes Per Second

 Another metric that may reveal the connection setup efficiency is
 handshakes per second. It lets multiple clients (possibly from
 multiple machines) setup QUIC connections (then close them by
 CONNECTION_CLOSE) with a single server. Variables that may
 potentially affect the results are:

 o The number of client machines.

 o The number of connections a client can initialize in a second.

 o The size of ClientHello (long list of supported ciphers, versions,
 etc.).

 All the variables may be changed to measure the maximum handshakes
 per second in a given scenario.

 The test starts with the multiple clients initializing connections
 and waiting for them to be connected with the single server on the
 other machine. It's recommended to wait an additional couple of
 seconds for connections to settle down.

 The clients will initialize as many connections as possible to
 saturate the server. Once the client receive the handshake from the
 server, it terminates the connection by sending a CONNECTION_CLOSE to
 the server. The total handshakes per second are calculated by
 dividing the time period by the total number of connections that have
 successfully established during that time.

3.4. Throughput Fairness Index

 Connection fairness is able to help us reveal how the throughput is
 allocated among each connection. A way of doing it is to establish
 multiple hundreds or thousands of concurrent connections and request
 the same data block from a single server. Variables that have
 potential impact on the results are:

 o the size of the data being requested.

 o the number of the concurrent connections.

 The test starts with establishing several hundreds or thousands of
 concurrent connections and downloading the same data block from the
 server simultaneously.

Banks Expires June 26, 2021 [Page 6]

Internet-Draft QUIC-PERF December 2020

 The index of fairness is calculated using the complete time of each
 connection and the size of the data block in [Jain's manner]
 (https://www.cse.wustl.edu/~jain/atmf/ftp/af_fair.pdf).

 Be noted that the relationship between fairness and whether the link
 is saturated is uncertain before any test. Thus it is recommended
 that both cases are covered in the test.

 TODO: is it necessary that we also provide tests on latency fairness
 in the multi-connection case?

3.5. Maximum Number of Idle Connections

 TODO

4. Things to Note

 There are a few important things to note when doing performance
 testing.

4.1. What Data Should be Sent?

 Since the goal here is to measure the efficiency of the QUIC
 implementation and not any application protocol, the performance
 application layer should be as light-weight as possible. To this
 end, the client and server application layer may use a single
 preallocated and initialized buffer that it queues to send when any
 payload needs to be sent out.

4.2. Ramp up Congestion Control or Not?

 When running CPU limited, and not network limited, performance tests
 ideally we don't care too much about the congestion control state.
 That being said, assuming the tests run for enough time, generally
 congestion control should ramp up very quickly and not be a
 measureable factor in the measurements that result.

4.3. Disabling Encryption

 A common topic when talking about QUIC performance is the effect that
 its encryption has. The draft-banks-quic-disable-encryption draft
 specifies a way for encryption to be mutually negotiated to be
 disabled so that an A:B test can be made to measure the "cost of
 encryption" in QUIC.

https://www.cse.wustl.edu/~jain/atmf/ftp/af_fair.pdf
https://datatracker.ietf.org/doc/html/draft-banks-quic-disable-encryption

Banks Expires June 26, 2021 [Page 7]

Internet-Draft QUIC-PERF December 2020

5. Security Considerations

 Since the performance protocol allows for a client to trivially
 request the server to do a significant amount of work, it's generally
 advisable not to deploy a server running this protocol on the open
 internet.

 One possible mitigation for unauthenticated clients generating an
 unacceptable amount of work on the server would be to use client
 certificates to authenticate the client first.

6. IANA Considerations

 None

7. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Author's Address

 Nick Banks
 Microsoft Corporation

 Email: nibanks@microsoft.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Banks Expires June 26, 2021 [Page 8]

