
Network Working Group R. Barnes
Internet-Draft E. Rescorla
Intended status: Standards Track Mozilla
Expires: July 28, 2015 P. Eckersley
 S. Schoen
 EFF
 A. Halderman
 J. Kasten
 University of Michigan
 January 28, 2015

Automatic Certificate Management Environment (ACME)
draft-barnes-acme-00

Abstract

 Certificates in the Web's X.509 PKI (PKIX) are used for a number of
 purposes, the most significant of which is the authentication of
 domain names. Thus, certificate authorities in the Web PKI are
 trusted to verify that an applicant for a certificate legitimately
 represents the domain name(s) in the certificate. Today, this
 verification is done through a collection of ad hoc mechanisms. This
 document describes a protocol that a certificate authority (CA) and
 an applicant can use to automate the process of verification and
 certificate issuance. The protocol also provides facilities for
 other certificate management functions, such as certificate
 revocation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 28, 2015.

Barnes, et al. Expires July 28, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft ACME January 2015

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Deployment Model and Operator Experience 4
3. Terminology . 5
4. Protocol Overview . 6
5. Certificate Management 8
5.1. General Request/Response Lifecycle 9
5.2. Signatures . 12
5.3. Key Authorization . 13
5.3.1. Recovery Tokens 18

5.4. Certificate Issuance 19
5.5. Certificate Revocation 21

6. Identifier Validation Challenges 22
6.1. Simple HTTPS . 24
6.2. Domain Validation with Server Name Indication 25
6.3. Recovery Contact . 27
6.4. Recovery Token . 29
6.5. Proof of Possession of a Prior Key 29
6.6. DNS . 32
6.7. Other possibilities 33

7. IANA Considerations . 34
8. Security Considerations 34
9. References . 34
9.1. Normative References 34
9.2. Informative References 35

 Authors' Addresses . 35

1. Introduction

 Certificates in the Web PKI are most commonly used to authenticate
 domain names. Thus, certificate authorities in the Web PKI are

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Barnes, et al. Expires July 28, 2015 [Page 2]

Internet-Draft ACME January 2015

 trusted to verify that an applicant for a certificate legitimately
 represents the domain name(s) in the certificate.

 Existing Web PKI certificate authorities tend to run on a set of ad
 hoc protocols for certificate issuance and identity verification. A
 typical user experience is something like:

 o Generate a PKCS#10 [RFC2314] Certificate Signing Request (CSR).

 o Cut-and-paste the CSR into a CA web page.

 o Prove ownership of the domain by one of the following methods:

 * Put a CA-provided challenge at a specific place on the web
 server.

 * Put a CA-provided challenge at a DNS location corresponding to
 the target domain.

 * Receive CA challenge at a (hopefully) administrator-controlled
 e-mail address corresponding to the domain and then respond to
 it on the CA's web page.

 o Download the issued certificate and install it on their Web
 Server.

 With the exception of the CSR itself and the certificates that are
 issued, these are all completely ad hoc procedures and are
 accomplished by getting the human user to follow interactive natural-
 language instructions from the CA rather than by machine-implemented
 published protocols. In many cases, the instructions are difficult
 to follow and cause significant confusion. Informal usability tests
 by the authors indicate that webmasters often need 1-3 hours to
 obtain and install a certificate for a domain. Even in the best
 case, the lack of published, standardized mechanisms presents an
 obstacle to the wide deployment of HTTPS and other PKIX-dependent
 systems because it inhibits mechanization of tasks related to
 certificate issuance, deployment, and revocation.

 This document describes an extensible framework for automating the
 issuance and domain validation procedure, thereby allowing servers
 and infrastructural software to obtain certificates without user
 interaction. Use of this protocol should radically simplify the
 deployment of HTTPS and the practicality of PKIX authentication for
 other TLS based protocols.

https://datatracker.ietf.org/doc/html/rfc2314

Barnes, et al. Expires July 28, 2015 [Page 3]

Internet-Draft ACME January 2015

2. Deployment Model and Operator Experience

 The major guiding use case for ACME is obtaining certificates for Web
 sites (HTTPS [RFC2818]). In that case, the server is intended to
 speak for one or more domains, and the process of certificate
 issuance is intended to verify that the server actually speaks for
 the domain.

 Different types of certificates reflect different kinds of CA
 verification of information about the certificate subject. "Domain
 Validation" (DV) certificates are by far the most common type. For
 DV validation, the CA merely verifies that the requester has
 effective control of the web server and/or DNS server for the domain,
 but does not explicitly attempt to verify their real-world identity.
 (This is as opposed to "Organization Validation" (OV) and "Extended
 Validation" (EV) certificates, where the process is intended to also
 verify the real-world identity of the requester.)

 DV certificate validation commonly checks claims about properties
 related to control of a domain name - properties that can be observed
 by the issuing authority in an interactive process that can be
 conducted purely online. That means that under typical
 circumstances, all steps in the request, verification, and issuance
 process can be represented and performed by Internet protocols with
 no out-of-band human intervention.

 When an operator deploys a current HTTPS server, it generally prompts
 him to generate a self-signed certificate. When an operator deploys
 an ACME-compatible web server, the experience would be something like
 this:

 o The ACME client prompts the operator for the intended domain
 name(s) that the web server is to stand for.

 o The ACME client presents the operator with a list of CAs from
 which it could get a certificate.
 (This list will change over time based on the capabilities of CAs
 and updates to ACME configuration.) The ACME client might prompt
 the operator for payment information at this point.

 o The operator selects a CA.

 o In the background, the ACME client contacts the CA and requests
 that a certificate be issued for the intended domain name(s).

 o Once the CA is satisfied, the certificate is issued and the ACME
 client automatically downloads and installs it, potentially
 notifying the operator via e-mail, SMS, etc.

https://datatracker.ietf.org/doc/html/rfc2818

Barnes, et al. Expires July 28, 2015 [Page 4]

Internet-Draft ACME January 2015

 o The ACME client periodically contacts the CA to get updated
 certificates, stapled OCSP responses, or whatever else would be
 required to keep the server functional and its credentials up-to-
 date.

 The overall idea is that it's nearly as easy to deploy with a CA-
 issued certificate as a self-signed certificate, and that once the
 operator has done so, the process is self-sustaining with minimal
 manual intervention. Close integration of ACME with HTTPS servers,
 for example, can allow the immediate and automated deployment of
 certificates as they are issued, optionally sparing the human
 administrator from additional configuration work.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The two main roles in ACME are "client" and "server". The ACME
 client uses the protocol to request certificate management actions,
 such as issuance or revocation. An ACME client therefore typically
 runs on a web server, mail server, or some other server system which
 requires valid TLS certificates. The ACME server runs at a
 certificate authority, and responds to client requests, performing
 the requested actions if the client is authorized.

 For simplicity, in the HTTPS transactions used by ACME, the ACME
 client is the HTTPS client and the ACME server is the HTTPS server.

 In the discussion below, we will refer to three different types of
 keys / key pairs:

 Subject Public Key: A public key to be included in a certificate.

 Authorized Key Pair: A key pair for which the ACME server considers
 the holder of the private key authorized to manage certificates
 for a given identifier. The same key pair may be authorized for
 multiple identifiers.

 Recovery Token: A secret value that can be used to demonstrate prior
 authorization for an identifier, in a situation where all Subject
 Private Keys and Authorized Keys are lost.

 ACME messaging is based on HTTPS [RFC2818] and JSON [RFC7159]. Since
 JSON is a text-based format, binary fields are Base64-encoded. For
 Base64 encoding, we use the variant defined in
 [I-D.ietf-jose-json-web-signature]. The important features of this

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc7159

Barnes, et al. Expires July 28, 2015 [Page 5]

Internet-Draft ACME January 2015

 encoding are (1) that it uses the URL-safe character set, and (2)
 that "=" padding characters are stripped.

4. Protocol Overview

 ACME allows a client to request certificate management actions using
 a set of JSON messages carried over HTTPS. It is a prerequisite for
 this process that the client be configured with the HTTPS URI for the
 server. ACME messages MUST NOT be carried over "plain" HTTP, without
 HTTPS semantics.

 In some ways, ACME functions much like a traditional CA, in which a
 user creates an account, adds domains to that account (proving
 control of the domains), and requests certificate issuance for those
 domains while logged in to the account. In ACME, the account is
 represented by a key pair. The "add a domain" function is
 accomplished by authorizing the key pair for a given domain, and
 certificate issuance is authorized by a signature with the key pair.

 The first phase of ACME is for the client to establish an authorized
 key pair with the server for the identifier(s) it wishes to include
 in the certificate. To do this, the client must demonstrate to the
 server both (1) that it holds the private key of the key pair being
 authorized, and (2) that it has authority over the identifier being
 claimed.

 In the key authorization process, then, the server presents the
 client with two tests. First, a task to demonstrate that the client
 holds the private key of key pair being authorized, and second, a set
 of challenges that the client can perform to demonstrate its
 authority over the domain in question.

 Because there are many different ways to validate possession of
 different types of identifiers, the server will choose from an
 extensible set of challenges that are appropriate for the identifier
 being claimed. For example, if the client requests a domain name,
 the server might challenge the client to provision a record in the
 DNS under that name, or to provision a file on a web server reference
 by an A or AAAA record under that name.

 After the client has prepared responses to the server's challenges,
 it sends a second request with its responses to these challenges.
 The server's response indicates whether the request for authorization
 has succeeded or failed. If the authorization request succeeded, the
 server also provides a recovery token, which the client can use in a
 later authorization transaction to show that it is the same as the
 entity that participated in this authorization.

Barnes, et al. Expires July 28, 2015 [Page 6]

Internet-Draft ACME January 2015

 Client Server

 Desired identifier ------->

 PoP nonce
 Session ID
 <------- Identifier Challenges

 Public key
 Session ID
 PoP nonce
 PoP signature
 [Contact information]
 Responses to challenges ------->

 <------- Recovery token

 Once the client has established an authorized key pair for an
 identifier, it can use the key pair to authorize the issuance of
 certificates for the identifier. To do this, the client sends a
 PKCS#10 Certificate Signing Request (CSR) to the server (indicating
 the identifier(s) to be included in the issued certificate), and a
 signature over the CSR by the private key of the authorized key pair.

 If the server agrees to issue the certificate, then it creates the
 certificate and provides it in its response. The server may also
 provide a URI that can be used to renew the certificate, if it allows
 renewal without re-validation.

 Client Server

 CSR
 Signature by auth'd key -------->

 Certificate
 <-------- Renewal URI

 To revoke a certificate, the client simply sends a revocation
 request, signed with an authorized key pair, and the server indicates
 whether the request has succeeded.

Barnes, et al. Expires July 28, 2015 [Page 7]

Internet-Draft ACME January 2015

 Client Server

 Revocation request
 Signature by auth'd key -------->

 <-------- Result

 Note that while ACME is defined with enough flexibility to handle
 different types of identifiers in principle, the primary use case
 addressed by this document is the case where domain names are used as
 identifiers. For example, all of the identifier validation
 challenges described in Section Section 6 below address validation of
 domain names. The use of ACME for other protocols will require
 further specification, in order to describe how these identifiers are
 encoded in the protocol, and what types of validation challenges the
 server might require.

5. Certificate Management

 In this section, we describe the four certificate management
 functions that ACME enables:

 o Key Authorization

 o Certificate Issuance

 o Certificate Revocation

 Each of these functions is accomplished by the client sending a
 sequence of HTTPS requests to the server, carrying JSON messages.
 Each subsection below describes the message formats used by the
 function, and the order in which messages are sent.

 All ACME messages share some common structure. At base, each ACME
 message is a JSON dictionary, and MUST include a "type" field to
 indicate which type of message it is.

 type (required, string): The type of ACME message encoded in this
 JSON dictionary.

 All other fields in an ACME message are defined by the type, as
 described below. Unrecognized fields in ACME messages MUST be
 ignored. Creators of ACME messages MUST NOT create messages with
 duplicate fields. Parsers of ACME messages MAY be tolerant of
 duplicate fields, but the behavior of the protocol in this case is
 undefined.

Barnes, et al. Expires July 28, 2015 [Page 8]

Internet-Draft ACME January 2015

5.1. General Request/Response Lifecycle

 Client-server interactions in ACME are logically request/response
 transactions, corresponding directly to HTTPS requests and responses.
 The client sends a request message of a particular type, and the
 server sends response of a corresponding type.

 All requests for a given ACME server are sent to the same HTTPS URI.
 It is assumed that clients are configured with this URI out of band.
 ACME requests MUST use the POST method, and since they carry JSON
 payloads, SHOULD set the Content-Type header field to "application/
 json". ACME responses MUST be carried in HTTP responses with the
 status code 200. ACME clients SHOULD follow HTTP redirects (301 or
 302 responses), in case an ACME server is relocated.

 ACME provides three general message types - "error", "defer", and
 "statusRequest" - to cover cases where the server is not able to
 return a successful result immediately. If there is a problem that
 prevents the request from succeeding, then the server sends an error
 message. The fields in an error message are as follows:

 type (required, string): "error"

 error (required, string): A token from the below list indicating
 what type of error occurred.

 message (optional, string): A human-readable string describing the
 error.

 moreInfo (optional, string): A URL of a resource containing
 additional human-readable documentation about the error, such as
 advice on how to revise the request or adjust the client
 configuration to allow the request to succeed, or documentation of
 CA issuance policies that describe why the request cannot be
 fulfilled.

 {
 "type": "error",
 "error": "badCSR",
 "message": "RSA keys must be at least 2048 bits long",
 "moreInfo": "https://ca.example.com/documentation/csr-requirements"
 }

 The possible error codes are as follows:

Barnes, et al. Expires July 28, 2015 [Page 9]

Internet-Draft ACME January 2015

 +----------------+--+
 | Code | Semantic |
 +----------------+--+
malformed	The request message was malformed
unauthorized	The client lacks sufficient authorization
serverInternal	The server experienced an internal error
notSupported	The request type is not supported
unknown	The server does not recognize an ID/token in the
	request
badCSR	The CSR is unacceptable (e.g., due to a short
	key)
 +----------------+--+

 The server may also defer providing a response by sending a defer
 message. For example, in the key authorization process, the server
 may need additional time to validate the client's responses to its
 challenges. Or in the issuance process, there may be some delay due
 to batch signing. The fields in a defer message are as follows:

 type (required, string): "defer"

 token (required, string): An opaque value that the client uses to
 check on the status of the request (using a statusRequest
 message).

 interval (optional, number): The amount of time, in seconds, that
 the client should wait before checking on the status of the
 request. (This is a recommendation only, and clients SHOULD
 enforce minimum and maximum deferral times.)

 message (optional, string): A human-readable string describing the
 reason for the deferral.

 For example, a deferral due to batch signing might be indicated with
 a message of the following form:

 {
 "type": "defer",
 "token": "O7-s9MNq1siZHlgrMzi9_A",
 "interval": 60,
 "message": "Warming up the HSM"
 }

Barnes, et al. Expires July 28, 2015 [Page 10]

Internet-Draft ACME January 2015

 When a client receives a defer message, it periodically sends a
 statusRequest message to the server, with the token provided in the
 defer message.

 type (required, string): "statusRequest"

 token (required, string): An opaque value that was provided in a
 defer message.

 {
 "type": "statusRequest",
 "token": "O7-s9MNq1siZHlgrMzi9_A"
 }

 If the server responds with another defer message, then the server
 still does not have a final response. The client MUST ignore the
 "token" value in defer responses provided in responses to status
 requests, and continue polling with the original token. Any non-
 defer response (error or success) is considered final, and the client
 MUST cease polling.

 In summary, the client goes through the following state machine to
 perform an ACME transaction:

 START
 |
 V
 RESPONSE_WAIT <-----------+
 | |
 +----------+-----------+ |
 | | | |
 V V V |
 TIMEOUT GOT_FINAL GOT_DEFER --+

 The client begins by sending a request and awaiting the response. If
 the response contains an ACME message of any type besides "defer",
 then the request is completed, and if no response arrives, the
 request times out. If a defer request arrives, then the client waits
 some time and sends a polling request, whose response is handled in
 the same way as the original request.

 The following table summarizes the request and response types defined
 in this document. If the server provides the client with a non-error
 response of a type that does not match the request message type, then
 the client MUST treat it as an error message with code
 "serverInternal".

Barnes, et al. Expires July 28, 2015 [Page 11]

Internet-Draft ACME January 2015

 +----------------------+---------------+
 | Request | Response |
 +----------------------+---------------+
 | challengeRequest | challenge |
 | | |
 | authorizationRequest | authorization |
 | | |
 | certificateRequest | certificate |
 | | |
 | revocationRequest | revocation |
 | | |
 | statusRequest | (any) |
 +----------------------+---------------+

5.2. Signatures

 ACME uses a simple JSON-based structure for encoding signatures,
 based on the JSON Web Signature structure. An ACME signature is a
 JSON object, with the following fields:

 alg (required, string): A token indicating the cryptographic
 algorithm used to compute the signature
 [I-D.ietf-jose-json-web-algorithms]. (MAC algorithms such as
 "HS*" MUST NOT be used.)

 sig (required, string): The signature, base64-encoded.

 nonce (required, string): A signer-provided random nonce of at least
 16 bytes, base64-encoded. (For anti-replay.)

 jwk (required, object): A JSON Web Key object describing the key
 used to verify the signature [I-D.ietf-jose-json-web-key].

 Each usage of a signature object must specify the content being
 signed. To avoid replay risk, the input to the signature algorithm
 is the concatenation of the nonce with the content to be signed.

 signature-input = nonce || content

 A verifier computes the same input before verifying the signature.
 Note that while an signature object contains all of the information
 required to verify the signature, the verifier must also check that
 the public key encoded in the JWK object is the correct key for a
 given context.

Barnes, et al. Expires July 28, 2015 [Page 12]

Internet-Draft ACME January 2015

5.3. Key Authorization

 The key authorization process establishes a key pair as an authorized
 key pair for a given identifier. This process must assure the server
 of two things: First, that the client controls the private key of the
 key pair, and second, that the client holds the identifier in
 question. This process may be repeated to associate multiple
 identifiers to a key pair (e.g., to request certificates with
 multiple identifiers), or to associate multiple key pairs with an
 identifier (e.g., for load balancing).

 As illustrated by the figure in the overview section above, the
 authorization process proceeds in two transactions. The client first
 requests a list of challenges from the server, and then requests
 authorization based on its answers to those challenges.

 The first request in the key authorization process is a
 "challengeRequest" message, specifying the identifier for which the
 client will be requesting authorization. The fields in a
 "challengeRequest" message are as follows:

 type (required, string): "challengeRequest"

 identifier (required, string): The identifier for which
 authorization is being sought. For implementations of this
 specification, this identifier MUST be a domain name. (If other
 types of identifier are supported, then an extension to this
 protocol will need to add a field to distinguish types of
 identifier.)

 {
 "type": "challengeRequest",
 "identifier": "example.com"
 }

 On receiving a "challengeRequest" message, the server determines what
 sorts of challenges it will accept as proof that the client holds the
 identifier. (The server could also decide that a particular
 identifier is invalid or that the server cannot possibly issue
 certificates related to that identifier, in which case the server may
 return an error.) The set of challenges may be limited by the
 server's capabilities, and the server may require different
 challenges to be completed for different identifiers (e.g., requiring
 a higher standard for higher-value names). In all cases, however,
 the server provides a nonce as a proof-of-possession challenge for
 the key pair being authorized. The server returns this policy to the
 client in a "challenge" message:

Barnes, et al. Expires July 28, 2015 [Page 13]

Internet-Draft ACME January 2015

 type (required, string): "challenge"

 sessionID (required, string): An opaque string that allows the
 server to correlate transactions related to this challenge
 request.

 nonce (required, string): A base64-encoded octet string that the
 client is expected to sign with the private key of the key pair
 being authorized.

 challenges (required, array): A list of challenges to be fulfilled
 by the client in order to prove possession of the identifier. The
 syntax for challenges is described in Section Section 6.

 combinations (optional, array of arrays): A collection of sets of
 challenges, each of which would be sufficient to prove possession
 of the identifier. Clients SHOULD complete a set of challenges
 that that covers at least one set in this array. Challenges are
 represented by their associated zero-based index in the challenges
 array.

 For example, if the server wants to have the client demonstrate both
 that the client controls the domain name in question, and that this
 client is the same client that previously requested authorization for
 the domain name, it might issue the following request. The client is
 expected to provide "simpleHttps" and "recoveryToken" responses
 ("[0,2]"), or else "dns" and "recoveryToken" responses ("[1,2]"), or
 all three.

Barnes, et al. Expires July 28, 2015 [Page 14]

Internet-Draft ACME January 2015

 {
 "type": "challenge",
 "sessionID": "aefoGaavieG9Wihuk2aufai3aeZ5EeW4",
 "nonce": "czpsrF0KMH6dgajig3TGHw",
 "challenges": [
 {
 "type": "simpleHttps",
 "token": "IlirfxKKXAsHtmzK29Pj8A"
 },
 {
 "type": "dns",
 "token": "DGyRejmCefe7v4NfDGDKfA"
 },
 {
 "type": "recoveryToken"
 }
],
 "combinations": [
 [0, 2], [1, 2]
]
 }

 In order to avoid replay attacks, the server MUST generate a fresh
 nonce of at least 128 bits for each authorization transaction, and
 MUST NOT accept more than one authorizationRequest with the same
 nonce.

 The client SHOULD satisfy all challenges in one of the sets expressed
 in the "combinations" array. If a "combinations" field is not
 specified, the client SHOULD attempt to fulfill as many challenges as
 possible.

 Once the client believes that it has fulfilled enough challenges, it
 creates an authorizationRequest object requesting authorization of a
 key pair for this identifier based on its responses. The
 authorizationRequest also contains the public key to be authorized,
 and the signature by the corresponding private key over the nonce in
 the challenge.

 type (required, string): "authorizationRequest"

 sessionID (required, string): The session ID provided by the server
 in the challenge message (to allow the server to correlate the two
 transactions).

 nonce (required, string): The nonce provided by the server in the
 challenge message.

Barnes, et al. Expires July 28, 2015 [Page 15]

Internet-Draft ACME January 2015

 signature (required, object): A signature object reflecting a
 signature over the identifier being authorized and the nonce
 provided by the server. Thus, for this authorization:

 signature-input = signature-nonce || identifier || server-nonce

 responses (required, array): The client's responses to the server's
 challenges, in the same order as the challenges. If the client
 chooses not to respond to a given challenge, then the
 corresponding entry in the response array is set to null.
 Otherwise, it is set to a value defined by the challenge type.

 contact (optional, array): An array of URIs that the server can use
 to contact the client for issues related to this authorization.
 For example, the server may wish to notify the client about
 server-initiated revocation, or check with the client on future
 authorizations (see the "recoveryContact" challenge type).

Barnes, et al. Expires July 28, 2015 [Page 16]

Internet-Draft ACME January 2015

 {
 "type": "authorizationRequest",
 "sessionID": "aefoGaavieG9Wihuk2aufai3aeZ5EeW4",
 "nonce": "czpsrF0KMH6dgajig3TGHw",
 "signature": {
 "nonce": "Aenb3DvfvOPImdXdnxHMlp7Jh4qsgYeTEM-dFgFOGxU",
 "alg": "ES256",
 "jwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "NJ15BoXput18sSwnXA3gJEEnqIAzxSEl9ga8wGM4mEU",
 "y": "6l_U9mals_dwt77tIxSiQ6oL_CyLVey4baa8wCn0V9k"
 },
 "sig": "lxj0Ucdo4r5s1c1cuY2R7oKqWi4QuNJzdwe5/4m9zWQ"
 },
 "responses": [
 {
 "type": "simpleHttps",
 "path": "Hf5GrX4Q7EBax9hc2jJnfw"
 },
 null,
 {
 "type": "recoveryToken",
 "token": "23029d88d9e123e"
 }
],
 "contact": [
 "mailto:cert-admin@example.com",
 "tel:+12025551212"
]
 }

 Once it has received the client's responses, the server verifies them
 according to procedures specific to each challenge type. Because
 some of these procedures take time to verify, it is likely that the
 server will respond to an authorizationRequest message with a defer
 message.

 If there is a problem with the authorizationRequest (e.g., the
 signature object does not verify), or if the available responses are
 not sufficient to convince the server that the client controls the
 identifier, then the server responds with an error message. The
 server should use the "unauthorized" error code for cases where the
 client's responses were insufficient. If the server is satisfied
 that the client controls the private key and identifier in question,
 then it sends an authorization message indicating the success of the
 authorization request, and providing a recovery token that the client

Barnes, et al. Expires July 28, 2015 [Page 17]

Internet-Draft ACME January 2015

 can use to help recover authorization if the private key of the
 authorized key pair is lost.

 type (required, string): "authorization"

 recoveryToken (optional, string): An arbitrary server-generated
 string. If the server provides a recovery token, it MUST generate
 a unique value for every authorization transaction, and this value
 MUST NOT be predictable or guessable by a third party.

 identifier (optional, string): The identifier for which
 authorization has been granted.

 jwk (optional, object): A JSON Web Key object describing the
 authorized public key.

5.3.1. Recovery Tokens

 A recovery token is a fallback authentication mechanism. In the
 event that a client loses all other state, including authorized key
 pairs and key pairs bound to certificates, the client can use the
 recovery token to prove that it was previously authorized for the
 identifier in question.

 This mechanism is necessary because once an ACME server has issued an
 Authorization Key for a given identifier, that identifier enters a
 higher-security state, at least with respect the ACME server. That
 state exists to protect against attacks such as DNS hijacking and
 router compromise which tend to inherently defeat all forms of Domain
 Validation. So once a domain has begun using ACME, new DV-only
 authorization will not be performed without proof of continuity via
 possession of an Authorized Private Key or potentially a Subject
 Private Key for that domain.

 This higher state of security poses some risks. From time to time,
 the administrators and owners of domains may lose access to keys they
 have previously had issued or certified, including Authorized private
 keys and Subject private keys. For instance, the disks on which this
 key material is stored may suffer failures, or passphrases for these
 keys may be forgotten. In some cases, the security measures that are
 taken to protect this sensitive data may contribute to its loss.

 Recovery Tokens and Recovery Challenges exist to provide a fallback
 mechanism to restore the state of the domain to the server-side
 administrative security state it was in prior to the use of ACME,
 such that fresh Domain Validation is sufficient for reauthorization.

Barnes, et al. Expires July 28, 2015 [Page 18]

Internet-Draft ACME January 2015

 Recovery tokens are therefore only useful to an attacker who can also
 perform Domain Validation against a target domain, and as a result
 client administrators may choose to handle them with somewhat fewer
 security precautions than Authorized and Subject private keys,
 decreasing the risk of their loss.

 Recovery tokens come in several types, including high-entropy
 passcodes (which need to be safely preserved by the client admin) and
 email addresses (which are inherently hard to lose, and which can be
 used for verification, though they may be a little less secure).

 Recovery tokens are employed in response to Recovery Challenges.
 Such challenges will be available if the server has issued Recovery
 Tokens for a given domain, and the combination of a Recovery
 Challenge and a domain validation Challenge is a plausible
 alternative to other challenge sets for domains that already have
 extant Authorized keys.

5.4. Certificate Issuance

 The holder of an authorized key pair for an identifier may use ACME
 to request that a certificate be issued for that identifier. The
 client makes this request using a "certificateRequest" message, which
 contains a Certificate Signing Request (CSR) [RFC2986] and a
 signature by the authorized key pair.

 type (required, string): "certificateRequest"

 csr (required, string): A CSR encoding the parameters for the
 certificate being requested. The CSR is sent in base64-encoded
 version the DER format. (Note: This field uses the same modified
 base64-encoding rules used elsewhere in this document, so it is
 different from PEM.)

 signature (required, object): A signature object reflecting a
 signature by an authorized key pair over the CSR.

https://datatracker.ietf.org/doc/html/rfc2986

Barnes, et al. Expires July 28, 2015 [Page 19]

Internet-Draft ACME January 2015

 {
 "type": "certificateRequest",
 "csr": "5jNudRx6Ye4HzKEqT5...FS6aKdZeGsysoCo4H9P",
 "signature": {
 "alg": "RS256",
 "nonce": "h5aYpWVkq-xlJh6cpR-3cw",
 "sig": "KxITJ0rNlfDMAtfDr8eAw...fSSoehDFNZKQKzTZPtQ",
 "jwk": {
 "kty":"RSA",
 "e":"AQAB",
 "n":"KxITJ0rNlfDMAtfDr8eAw...fSSoehDFNZKQKzTZPtQ"
 }
 }
 }

 The CSR encodes the client's requests with regard to the content of
 the certificate to be issued. The CSR MUST contain at least one
 extensionRequest attribute [RFC2985] requesting a subjectAltName
 extension, containing the requested identifiers.

 The values provided in the CSR are only a request, and are not
 guaranteed. The server or CA may alter any fields in the certificate
 before issuance. For example, the CA may remove identifiers that are
 not authorized for the key indicated in the "authorization" field.

 If the CA decides to issue a certificate, then the server responds
 with a certificate message. (Of course, the server may also respond
 with an error message if issuance is denied, or a defer message if
 there may be some delay in issuance.)

 type (required, string): "certificate"

 certificate (required, string): The issued certificate, as a
 base64-encoded DER certificate.

 chain (optional, array of string): A chain of CA certificates which
 are parents of the issued certificate. Each certificate is in
 base64-encoded DER form (not PEM, as for CSRs above). This array
 MUST be presented in the same order as would be required in a TLS
 handshake [RFC5246].

 refresh (optional, string): An HTTP or HTTPS URI from which updated
 versions of this certificate can be fetched.

https://datatracker.ietf.org/doc/html/rfc2985
https://datatracker.ietf.org/doc/html/rfc5246

Barnes, et al. Expires July 28, 2015 [Page 20]

Internet-Draft ACME January 2015

 {
 "type": "certificate",
 "certificate": "Zmzdx7UKvwDJ6bk...YBX22NPGQZyYcg",
 "chain": [
 "WUn8L2vLT553pIWJ2...gJ574o2anls1k2p",
 "y3O4puZa9r5KBk1LX...Ya7jlaAZUfuYZGZ"
],
 "refresh": "https://example.com/refresh/Dr8eAwTVQfSS/"
 }

 The certificate message allows the server to provide the certificate
 itself, as well as some associated management information. The chain
 of CA certificates can simplify TLS server configuration, by allowing
 the server to suggest the certificate chain that a TLS server using
 the issued certificate should present.

 The refresh URI allows the client to download updated versions of the
 issued certificate, in the sense of certificates with different
 validity intervals, but otherwise the same contents (in particular,
 the same names and public key). This can be useful in cases where a
 CA wishes to issue short-lived certificates, but is still willing to
 vouch for an identifier-key binding over a longer period of time. To
 download an updated certificate, the client simply sends a GET
 request to the refresh URI.

5.5. Certificate Revocation

 To request that a certificate be revoked, the client sends a
 revocationRequest message that indicates the certificate to be
 revoked, with a signature by an authorized key:

 type (required, string): "revocationRequest"

 certificate (required, string): The certificate to be revoked.

 signature (required, object): A signature object reflecting a
 signature by an authorized key pair over the certificate.

Barnes, et al. Expires July 28, 2015 [Page 21]

Internet-Draft ACME January 2015

 {
 "type": "revocationRequest",
 "certificate": "Zmzdx7UKvwDJ6bk...YBX22NPGQZyYcg",
 "signature": {
 "alg": "RS256",
 "nonce": "OQqU4VlhXhvZW9FIqNW-jg",
 "sig": "KxITJ0rNlfDMAtfDr8eAw...fSSoehDFNZKQKzTZPtQ",
 "jwk": {
 "kty":"RSA",
 "e":"AQAB",
 "n":"KxITJ0rNlfDMAtfDr8eAw...fSSoehDFNZKQKzTZPtQ"
 }
 }
 }

 Before revoking a certificate, the server MUST verify that the public
 key indicated in the signature object is authorized to act for all of
 the identifier(s) in the certificate. The server MAY also accept a
 signature by the private key corresponding to the public key in the
 certificate.

 If the revocation fails, the server returns an error message, e.g.,
 an "unauthorized" error if the signing key was not authorized to
 revoke this certificate. If the revocation succeeds, then the server
 confirms with a "revocation" message, which has no payload.

 type (required, string): "revocation"

 {
 "type": "revocation"
 }

6. Identifier Validation Challenges

 There are few types of identifier in the world for which there is a
 standardized mechanism to prove possession of a given identifier. In
 all practical cases, CAs rely on a variety of means to test whether
 an entity applying for a certificate with a given identifier actually
 controls that identifier.

 To accommodate this reality, ACME includes an extensible challenge/
 response framework for identifier validation. This section describes
 an initial set of Challenge types. Each challenge must describe:

 o Content of Challenge payloads (in Challenge messages)

Barnes, et al. Expires July 28, 2015 [Page 22]

Internet-Draft ACME January 2015

 o Content of Response payloads (in authorizationRequest messages)

 o How the server uses the Challenge and Response to verify control
 of an identifier

 The only general requirement for Challenge and Response payloads is
 that they MUST be structured as a JSON object, and they MUST contain
 a parameter "type" that specifies the type of Challenge or Response
 encoded in the object.

 Different challenges allow the server to obtain proof of different
 aspects of control over an identifier. In some challenges, like
 Simple HTTPS and DVSNI, the client directly proves control of an
 identifier. In other challenges, such as Recovery or Proof of
 Possession, the client proves historical control of the identifier,
 by reference to a prior authorization transaction or certificate.

 The choice of which Challenges to offer to a client under which
 circumstances is a matter of server policy. A server may choose
 different sets of challenges depending on whether it has interacted
 with a domain before, and how. For example:

 +-------------------------------+-----------------------------------+
 | Domain status | Challenges typically sufficient |
 | | for (re)Authorization |
 +-------------------------------+-----------------------------------+
No known prior certificates	Domain Validation (DVSNI or
or ACME usage	Simple HTTPS)
Existing valid certs, first	DV + Proof of Possession of
use of ACME	previous CA-signed key
Ongoing ACME usage	PoP of previous Authorized key
Ongoing ACME usage, lost	DV + (Recovery or PoP of ACME-
Authorized key	certified Subject key)
ACME usage, all keys and	Recertification by another CA +
recovery tokens lost	PoP of that key
 +-------------------------------+-----------------------------------+

 The identifier validation challenges described in this section all
 relate to validation of domain names. If ACME is extended in the
 future to support other types of identifier, there will need to be
 new Challenge types, and they will need to specify which types of
 identifier they apply to.

Barnes, et al. Expires July 28, 2015 [Page 23]

Internet-Draft ACME January 2015

6.1. Simple HTTPS

 With Simple HTTPS validation, the client in an ACME transaction
 proves its control over a domain name by proving that it can
 provision resources on an HTTPS server that responds for that domain
 name. The ACME server challenges the client to provision a file with
 a specific string as its contents.

 type (required, string): The string "simpleHttps"

 token (required, string): The value to be provisioned in the file.
 This value MUST have at least 128 bits of entropy, in order to
 prevent an attacker from guessing it. It MUST NOT contain any
 non-ASCII characters.

 {
 "type": "simpleHttps",
 "token": "evaGxfADs6pSRb2LAv9IZf17Dt3juxGJ+PCt92wr+oA"
 }

 A client responds to this Challenge by provisioning the nonce as a
 resource on the HTTPS server for the domain in question. The path at
 which the resource is provisioned is determined by the client, but
 MUST begin with ".well-known/acme-challenge/". The content type of
 the resource MUST be "text/plain". The client returns the part of
 the path coming after that prefix in its Response message.

 type (required, string): The string "simpleHttps"

 path (required, string): The string to be appended to the standard
 prefix ".well-known/acme-challenge" in order to form the path at
 which the nonce resource is provisioned. The result of
 concatenating the prefix with this value MUST match the "path"
 production in the standard URI format [RFC3986]

 {
 "type": "simpleHttps",
 "path": "6tbIMBC5Anhl5bOlWT5ZFA"
 }

 Given a Challenge/Response pair, the server verifies the client's
 control of the domain by verifying that the resource was provisioned
 as expected.

 1. Form a URI by populating the URI template
 "https://{domain}/.well-known/acme-challenge/{path}", where the

https://datatracker.ietf.org/doc/html/rfc3986

Barnes, et al. Expires July 28, 2015 [Page 24]

Internet-Draft ACME January 2015

 domain field is set to the domain name being verified and the
 path field is the path provided in the challenge [RFC6570].

 2. Verify that the resulting URI is well-formed.

 3. Dereference the URI using an HTTPS GET request.

 4. Verify that the certificate presented by the HTTPS server is a
 valid self-signed certificate, and contains the domain name being
 validated as well as the public key of the key pair being
 authorized.

 5. Verify that the Content-Type header of the response is either
 absent, or has the value "text/plain"

 6. Compare the entity body of the response with the nonce. This
 comparison MUST be performed in terms of Unicode code points,
 taking into account the encodings of the stored nonce and the
 body of the request.

 If the GET request succeeds and the entity body is equal to the
 nonce, then the validation is successful. If the request fails, or
 the body does not match the nonce, then it has failed.

6.2. Domain Validation with Server Name Indication

 The Domain Validation with Server Name Indication (DVSNI) validation
 method aims to ensure that the ACME client has administrative access
 to the web server at the domain name being validated, and possession
 of the private key being authorized. The ACME server verifies that
 the operator can reconfigure the web server by having the client
 create a new self-signed challenge certificate and respond to TLS
 connections from the ACME server with it.

 The challenge proceeds as follows: The ACME server sends the client a
 random value R and a nonce used to identify the transaction. The
 client responds with another random value S. The server initiates a
 TLS connection on port 443 to a host with the domain name being
 validated. In the handshake, the ACME server sets the Server Name
 Indication extension set to "<nonce>.acme.invalid". The TLS server
 (i.e., the ACME client) should respond with a valid self-signed
 certificate containing both the domain name being validated and the
 domain name "<Z>.acme.invalid", where Z = SHA-256(R || S).

 The ACME server's Challenge provides its random value R, and a random
 nonce used to identify the transaction:

 type (required, string): The string "dvsni"

https://datatracker.ietf.org/doc/html/rfc6570

Barnes, et al. Expires July 28, 2015 [Page 25]

Internet-Draft ACME January 2015

 r (required, string): A random 32-byte octet, base64-encoded

 nonce (required, string): A random 16-byte octet string, hex-encoded
 (so that it can be used as a DNS label)

 {
 "type": "dvsni",
 "r": "Tyq0La3slT7tqQ0wlOiXnCY2vyez7Zo5blgPJ1xt5xI",
 "nonce": "a82d5ff8ef740d12881f6d3c2277ab2e"
 }

 The ACME server MAY re-use nonce values, but SHOULD periodically
 refresh them. ACME clients MUST NOT rely on nonce values being
 stable over time.

 The client responds to this Challenge by configuring a TLS server on
 port 443 of a server with the domain name being validated:

 1. Decode the server's random value R

 2. Generate a random 32-byte octet string S

 3. Compute Z = SHA-256(R || S) (where || denotes concatenation of
 octet strings)

 4. Generate a self-signed certificate with a subjectAltName
 extension containing two dNSName values:

 5. The domain name being validated

 6. A name formed by hex-encoding Z and appending the suffix
 ".acme.invalid"

 7. Compute a nonce domain name by appending the suffix
 ".acme.invalid" to the nonce provided by the server.

 8. Configure the TLS server such that when a client presents the
 nonce domain name in the SNI field, the server presents the
 generated certificate.

 The client's response provides its random value S:

 type (required, string): The string "dvsni"

 s (required, string): A random 32-byte secret octet string,
 base64-encoded

Barnes, et al. Expires July 28, 2015 [Page 26]

Internet-Draft ACME January 2015

 {
 "type": "dvsni",
 "s": "9dbjsl3gTAtOnEtKFEmhS6Mj-ajNjDcOmRkp3Lfzm3c"
 }

 Given a Challenge/Response pair, the ACME server verifies the
 client's control of the domain by verifying that the TLS server was
 configured as expected:

 1. Compute the value Z = SHA-256(R || S)

 2. Open a TLS connection to the domain name being validated on port
 443, presenting the value "<nonce>.acme.invalid" in the SNI
 field.

 3. Verify the following properties of the certificate provided by
 the TLS server:

 * It is a valid self-signed certificate

 * The public key is the public key for the key pair being
 authorized

 * It contains the domain name being validated as a
 subjectAltName

 * It contains a subjectAltName matching the hex-encoding of Z,
 with the suffix ".acme.invalid"

 It is RECOMMENDED that the ACME server verify the challenge
 certificate using multi-path probing techniques to reduce the risk of
 DNS hijacking attacks.

 If the server presents a certificate matching all of the above
 criteria, then the validation is successful. Otherwise, the
 validation fails.

6.3. Recovery Contact

 A server may issue a recovery contact challenge to verify that the
 client is the same as the entity that previously requested
 authorization, using contact information provided by the client in a
 prior authorizationRequest message.

 The server's message to the client may request action in-band or out-
 of-band to ACME. The server can provide a token in the message that
 the client provides in its response. Or the server could provide

Barnes, et al. Expires July 28, 2015 [Page 27]

Internet-Draft ACME January 2015

 some out-of-band response channel in its message, such as a URL to
 click in an email.

 type (required, string): The string "recoveryContact"

 activationURL (optional, string): A URL the client can visit to
 cause a recovery message to be sent to client's contact address.

 successURL (optional, string): A URL the client may poll to
 determine if the user has successfully clicked a link or completed
 other tasks specified by the recovery message. This URL will
 return a 200 success code if the required tasks have been
 completed. The client SHOULD NOT poll the URL more than once
 every three seconds.

 contact (optional, string) A full or partly obfuscated version of
 the contact URI that the server will use to contact the client.
 Client software may present this to a user in order to suggest
 what contact point the user should check (e.g., an email address).

 {
 "type": "recoveryContact",
 "activationURL" : "https://example.ca/sendrecovery/a5bd99383fb0",
 "successURL" : "https://example.ca/confirmrecovery/bb1b9928932",
 "contact" : "c********n@example.com"
 }

 type (required, string): The string "recoveryContact"

 token (optional, string): If the user transferred a token from a
 contact email or call into the client software, the client sends
 it here. If it the client has received a 200 success response
 while polling the RecoveryContact Challenge's successURL, this
 field SHOULD be omitted.

 {
 "type": "recoveryContact",
 "token": "23029d88d9e123e"
 }

 If the value of the "token" field matches the value provided in the
 out-of-band message to the client, or if the client has completed the
 required out-of-band action, then the validation succeeds.
 Otherwise, the validation fails.

Barnes, et al. Expires July 28, 2015 [Page 28]

Internet-Draft ACME January 2015

6.4. Recovery Token

 A recovery token is a simple way for the server to verify that the
 client was previously authorized for a domain. The client simply
 provides the recovery token that was provided in the authorize
 message.

 type (required, string): The string "recoveryToken"

 {
 "type": "recoveryToken"
 }

 The response to a recovery token challenge is simple; the client
 sends the requested token that it was provided by the server earlier.

 type (required, string): The string "recoveryToken"

 token (optional, string): The recovery token provided by the server.

 {
 "type": "recoveryToken",
 "token": "23029d88d9e123e"
 }

 If the value of the "token" field matches a recovery token that the
 server previously provided for this domain, then the validation
 succeeds. Otherwise, the validation fails.

6.5. Proof of Possession of a Prior Key

 The Proof of Possession challenge verifies that a client possesses a
 private key corresponding to a server-specified public key, as
 demonstrated by its ability to correctly sign server-provided data
 with that key.

 This method is useful if a server policy calls for issuing a
 certificate only to an entity that already possesses the subject
 private key of a particular prior related certificate (perhaps issued
 by a different CA). It may also help enable other kinds of server
 policy that are related to authenticating a client's identity using
 digital signatures.

 This challenge proceeds in much the same way as the proof of
 possession of the authorized key pair in the main ACME flow
 (challenge + authorizationRequest). The server provides a nonce and

Barnes, et al. Expires July 28, 2015 [Page 29]

Internet-Draft ACME January 2015

 the client signs over the nonce. The main difference is that rather
 than signing with the private key of the key pair being authorized,
 the client signs with a private key specified by the server. The
 server can specify which key pair(s) are acceptable directly (by
 indicating a public key), or by asking for the key corresponding to a
 certificate.

 The server provides the following fields as part of the challenge:

 type (required, string): The string "proofOfPossession"

 alg (required, string): A token indicating the cryptographic
 algorithm that should be used by the client to compute the
 signature [I-D.ietf-jose-json-web-algorithms]. (MAC algorithms
 such as "HS*" MUST NOT be used.) The client MUST verify that this
 algorithm is supported for the indicated key before responding to
 this challenge.

 nonce (required, string): A random 16-byte octet string,
 base64-encoded

 hints (required, object): A JSON object that contains various clues
 for the client about what the requested key is, such that the
 client can find it. Entries in the hints object may include:

 jwk (required, object): A JSON Web Key object describing the public
 key whose corresponding private key should be used to generate the
 signature [I-D.ietf-jose-json-web-key]

 certFingerprints (optional, array): An array of certificate
 fingerprints, hex-encoded SHA1 hashes of DER-encoded certificates
 that are known to contain this key

 certs (optional, array): An array of certificates, in PEM encoding,
 that contain acceptable public keys.

 subjectKeyIdentifiers (optional, array): An array of hex-encoded
 Subject Key Identifiers (SKIDs) from certificate(s) that contain
 the key. Because of divergences in the way that SKIDs are
 calculated [RFC5280], there may conceivably be more than one of
 these.

 serialNumbers (optional, array of numbers): An array of serial
 numbers of certificates that are known to contain the requested
 key

https://datatracker.ietf.org/doc/html/rfc5280

Barnes, et al. Expires July 28, 2015 [Page 30]

Internet-Draft ACME January 2015

 issuers (optional, array): An array of X.509 Distinguished Names
 [RFC5280] of CAs that have been observed to issue certificates for
 this key, in text form [RFC4514]

 authorizedFor (optional, array): An array of domain names, if any,
 for which this server regards the key as an ACME Authorized key.

{
 "type": "proofOfPossession",
 "alg": "RS256",
 "nonce": "eET5udtV7aoX8Xl8gYiZIA",
 "hints" : {
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "n": "KxITJ0rNlfDMAtfDr8eAw...fSSoehDFNZKQKzTZPtQ"
 },
 "certFingerprints": [
 "93416768eb85e33adc4277f4c9acd63e7418fcfe",
 "16d95b7b63f1972b980b14c20291f3c0d1855d95",
 "48b46570d9fc6358108af43ad1649484def0debf"
],
 "subjectKeyIdentifiers": ["d0083162dcc4c8a23ecb8aecbd86120e56fd24e5"],
 "serialNumbers": [34234239832, 23993939911, 17],
 "issuers": [
 "C=US, O=SuperT LLC, CN=SuperTrustworthy Public CA",
 "O=LessTrustworthy CA Inc, CN=LessTrustworthy But StillSecure"
],
 "authorizedFor": ["www.example.com", "example.net"]
 }
}

 In this case the server is challenging the client to prove its
 control over the private key that corresponds to the public key
 specified in the jwk object. The signing algorithm is specified by
 the alg field. The nonce value is used by the server to identify
 this challenge and is also used, also with a client-provided
 signature nonce, as part of the signature input.

 signature-input = signature-nonce || server-nonce

 The client's response includes the server-provided nonce, together
 with a signature over that nonce by one of the private keys requested
 by the server.

 type (required, string): The string "proofOfPossession"

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4514

Barnes, et al. Expires July 28, 2015 [Page 31]

Internet-Draft ACME January 2015

 nonce (required, string): The server nonce that the server
 previously associated with this challenge

 signature (required, object): The ACME signature computed over the
 signature-input using the server-specified algorithm

 {
 "type": "proofOfPossession",
 "nonce": "eET5udtV7aoX8Xl8gYiZIA",
 "signature": {
 "alg": "RS256",
 "nonce": "eET5udtV7aoX8Xl8gYiZIA",
 "sig": "KxITJ0rNlfDMAtfDr8eAw...fSSoehDFNZKQKzTZPtQ",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "n": "KxITJ0rNlfDMAtfDr8eAw...fSSoehDFNZKQKzTZPtQ"
 }
 }
 }

 Note that just as in the authorizationRequest message, there are two
 nonces here, once provided by the client (inside the signature
 object) and one provided by the server in its challenge (outside the
 signature object). The signature covers the concatenation of these
 two nonces (as specified in the signature-input above).

 If the server is able to validate the signature and confirm that the
 jwk and alg objects are unchanged from the original challenge, the
 server can conclude that the client is in control of the private key
 that corresponds to the specified public key. The server can use
 this evidence in support of its authorization and certificate
 issuance policies.

6.6. DNS

 When the identifier being validated is a domain name, the client can
 prove control of that domain by provisioning records under it. The
 DNS challenge requires the client to provision a TXT record
 containing a validation token under a specific validation domain
 name.

 type (required, string): The string "dns"

 token (required, string): An ASCII string that is to be provisioned
 in the TXT record. This string SHOULD be randomly generated, with

Barnes, et al. Expires July 28, 2015 [Page 32]

Internet-Draft ACME January 2015

 at least 128 bits of entropy (e.g., a hex-encoded random octet
 string).

 {
 "type": "dns",
 "token": "17817c66b60ce2e4012dfad92657527a"
 }

 In response to this challenge, the client first MUST verify that the
 token contains only ASCII characters. If so, the client constructs
 the validation domain name by appending the label "_acme-challenge"
 to the domain name being validated. For example, if the domain name
 being validated is "example.com", then the client would provision the
 following DNS record:

 _acme-challenge.example.com. IN TXT "17817c66b60ce2e4012dfad92657527a"

 The response to a DNS challenge is simply an acknowledgement that the
 relevant record has been provisioned.

 type (required, string): The string "dns"

 {
 "type": "dns"
 }

 To validate a DNS challenge, the server queries for TXT records under
 the validation domain name. If it receives a record whose contents
 match the token in the challenge, then the validation succeeds.
 Otherwise, the validation fails.

6.7. Other possibilities

 For future work:

 o Email

 o DNSSEC

 o WHOIS

Barnes, et al. Expires July 28, 2015 [Page 33]

Internet-Draft ACME January 2015

7. IANA Considerations

 TODO

 o Register .well-known path

 o Create identifier validation method registry

 o Registries of syntax tokens, e.g., message types / error types?

8. Security Considerations

 TODO

 o General authorization story

 o PoP nonce entropy

 o ToC/ToU; duration of key authorization

 o Clients need to protect recovery key

 o CA needs to perform a very wide range of issuance policy
 enforcement and sanity-check steps

 o Parser safety (for JSON, JWK, ASN.1, and any other formats that
 can be parsed by the ACME server)

9. References

9.1. Normative References

 [I-D.ietf-jose-json-web-algorithms]
 Jones, M., "JSON Web Algorithms (JWA)", draft-ietf-jose-

json-web-algorithms-40 (work in progress), January 2015.

 [I-D.ietf-jose-json-web-key]
 Jones, M., "JSON Web Key (JWK)", draft-ietf-jose-json-web-

key-41 (work in progress), January 2015.

 [I-D.ietf-jose-json-web-signature]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature-41
 (work in progress), January 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-40
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-40
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-41
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-41
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature-41
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Barnes, et al. Expires July 28, 2015 [Page 34]

Internet-Draft ACME January 2015

 [RFC2314] Kaliski, B., "PKCS #10: Certification Request Syntax
 Version 1.5", RFC 2314, March 1998.

 [RFC2985] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
 Classes and Attribute Types Version 2.0", RFC 2985,
 November 2000.

 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 November 2000.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC4514] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP): String Representation of Distinguished Names", RFC

4514, June 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570, March 2012.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

9.2. Informative References

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

Authors' Addresses

 Richard Barnes
 Mozilla

 Email: rlb@ipv.sx

https://datatracker.ietf.org/doc/html/rfc2314
https://datatracker.ietf.org/doc/html/rfc2985
https://datatracker.ietf.org/doc/html/rfc2986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc2818

Barnes, et al. Expires July 28, 2015 [Page 35]

Internet-Draft ACME January 2015

 Eric Rescorla
 Mozilla

 Email: ekr@rtfm.com

 Peter Eckersley
 EFF

 Email: pde@eff.org

 Seth Schoen
 EFF

 Email: schoen@eff.org

 Alex Halderman
 University of Michigan

 Email: jhalderm@eecs.umich.edu

 James Kasten
 University of Michigan

 Email: jdkasten@umich.edu

Barnes, et al. Expires July 28, 2015 [Page 36]

