
Network Working Group R. Barnes
Internet-Draft Mozilla
Intended status: Standards Track P. Eckersley
Expires: November 14, 2015 S. Schoen
 EFF
 A. Halderman
 J. Kasten
 University of Michigan
 May 13, 2015

Automatic Certificate Management Environment (ACME)
draft-barnes-acme-02

Abstract

 Certificates in the Web's X.509 PKI (PKIX) are used for a number of
 purposes, the most significant of which is the authentication of
 domain names. Thus, certificate authorities in the Web PKI are
 trusted to verify that an applicant for a certificate legitimately
 represents the domain name(s) in the certificate. Today, this
 verification is done through a collection of ad hoc mechanisms. This
 document describes a protocol that a certificate authority (CA) and
 an applicant can use to automate the process of verification and
 certificate issuance. The protocol also provides facilities for
 other certificate management functions, such as certificate
 revocation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 14, 2015.

Barnes, et al. Expires November 14, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft ACME May 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Deployment Model and Operator Experience 4
3. Terminology . 5
4. Protocol Overview . 6
5. Certificate Management 9
5.1. Resources and Requests 9
5.2. Errors . 11
5.3. Registration . 12
5.4. Authorization Resources 14
5.5. Key Authorization . 15
5.5.1. Recovery Tokens 19

5.6. Certificate Issuance 21
5.7. Certificate Refresh 22
5.8. Certificate Revocation 22

6. Identifier Validation Challenges 23
6.1. Simple HTTPS . 25
6.2. Domain Validation with Server Name Indication 26
6.3. Recovery Contact . 29
6.4. Recovery Token . 30
6.5. Proof of Possession of a Prior Key 30
6.6. DNS . 34
6.7. Other possibilities 35

7. IANA Considerations . 35
8. Security Considerations 35
9. Acknowledgements . 35
10. References . 36
10.1. Normative References 36
10.2. Informative References 37

 Authors' Addresses . 37

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Barnes, et al. Expires November 14, 2015 [Page 2]

Internet-Draft ACME May 2015

1. Introduction

 Certificates in the Web PKI are most commonly used to authenticate
 domain names. Thus, certificate authorities in the Web PKI are
 trusted to verify that an applicant for a certificate legitimately
 represents the domain name(s) in the certificate.

 Existing Web PKI certificate authorities tend to run on a set of ad
 hoc protocols for certificate issuance and identity verification. A
 typical user experience is something like:

 o Generate a PKCS#10 [RFC2314] Certificate Signing Request (CSR).

 o Cut-and-paste the CSR into a CA web page.

 o Prove ownership of the domain by one of the following methods:

 * Put a CA-provided challenge at a specific place on the web
 server.

 * Put a CA-provided challenge at a DNS location corresponding to
 the target domain.

 * Receive CA challenge at a (hopefully) administrator-controlled
 e-mail address corresponding to the domain and then respond to
 it on the CA's web page.

 o Download the issued certificate and install it on their Web
 Server.

 With the exception of the CSR itself and the certificates that are
 issued, these are all completely ad hoc procedures and are
 accomplished by getting the human user to follow interactive natural-
 language instructions from the CA rather than by machine-implemented
 published protocols. In many cases, the instructions are difficult
 to follow and cause significant confusion. Informal usability tests
 by the authors indicate that webmasters often need 1-3 hours to
 obtain and install a certificate for a domain. Even in the best
 case, the lack of published, standardized mechanisms presents an
 obstacle to the wide deployment of HTTPS and other PKIX-dependent
 systems because it inhibits mechanization of tasks related to
 certificate issuance, deployment, and revocation.

 This document describes an extensible framework for automating the
 issuance and domain validation procedure, thereby allowing servers
 and infrastructural software to obtain certificates without user
 interaction. Use of this protocol should radically simplify the

https://datatracker.ietf.org/doc/html/rfc2314

Barnes, et al. Expires November 14, 2015 [Page 3]

Internet-Draft ACME May 2015

 deployment of HTTPS and the practicality of PKIX authentication for
 other protocols based on TLS [RFC5246].

2. Deployment Model and Operator Experience

 The major guiding use case for ACME is obtaining certificates for Web
 sites (HTTPS [RFC2818]). In that case, the server is intended to
 speak for one or more domains, and the process of certificate
 issuance is intended to verify that the server actually speaks for
 the domain.

 Different types of certificates reflect different kinds of CA
 verification of information about the certificate subject. "Domain
 Validation" (DV) certificates are by far the most common type. For
 DV validation, the CA merely verifies that the requester has
 effective control of the web server and/or DNS server for the domain,
 but does not explicitly attempt to verify their real-world identity.
 (This is as opposed to "Organization Validation" (OV) and "Extended
 Validation" (EV) certificates, where the process is intended to also
 verify the real-world identity of the requester.)

 DV certificate validation commonly checks claims about properties
 related to control of a domain name - properties that can be observed
 by the issuing authority in an interactive process that can be
 conducted purely online. That means that under typical
 circumstances, all steps in the request, verification, and issuance
 process can be represented and performed by Internet protocols with
 no out-of-band human intervention.

 When an operator deploys a current HTTPS server, it generally prompts
 him to generate a self-signed certificate. When an operator deploys
 an ACME-compatible web server, the experience would be something like
 this:

 o The ACME client prompts the operator for the intended domain
 name(s) that the web server is to stand for.

 o The ACME client presents the operator with a list of CAs from
 which it could get a certificate.
 (This list will change over time based on the capabilities of CAs
 and updates to ACME configuration.) The ACME client might prompt
 the operator for payment information at this point.

 o The operator selects a CA.

 o In the background, the ACME client contacts the CA and requests
 that a certificate be issued for the intended domain name(s).

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2818

Barnes, et al. Expires November 14, 2015 [Page 4]

Internet-Draft ACME May 2015

 o Once the CA is satisfied, the certificate is issued and the ACME
 client automatically downloads and installs it, potentially
 notifying the operator via e-mail, SMS, etc.

 o The ACME client periodically contacts the CA to get updated
 certificates, stapled OCSP responses, or whatever else would be
 required to keep the server functional and its credentials up-to-
 date.

 The overall idea is that it's nearly as easy to deploy with a CA-
 issued certificate as a self-signed certificate, and that once the
 operator has done so, the process is self-sustaining with minimal
 manual intervention. Close integration of ACME with HTTPS servers,
 for example, can allow the immediate and automated deployment of
 certificates as they are issued, optionally sparing the human
 administrator from additional configuration work.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The two main roles in ACME are "client" and "server". The ACME
 client uses the protocol to request certificate management actions,
 such as issuance or revocation. An ACME client therefore typically
 runs on a web server, mail server, or some other server system which
 requires valid TLS certificates. The ACME server runs at a
 certificate authority, and responds to client requests, performing
 the requested actions if the client is authorized.

 For simplicity, in the HTTPS transactions used by ACME, the ACME
 client is the HTTPS client and the ACME server is the HTTPS server.

 In the discussion below, we will refer to three different types of
 keys / key pairs:

 Subject Public Key: A public key to be included in a certificate.

 Account Key Pair: A key pair for which the ACME server considers the
 holder of the private key authorized to manage certificates for a
 given identifier. The same key pair may be authorized for
 multiple identifiers.

 Recovery Token: A secret value that can be used to demonstrate prior
 authorization for an identifier, in a situation where all Subject
 Private Keys and Account Keys are lost.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Barnes, et al. Expires November 14, 2015 [Page 5]

Internet-Draft ACME May 2015

 ACME messaging is based on HTTPS [RFC2818] and JSON [RFC7159]. Since
 JSON is a text-based format, binary fields are Base64-encoded. For
 Base64 encoding, we use the variant defined in
 [I-D.ietf-jose-json-web-signature]. The important features of this
 encoding are (1) that it uses the URL-safe character set, and (2)
 that "=" padding characters are stripped.

 Some HTTPS bodies in ACME are authenticated and integrity-protected
 by being encapsulated in a JSON Web Signature (JWS) object
 [I-D.ietf-jose-json-web-signature]. ACME uses a profile of JWS, with
 the following restrictions:

 o The JWS MUST use the JSON or Flattened JSON Serialization

 o If the JWS is in the JSON Serialization, it MUST NOT include more
 than one signature in the "signatures" array

 o The JWS Header MUST include "alg" and "jwk" fields

4. Protocol Overview

 ACME allows a client to request certificate management actions using
 a set of JSON messages carried over HTTPS. In some ways, ACME
 functions much like a traditional CA, in which a user creates an
 account, adds identifiers to that account (proving control of the
 domains), and requests certificate issuance for those domains while
 logged in to the account.

 In ACME, the account is represented by an account key pair. The "add
 a domain" function is accomplished by authorizing the key pair for a
 given domain. Certificate issuance and revocation are authorized by
 a signature with the key pair.

 The first phase of ACME is for the client to register with the ACME
 server. The client generates an asymmetric key pair and associates
 this key pair with a set of contact information by signing the
 contact information. The server acknowledges the registration by
 replying with a recovery token that the client can provide later to
 associate a new account key pair in the event that the first account
 key pair is lost.

 Client Server

 Contact Information
 Signature ------->

 <------- Recovery Token

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc7159

Barnes, et al. Expires November 14, 2015 [Page 6]

Internet-Draft ACME May 2015

 Before a client can issue certificates, it must establish an
 authorization with the server for an account key pair to act for the
 identifier(s) that it wishes to include in the certificate. To do
 this, the client must demonstrate to the server both (1) that it
 holds the private key of the account key pair, and (2) that it has
 authority over the identifier being claimed.

 Proof of possession of the account key is built into the ACME
 protocol. All messages from the client to the server are signed by
 the client, and the server verifies them using the public key of the
 account key pair.

 To verify that the client controls the identifier being claimed, the
 server issues the client a set of challenges. Because there are many
 different ways to validate possession of different types of
 identifiers, the server will choose from an extensible set of
 challenges that are appropriate for the identifier being claimed.
 The client responds with a set of responses that tell the server
 which challenges the client has completed. The server then validates
 the challenges to check that the client has accomplished the
 challenge.

 For example, if the client requests a domain name, the server might
 challenge the client to provision a record in the DNS under that
 name, or to provision a file on a web server referenced by an A or
 AAAA record under that name. The server would then query the DNS for
 the record in question, or send an HTTP request for the file. If the
 client provisioned the DNS or the web server as expected, then the
 server considers the client authorized for the domain name.

 Client Server

 Identifier
 Signature ------->

 <------- Challenges

 Responses
 Signature ------->

 <------- Updated Challenge

 Poll ------->

 <------- Authorization

Barnes, et al. Expires November 14, 2015 [Page 7]

Internet-Draft ACME May 2015

 Once the client has authorized an account key pair for an identifier,
 it can use the key pair to authorize the issuance of certificates for
 the identifier. To do this, the client sends a PKCS#10 Certificate
 Signing Request (CSR) to the server (indicating the identifier(s) to
 be included in the issued certificate), a set of links to any
 required authorizations, and a signature over the CSR by the private
 key of the account key pair.

 If the server agrees to issue the certificate, then it creates the
 certificate and provides it in its response. The certificate is
 assigned a URI, which the client can use to fetch updated versions of
 the certificate.

 Client Server

 CSR
 Authorization URI(s)
 Signature -------->

 <-------- Certificate

 To revoke a certificate, the client simply sends a revocation
 request, signed with an authorized key pair, and the server indicates
 whether the request has succeeded.

 Client Server

 Revocation request
 Signature -------->

 <-------- Result

 Note that while ACME is defined with enough flexibility to handle
 different types of identifiers in principle, the primary use case
 addressed by this document is the case where domain names are used as
 identifiers. For example, all of the identifier validation
 challenges described in Section {identifier-validation-challenges}
 below address validation of domain names. The use of ACME for other
 protocols will require further specification, in order to describe
 how these identifiers are encoded in the protocol, and what types of
 validation challenges the server might require.

Barnes, et al. Expires November 14, 2015 [Page 8]

Internet-Draft ACME May 2015

5. Certificate Management

 In this section, we describe the certificate management functions
 that ACME enables:

 o Registration

 o Key Authorization

 o Certificate Issuance

 o Certificate Revocation

 Each of these functions is accomplished by the client sending a
 sequence of HTTPS requests to the server, carrying JSON messages.
 Each subsection below describes the message formats used by the
 function, and the order in which messages are sent.

5.1. Resources and Requests

 ACME is structured as a REST application with a few types of
 resources:

 o Registration resources, representing information about an account
 key

 o Authorization resources, representing an account key's
 authorization to act for an identifier

 o Challenge resources, representing a challenge to prove control of
 an identifier

 o Certificate resources, representing issued certificates

 o A "new-registration" resource

 o A "new-authorization" resource

 o A "new-certificate" resource

 In general, the intent is for authorization and certificate resources
 to contain only public information, so that CAs may publish these
 resources to document what certificates have been issued and how they
 were authorized. Non-public information, such as contact
 information, is stored in registration resources.

 In order to accomplish ACME transactions, a client needs to have the
 server's new-registration, new-authorization, and new-certificate

Barnes, et al. Expires November 14, 2015 [Page 9]

Internet-Draft ACME May 2015

 URIs; the remaining URIs are provided to the client as a result of
 requests to these URIs. To simplify configuration, ACME uses the
 "next" link relation to indicate URI to contact for the next step in
 processing: From registration to authorization, and from
 authorization to certificate issuance. In this way, a client need
 only be configured with the registration URI.

 The "up" link relation is used with challenge resources to indicate
 the authorization resource to which a challenge belongs. It is also
 used from certificate resources to indicate a resource from which the
 client may fetch a chain of CA certificates that could be used to
 validate the certificate in the original resource.

 The following diagram illustrates the relations between resources on
 an ACME server. The solid lines indicate link relations, and the
 dotted lines correspond to relationships expressed in other ways,
 e.g., the Location header in a 201 (Created) response.

 "next" "next"
 new-reg ---+----> new-authz ---+----> new-cert cert-chain
 . | . | . ^
 . | . | . | "up"
 V | V | V |
 reg* ----+ authz -----+ cert-----------+
 . ^
 . | "up"
 V |
 challenge

 The remainder of this section provides the details of how these
 resources are structured and how the ACME protocol makes use of them.

 All ACME requests with a non-empty body MUST encapsulate the body in
 a JWS object, signed using the account key pair. The server MUST
 verify the JWS before processing the request. (For readability,
 however, the examples below omit this encapsulation.) Encapsulating
 request bodies in JWS provides a simple authentication of requests by
 way of key continuity.

 Note that this implies that GET requests are not authenticated.
 Servers MUST NOT respond to GET requests for resources that might be
 considered sensitive.

 The following table illustrates a typical sequence of requests
 required to establish a new account with the server, prove control of
 an identifier, issue a certificate, and fetch an updated certificate

Barnes, et al. Expires November 14, 2015 [Page 10]

Internet-Draft ACME May 2015

 some time after issuance. The "->" is a mnemonic for a Location
 header pointing to a created resource.

 +--------------------+----------------+--------------+
 | Action | Request | Response |
 +--------------------+----------------+--------------+
 | Register | POST new-reg | 201 -> reg |
 | | | |
 | Request challenges | POST new-authz | 201 -> authz |
 | | | |
 | Answer challenges | POST challenge | 200 |
 | | | |
 | Poll for status | GET authz | 200 |
 | | | |
 | Request issuance | POST new-cert | 201 -> cert |
 | | | |
 | Check for new cert | GET cert | 200 |
 +--------------------+----------------+--------------+

5.2. Errors

 Errors can be reported in ACME both at the HTTP layer and within ACME
 payloads. ACME servers can return responses with an HTTP error
 response code (4XX or 5XX). For example: If the client submits a
 request using a method not allowed in this document, then the server
 MAY return status code 405 (Method Not Allowed).

 When the server responds with an error status, it SHOULD provide
 additional information using problem document
 [I-D.ietf-appsawg-http-problem]. The "type" and "detail" fields MUST
 be populated. To facilitate automatic response to errors, this
 document defines the following standard tokens for use in the "type"
 field (within the "urn:acme:" namespace):

 +----------------+--+
 | Code | Semantic |
 +----------------+--+
malformed	The request message was malformed
unauthorized	The client lacks sufficient authorization
serverInternal	The server experienced an internal error
badCSR	The CSR is unacceptable (e.g., due to a short
	key)
 +----------------+--+

Barnes, et al. Expires November 14, 2015 [Page 11]

Internet-Draft ACME May 2015

 Authorization and challenge objects can also contain error
 information to indicate why the server was unable to validate
 authorization.

 TODO: Flesh out errors and syntax for them

5.3. Registration

 An ACME registration resource represents a set of metadata associated
 to an account key pair, most importantly contact information and a
 recovery token. Registration resources have the following structure:

 key (required, dictionary): The public key of the account key pair,
 encoded as a JSON Web Key object [I-D.ietf-jose-json-web-key].

 contact (optional, array of string): An array of URIs that the
 server can use to contact the client for issues related to this
 authorization. For example, the server may wish to notify the
 client about server-initiated revocation, or check with the client
 on future authorizations (see the "recoveryContact" challenge
 type).

 recoveryToken (optional, string): An opaque token that the client
 can present to demonstrate that it participated in a prior
 authorization transaction.

 agreement (optional, string): A URI referring to a subscriber
 agreement or terms of service provided by the server (see below).
 Including this field indicates the client's agreement with these
 terms.

 A client creates a new account with the server by sending a POST
 request to the server's new-registration URI. The body of the
 request is a registration object containing only the "contact" field.

 POST /acme/new-registration HTTP/1.1
 Host: example.com

 {
 "contact": [
 "mailto:cert-admin@example.com",
 "tel:+12025551212"
],
 }
 /* Signed as JWS */

Barnes, et al. Expires November 14, 2015 [Page 12]

Internet-Draft ACME May 2015

 The server MUST ignore any values provided in the "key" or
 "recoveryToken" fields, as well as any other fields that it does not
 recognize. If new fields are specified in the future, the
 specification of those fields MUST describe whether they may be
 provided by the client.

 The server creates a registration object with the included contact
 information. The "key" element of the registration is set to the
 public key used to verify the JWS (i.e., the "jwk" element of the JWS
 header). The server also provides a random recovery token. The
 server returns this registration object in a 201 (Created) response,
 with the registration URI in a Location header field. The server
 MUST also indicate its new-authorization URI using the "next" link
 relation.

 If the server wishes to present the client with terms under which the
 ACME service is to be used, it may indicate the URI where such terms
 can be accessed in a Link header with link relation "terms-of-
 service". As noted above, the client may indicate its agreement with
 these terms by updating its registration to include the "agreement"
 field, with the terms URI as its value.

 HTTP/1.1 201 Created
 Content-Type: application/json
 Location: https://example.com/reg/asdf
 Link: <https://example.com/acme/new-authz>;rel="next"
 Link: <https://example.com/acme/terms>;rel="terms-of-service"

 {
 "key": { /* JWK from JWS header */ },

 "contact": [
 "mailto:cert-admin@example.com",
 "tel:+12025551212"
],

 "recoveryToken": "uV2Aph7-sghuCcFVmvsiZw"
 }

 If the client wishes to update this information in the future, it
 sends a POST request with updated information to the registration
 URI. The server MUST ignore any updates to the "key" or
 "recoveryToken" fields, and MUST verify that the request is signed
 with the private key corresponding to the "key" field of the request
 before updating the registration.

Barnes, et al. Expires November 14, 2015 [Page 13]

Internet-Draft ACME May 2015

 Servers SHOULD NOT respond to GET requests for registration resources
 as these requests are not authenticated.

5.4. Authorization Resources

 An ACME authorization resource represents server's authorization for
 an account key pair to represent an identifier. In addition to a
 public key and identifier, an authorization includes several metadata
 fields, such as the status of the authorization (e.g., "pending",
 "valid", or "revoked") and which challenges were used to validate
 possession of the identifier.

 The structure of an ACME authorization resource is as follows:

 identifier (required, dictionary of string): The identifier that the
 account key is authorized to represent

 type (required, string): The type of identifier.

 value (required, string): The identifier itself.

 key (required, dictionary): The public key of the account key pair,
 encoded as a JSON Web Key object [I-D.ietf-jose-json-web-key].

 status (optional, string): The status of this authorization.
 Possible values are: "unknown", "pending", "processing", "valid",
 "invalid" and "revoked". If this field is missing, then the
 default value is "pending".

 expires (optional, string): The date after which the server will
 consider this authorization invalid, encoded in the format
 specified in RFC 3339 [RFC3339].

 challenges (required, array): The challenges that the client needs
 to fulfill in order to prove possession of the identifier (for
 pending authorizations). For final authorizations, the challenges
 that were used. Each array entry is a dictionary with parameters
 required to validate the challenge, as specified in Section
 {identifier-validation-challenges}.

 combinations (optional, array of arrays of integers): A collection
 of sets of challenges, each of which would be sufficient to prove
 possession of the identifier. Clients complete a set of
 challenges that that covers at least one set in this array.
 Challenges are identified by their indices in the challenges
 array. If no "combinations" element is included in an
 authorization object, the client completes all challenges.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Barnes, et al. Expires November 14, 2015 [Page 14]

Internet-Draft ACME May 2015

 The only type of identifier defined by this specification is a fully-
 qualified domain name (type: "dns"). The value of the identifier
 MUST be the ASCII representation of the domain name.

 {
 "status": "valid",
 "expires": "2015-03-01",

 "identifier": {
 "type": "dns",
 "value": "example.org"
 },

 "key": { /* JWK */ },

 "challenges": [
 {
 "type": "simpleHttps",
 "status": "valid",
 "validated": "2014-12-01T12:05Z",
 "token": "IlirfxKKXAsHtmzK29Pj8A"
 "path": "Hf5GrX4Q7EBax9hc2jJnfw"
 },
 {
 "type": "recoveryToken",
 "status": "valid",
 "validated": "2014-12-01T12:07Z",
 "token": "23029d88d9e123e"
 }
],
 }

5.5. Key Authorization

 The key authorization process establishes the authorization of an
 account key pair to manage certificates for a given identifier. This
 process must assure the server of two things: First, that the client
 controls the private key of the key pair, and second, that the client
 holds the identifier in question. This process may be repeated to
 associate multiple identifiers to a key pair (e.g., to request
 certificates with multiple identifiers), or to associate multiple key
 pairs with an identifier (e.g., to allow multiple entities to manage
 certificates).

 As illustrated by the figure in the overview section above, the
 authorization process proceeds in two phases. The client first

Barnes, et al. Expires November 14, 2015 [Page 15]

Internet-Draft ACME May 2015

 requests a new authorization, and then the server issues challenges
 that the client responds to.

 To begin the key authorization process, the client sends a POST
 request to the server's new-authorization resource. The body of the
 POST request MUST contain a JWS object, whose payload is a partial
 authorization object. This JWS object MUST contain only the
 "identifier" field, so that the server knows what identifier is being
 authorized. The client MAY provide contact information in the
 "contact" field in this or any subsequent request.

 POST /acme/new-authorization HTTP/1.1
 Host: example.com

 {
 "identifier": {
 "type": "dns",
 "value": "example.org"
 }
 }
 /* Signed as JWS */

 Before processing the authorization further, the server SHOULD
 determine whether it is willing to issue certificates for the
 identifier. For example, the server should check that the identifier
 is of a supported type. Servers might also check names against a
 blacklist of known high-value identifiers. If the server is
 unwilling to issue for the identifier, it SHOULD return a 403
 (Forbidden) error, with a problem document describing the reason for
 the rejection.

 If the server is willing to proceed, it builds a pending
 authorization object from the initial authorization object submitted
 by the client.

 o "identifier" the identifier submitted by the client.

 o "key": the key used to verify the client's JWS request (i.e., the
 contents of the "jwk" field in the JWS header)

 o "status": SHOULD be "pending" (MAY be omitted)

 o "challenges" and "combinations": As selected by the server's
 policy for this identifier

 o The "expires" field MUST be absent.

Barnes, et al. Expires November 14, 2015 [Page 16]

Internet-Draft ACME May 2015

 The server allocates a new URI for this authorization, and returns a
 201 (Created) response, with the authorization URI in a Location
 header field, and the JSON authorization object in the body.

 HTTP/1.1 201 Created
 Content-Type: application/json
 Location: https://example.com/authz/asdf
 Link: <https://example.com/acme/new-cert>;rel="next"

 {
 "status": "pending",

 "identifier": {
 "type": "dns",
 "value": "example.org"
 },

 "key": { /* JWK from JWS header */ },

 "challenges": [
 {
 "type": "simpleHttps",
 "uri": "https://example.com/authz/asdf/0",
 "token": "IlirfxKKXAsHtmzK29Pj8A"
 },
 {
 "type": "dns",
 "uri": "https://example.com/authz/asdf/1"
 "token": "DGyRejmCefe7v4NfDGDKfA"
 },
 {
 "type": "recoveryToken",
 "uri": "https://example.com/authz/asdf/2"
 }
 },

 "combinations": [
 [0, 2],
 [1, 2]
]
 }

 The client needs to respond with information to complete the
 challenges. To do this, the client updates the authorization object
 received from the server by filling in any required information in
 the elements of the "challenges" dictionary. For example, if the
 client wishes to complete the "simpleHttps" challenge, it needs to

Barnes, et al. Expires November 14, 2015 [Page 17]

Internet-Draft ACME May 2015

 provide the "path" component. (This is also the stage where the
 client should perform any actions required by the challenge.)

 The client sends these updates back to the server in the form of a
 JSON object with the response fields required by the challenge type,
 carried in a POST request to the challenge URI (not authorization URI
 or the new-authorization URI). This allows the client to send
 information only for challenges it is responding to.

 For example, if the client were to respond to the "simpleHttps"
 challenge in the above authorization, it would send the following
 request:

 POST /acme/authz/asdf/0 HTTP/1.1
 Host: example.com

 {
 "path": "Hf5GrX4Q7EBax9hc2jJnfw"
 }
 /* Signed as JWS */

 The server updates the authorization document by updating its
 representation of the challenge with the response fields provided by
 the client. The server MUST ignore any fields in the response object
 that are not specified as response fields for this type of challenge.
 The server provides a 200 response including the updated challenge.

 Presumably, the client's responses provide the server with enough
 information to validate one or more challenges. The server is said
 to "finalize" the authorization when it has completed all the
 validations it is going to complete, and assigns the authorization a
 status of "valid" or "invalid", corresponding to whether it considers
 the account key authorized for the identifier. If the final state is
 "valid", the server MUST add an "expires" field to the authorization.
 When finalizing an authorization, the server MAY remove the
 "combinations" field (if present), remove any unfulfilled challenges,
 or add a "recoveryToken" field.

 Usually, the validation process will take some time, so the client
 will need to poll the authorization resource to see when it is
 finalized. For challenges where the client can tell when the server
 has validated the challenge (e.g., by seeing an HTTP or DNS request
 from the server), the client SHOULD NOT begin polling until it has
 seen the validation request from the server.

 To check on the status of an authorization, the client sends a GET
 request to the authorization URI, and the server responds with the

Barnes, et al. Expires November 14, 2015 [Page 18]

Internet-Draft ACME May 2015

 current authorization object. To provide some degree of control over
 polling, the server MAY provide a Retry-After header field to
 indicate how long it expect to take in finalizing the response.

 GET /acme/authz/asdf HTTP/1.1
 Host: example.com

 HTTP/1.1 200 OK

 {
 "status": "valid",
 "expires": "2015-03-01",

 "identifier": {
 "type": "dns",
 "value": "example.org"
 },

 "key": { /* JWK */ },

 "contact": [
 "mailto:cert-admin@example.com",
 "tel:+12025551212"
],

 "challenges": [
 {
 "type": "simpleHttps"
 "status": "valid",
 "validated": "2014-12-01T12:05Z",
 "token": "IlirfxKKXAsHtmzK29Pj8A"
 "path": "Hf5GrX4Q7EBax9hc2jJnfw"
 },
 {
 "type": "recoveryToken",
 "status": "valid",
 "validated": "2014-12-01T12:07Z",
 "token": "23029d88d9e123e"
 }
]
 }

5.5.1. Recovery Tokens

 A recovery token is a fallback authentication mechanism. In the
 event that a client loses all other state, including authorized key
 pairs and key pairs bound to certificates, the client can use the

Barnes, et al. Expires November 14, 2015 [Page 19]

Internet-Draft ACME May 2015

 recovery token to prove that it was previously authorized for the
 identifier in question.

 This mechanism is necessary because once an ACME server has issued an
 Authorization Key for a given identifier, that identifier enters a
 higher-security state, at least with respect to the ACME server.
 That state exists to protect against attacks such as DNS hijacking
 and router compromise which tend to inherently defeat all forms of
 Domain Validation. So once a domain has begun using ACME, new DV-
 only authorization will not be performed without proof of continuity
 via possession of an Authorized Private Key or potentially a Subject
 Private Key for that domain.

 This higher state of security poses some risks. From time to time,
 the administrators and owners of domains may lose access to keys they
 have previously had issued or certified, including Authorized private
 keys and Subject private keys. For instance, the disks on which this
 key material is stored may suffer failures, or passphrases for these
 keys may be forgotten. In some cases, the security measures that are
 taken to protect this sensitive data may contribute to its loss.

 Recovery Tokens and Recovery Challenges exist to provide a fallback
 mechanism to restore the state of the domain to the server-side
 administrative security state it was in prior to the use of ACME,
 such that fresh Domain Validation is sufficient for reauthorization.

 Recovery tokens are therefore only useful to an attacker who can also
 perform Domain Validation against a target domain, and as a result
 client administrators may choose to handle them with somewhat fewer
 security precautions than Authorized and Subject private keys,
 decreasing the risk of their loss.

 Recovery tokens come in several types, including high-entropy
 passcodes (which need to be safely preserved by the client admin) and
 email addresses (which are inherently hard to lose, and which can be
 used for verification, though they may be a little less secure).

 Recovery tokens are employed in response to Recovery Challenges.
 Such challenges will be available if the server has issued Recovery
 Tokens for a given domain, and the combination of a Recovery
 Challenge and a domain validation Challenge is a plausible
 alternative to other challenge sets for domains that already have
 extant Authorized keys.

Barnes, et al. Expires November 14, 2015 [Page 20]

Internet-Draft ACME May 2015

5.6. Certificate Issuance

 The holder of an authorized key pair for an identifier may use ACME
 to request that a certificate be issued for that identifier. The
 client makes this request by sending a POST request to the server's
 new-certificate resource. The body of the POST is a JWS object whose
 JSON payload contains a Certificate Signing Request (CSR) [RFC2986]
 and set of authorization URIs. The CSR encodes the parameters of the
 requested certificate; authority to issue is demonstrated by the JWS
 signature and the linked authorizations.

 csr (required, string): A CSR encoding the parameters for the
 certificate being requested. The CSR is sent in Base64-encoded
 version of the DER format. (Note: This field uses the same
 modified Base64-encoding rules used elsewhere in this document, so
 it is different from PEM.)

 authorizations (required, array of string): An array of URIs for
 authorization resources.

 POST /acme/new-cert HTTP/1.1
 Host: example.com
 Accept: application/pkix-cert

 {
 "csr": "5jNudRx6Ye4HzKEqT5...FS6aKdZeGsysoCo4H9P",
 "authorizations": [
 "https://example.com/acme/authz/asdf"
]
 }
 /* Signed as JWS */

 The CSR encodes the client's requests with regard to the content of
 the certificate to be issued. The CSR MUST contain at least one
 extensionRequest attribute [RFC2985] requesting a subjectAltName
 extension, containing the requested identifiers.

 The values provided in the CSR are only a request, and are not
 guaranteed. The server or CA may alter any fields in the certificate
 before issuance. For example, the CA may remove identifiers that are
 not authorized for the key indicated in the "authorization" field.

 If the CA decides to issue a certificate, then the server returns the
 certificate in a response with status code 201 (Created). The server
 MUST indicate a URL for this certificate in a Location header field.

https://datatracker.ietf.org/doc/html/rfc2986
https://datatracker.ietf.org/doc/html/rfc2985

Barnes, et al. Expires November 14, 2015 [Page 21]

Internet-Draft ACME May 2015

 The default format of the certificate is DER (application/pkix-cert).
 The client may request other formats by including an Accept header in
 its request.

 The server can provide metadata about the certificate in HTTP
 headers. For example, the server can include a Link relation header
 field [RFC5988] with relation "up" to provide a certificate under
 which this certificate was issued. Or the server can include an
 Expires header as a hint to the client about when to re-query to
 refresh the certificate. (Of course, the real expiration of the
 certificate is controlled by the notAfter time in the certificate
 itself.)

 HTTP/1.1 201 Created
 Content-Type: application/pkix-cert
 Link: <https://example.com/acme/ca-cert>;rel="up";title="issuer"
 Location: https://example.com/acme/cert/asdf

 [DER-encoded certificate]

5.7. Certificate Refresh

 The certificate URL (provided in the Location header of the server's
 response) is used to refresh or revoke the certificate. To refresh
 the certificate, the client simply sends a GET request to the
 certificate URL. This allows the server to provide the client with
 updated certificates with the same content and different validity
 intervals, for as long as all of the authorization objects underlying
 the certificate are valid.

 If a client sends a refresh request and the server is not willing to
 refresh the certificate, the server MUST respond with status code 403
 (Forbidden). If the client still wishes to obtain a certificate, it
 can re-initiate the authorization process for any expired
 authorizations related to the certificate.

5.8. Certificate Revocation

 To request that a certificate be revoked, the client sends a POST
 request to the certificate URL. The body of the POST is a JWS object
 whose JSON payload contains an indication when the client would like
 the certificate to be revoked:

 revoke (required, string): The time at which the certificate should
 be revoked. The value of this field MUST be either the literal
 string "now", or a date in RFC 3339 format [RFC3339].

https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Barnes, et al. Expires November 14, 2015 [Page 22]

Internet-Draft ACME May 2015

 authorizations (required, array of string): An array of URIs for
 authorization resources.

 POST /acme/cert/asdf HTTP/1.1
 Host: example.com

 {
 "revoke": "now",
 "authorizations": [
 "https://example.com/acme/authz/asdf"
]
 }
 /* Signed as JWS */

 Before revoking a certificate, the server MUST verify that the
 account key pair used to sign the request is authorized to act for
 all of the identifier(s) in the certificate. The server MAY also
 accept a signature by the private key corresponding to the public key
 in the certificate.

 If the revocation succeeds, the server responds with status code 200
 (OK). If the revocation fails, the server returns an error.

 HTTP/1.1 200 OK
 Content-Length: 0

 --- or ---

 HTTP/1.1 403 Forbidden
 Content-Type: application/problem+json
 Content-Language: en

 {
 "type": "urn:acme:error:unauthorized"
 "detail": "No authorization provided for name example.net"
 "instance": "http://example.com/doc/unauthorized"
 }

6. Identifier Validation Challenges

 There are few types of identifier in the world for which there is a
 standardized mechanism to prove possession of a given identifier. In
 all practical cases, CAs rely on a variety of means to test whether
 an entity applying for a certificate with a given identifier actually
 controls that identifier.

Barnes, et al. Expires November 14, 2015 [Page 23]

Internet-Draft ACME May 2015

 To accommodate this reality, ACME includes an extensible challenge/
 response framework for identifier validation. This section describes
 an initial set of Challenge types. Each challenge must describe:

 o Content of Challenge payloads (in Challenge messages)

 o Content of Response payloads (in authorizationRequest messages)

 o How the server uses the Challenge and Response to verify control
 of an identifier

 The only general requirement for Challenge and Response payloads is
 that they MUST be structured as a JSON object, and they MUST contain
 a parameter "type" that specifies the type of Challenge or Response
 encoded in the object.

 Different challenges allow the server to obtain proof of different
 aspects of control over an identifier. In some challenges, like
 Simple HTTPS and DVSNI, the client directly proves control of an
 identifier. In other challenges, such as Recovery or Proof of
 Possession, the client proves historical control of the identifier,
 by reference to a prior authorization transaction or certificate.

 The choice of which Challenges to offer to a client under which
 circumstances is a matter of server policy. A server may choose
 different sets of challenges depending on whether it has interacted
 with a domain before, and how. For example:

 +-------------------------------+-----------------------------------+
 | Domain status | Challenges typically sufficient |
 | | for (re)Authorization |
 +-------------------------------+-----------------------------------+
No known prior certificates	Domain Validation (DVSNI or
or ACME usage	Simple HTTPS)
Existing valid certs, first	DV + Proof of Possession of
use of ACME	previous CA-signed key
Ongoing ACME usage	PoP of previous Authorized key
Ongoing ACME usage, lost	DV + (Recovery or PoP of ACME-
Authorized key	certified Subject key)
ACME usage, all keys and	Recertification by another CA +
recovery tokens lost	PoP of that key
 +-------------------------------+-----------------------------------+

Barnes, et al. Expires November 14, 2015 [Page 24]

Internet-Draft ACME May 2015

 The identifier validation challenges described in this section all
 relate to validation of domain names. If ACME is extended in the
 future to support other types of identifier, there will need to be
 new Challenge types, and they will need to specify which types of
 identifier they apply to.

6.1. Simple HTTPS

 With Simple HTTPS validation, the client in an ACME transaction
 proves its control over a domain name by proving that it can
 provision resources on an HTTPS server that responds for that domain
 name. The ACME server challenges the client to provision a file with
 a specific string as its contents.

 As a domain may resolve to multiple IPv4 and IPv6 addresses, the
 server will connect to at least one of the hosts found in A and AAAA
 records, at its discretion. Simple HTTPS validation of IPv6-only
 domains may not be supported by all servers.

 type (required, string): The string "simpleHttps"

 token (required, string): The value to be provisioned in the file.
 This value MUST have at least 128 bits of entropy, in order to
 prevent an attacker from guessing it. It MUST NOT contain any
 non-ASCII characters.

 {
 "type": "simpleHttps",
 "token": "evaGxfADs6pSRb2LAv9IZf17Dt3juxGJ+PCt92wr+oA"
 }

 A client responds to this Challenge by provisioning the nonce as a
 resource on the HTTPS server for the domain in question. The path at
 which the resource is provisioned is determined by the client, but
 MUST begin with ".well-known/acme-challenge/". The content type of
 the resource MUST be "text/plain". The client returns the part of
 the path coming after that prefix in its Response message.

 type (required, string): The string "simpleHttps"

 path (required, string): The string to be appended to the standard
 prefix ".well-known/acme-challenge/" in order to form the path at
 which the nonce resource is provisioned. The result of
 concatenating the prefix with this value MUST match the "path"
 production in the standard URI format [RFC3986]

https://datatracker.ietf.org/doc/html/rfc3986

Barnes, et al. Expires November 14, 2015 [Page 25]

Internet-Draft ACME May 2015

 {
 "type": "simpleHttps",
 "path": "6tbIMBC5Anhl5bOlWT5ZFA"
 }

 Given a Challenge/Response pair, the server verifies the client's
 control of the domain by verifying that the resource was provisioned
 as expected.

 1. Form a URI by populating the URI template
 "https://{domain}/.well-known/acme-challenge/{path}", where the
 domain field is set to the domain name being verified and the
 path field is the path provided in the challenge [RFC6570].

 2. Verify that the resulting URI is well-formed.

 3. Dereference the URI using an HTTPS GET request.

 4. Verify that the certificate presented by the HTTPS server is a
 valid self-signed certificate, and contains the domain name being
 validated as well as the public key of the key pair being
 authorized.

 5. Verify that the Content-Type header of the response is either
 absent, or has the value "text/plain"

 6. Compare the entity body of the response with the nonce. This
 comparison MUST be performed in terms of Unicode code points,
 taking into account the encodings of the stored nonce and the
 body of the request.

 If the GET request succeeds and the entity body is equal to the
 nonce, then the validation is successful. If the request fails, or
 the body does not match the nonce, then it has failed.

6.2. Domain Validation with Server Name Indication

 The Domain Validation with Server Name Indication (DVSNI) validation
 method aims to ensure that the ACME client has administrative access
 to the web server at the domain name being validated, and possession
 of the private key being authorized. The ACME server verifies that
 the operator can reconfigure the web server by having the client
 create a new self-signed challenge certificate and respond to TLS
 connections from the ACME server with it.

 The challenge proceeds as follows: The ACME server sends the client a
 random value R and a nonce used to identify the transaction. The

https://datatracker.ietf.org/doc/html/rfc6570

Barnes, et al. Expires November 14, 2015 [Page 26]

Internet-Draft ACME May 2015

 client responds with another random value S. The server initiates a
 TLS connection on port 443 to one or more of the IPv4 or IPv6 hosts
 with the domain name being validated. In the handshake, the ACME
 server sets the Server Name Indication extension set to
 "<nonce>.acme.invalid". The TLS server (i.e., the ACME client)
 should respond with a valid self-signed certificate containing both
 the domain name being validated and the domain name
 "<Z>.acme.invalid", where Z = SHA-256(R || S).

 The ACME server's Challenge provides its random value R, and a random
 nonce used to identify the transaction:

 type (required, string): The string "dvsni"

 r (required, string): A random 32-byte octet, Base64-encoded

 nonce (required, string): A random 16-byte octet string, hex-encoded
 (so that it can be used as a DNS label)

 {
 "type": "dvsni",
 "r": "Tyq0La3slT7tqQ0wlOiXnCY2vyez7Zo5blgPJ1xt5xI",
 "nonce": "a82d5ff8ef740d12881f6d3c2277ab2e"
 }

 The client responds to this Challenge by configuring a TLS server on
 port 443 of a server with the domain name being validated:

 1. Decode the server's random value R

 2. Generate a random 32-byte octet string S

 3. Compute Z = SHA-256(R || S) (where || denotes concatenation of
 octet strings)

 4. Generate a self-signed certificate with a subjectAltName
 extension containing two dNSName values:

 5. The domain name being validated

 6. A name formed by hex-encoding Z and appending the suffix
 ".acme.invalid"

 7. Compute a nonce domain name by appending the suffix
 ".acme.invalid" to the nonce provided by the server.

Barnes, et al. Expires November 14, 2015 [Page 27]

Internet-Draft ACME May 2015

 8. Configure the TLS server such that when a client presents the
 nonce domain name in the SNI field, the server presents the
 generated certificate.

 The client's response provides its random value S:

 type (required, string): The string "dvsni"

 s (required, string): A random 32-byte secret octet string,
 Base64-encoded

 {
 "type": "dvsni",
 "s": "9dbjsl3gTAtOnEtKFEmhS6Mj-ajNjDcOmRkp3Lfzm3c"
 }

 Given a Challenge/Response pair, the ACME server verifies the
 client's control of the domain by verifying that the TLS server was
 configured as expected:

 1. Compute the value Z = SHA-256(R || S)

 2. Open a TLS connection to the domain name being validated on port
 443, presenting the value "<nonce>.acme.invalid" in the SNI
 field.

 3. Verify the following properties of the certificate provided by
 the TLS server:

 * It is a valid self-signed certificate

 * The public key is the public key for the key pair being
 authorized

 * It contains the domain name being validated as a
 subjectAltName

 * It contains a subjectAltName matching the hex-encoding of Z,
 with the suffix ".acme.invalid"

 It is RECOMMENDED that the ACME server verify the challenge
 certificate using multi-path probing techniques to reduce the risk of
 DNS hijacking attacks.

 If the server presents a certificate matching all of the above
 criteria, then the validation is successful. Otherwise, the
 validation fails.

Barnes, et al. Expires November 14, 2015 [Page 28]

Internet-Draft ACME May 2015

6.3. Recovery Contact

 A server may issue a recovery contact challenge to verify that the
 client is the same as the entity that previously requested
 authorization, using contact information provided by the client in a
 prior authorizationRequest message.

 The server's message to the client may request action in-band or out-
 of-band to ACME. The server can provide a token in the message that
 the client provides in its response. Or the server could provide
 some out-of-band response channel in its message, such as a URL to
 click in an email.

 type (required, string): The string "recoveryContact"

 activationURL (optional, string): A URL the client can visit to
 cause a recovery message to be sent to client's contact address.

 successURL (optional, string): A URL the client may poll to
 determine if the user has successfully clicked a link or completed
 other tasks specified by the recovery message. This URL will
 return a 200 success code if the required tasks have been
 completed. The client SHOULD NOT poll the URL more than once
 every three seconds.

 contact (optional, string) A full or partly obfuscated version of
 the contact URI that the server will use to contact the client.
 Client software may present this to a user in order to suggest
 what contact point the user should check (e.g., an email address).

 {
 "type": "recoveryContact",
 "activationURL" : "https://example.ca/sendrecovery/a5bd99383fb0",
 "successURL" : "https://example.ca/confirmrecovery/bb1b9928932",
 "contact" : "c********n@example.com"
 }

 type (required, string): The string "recoveryContact"

 token (optional, string): If the user transferred a token from a
 contact email or call into the client software, the client sends
 it here. If it the client has received a 200 success response
 while polling the RecoveryContact Challenge's successURL, this
 field SHOULD be omitted.

Barnes, et al. Expires November 14, 2015 [Page 29]

Internet-Draft ACME May 2015

 {
 "type": "recoveryContact",
 "token": "23029d88d9e123e"
 }

 If the value of the "token" field matches the value provided in the
 out-of-band message to the client, or if the client has completed the
 required out-of-band action, then the validation succeeds.
 Otherwise, the validation fails.

6.4. Recovery Token

 A recovery token is a simple way for the server to verify that the
 client was previously authorized for a domain. The client simply
 provides the recovery token that was provided in the authorize
 message.

 type (required, string): The string "recoveryToken"

 {
 "type": "recoveryToken"
 }

 The response to a recovery token challenge is simple; the client
 sends the requested token that it was provided by the server earlier.

 type (required, string): The string "recoveryToken"

 token (optional, string): The recovery token provided by the server.

 {
 "type": "recoveryToken",
 "token": "23029d88d9e123e"
 }

 If the value of the "token" field matches a recovery token that the
 server previously provided for this domain, then the validation
 succeeds. Otherwise, the validation fails.

6.5. Proof of Possession of a Prior Key

 The Proof of Possession challenge verifies that a client possesses a
 private key corresponding to a server-specified public key, as
 demonstrated by its ability to correctly sign server-provided data
 with that key.

Barnes, et al. Expires November 14, 2015 [Page 30]

Internet-Draft ACME May 2015

 This method is useful if a server policy calls for issuing a
 certificate only to an entity that already possesses the subject
 private key of a particular prior related certificate (perhaps issued
 by a different CA). It may also help enable other kinds of server
 policy that are related to authenticating a client's identity using
 digital signatures.

 This challenge proceeds in much the same way as the proof of
 possession of the authorized key pair in the main ACME flow
 (challenge + authorizationRequest). The server provides a nonce and
 the client signs over the nonce. The main difference is that rather
 than signing with the private key of the key pair being authorized,
 the client signs with a private key specified by the server. The
 server can specify which key pair(s) are acceptable directly (by
 indicating a public key), or by asking for the key corresponding to a
 certificate.

 The server provides the following fields as part of the challenge:

 type (required, string): The string "proofOfPossession"

 alg (required, string): A token indicating the cryptographic
 algorithm that should be used by the client to compute the
 signature [I-D.ietf-jose-json-web-algorithms]. (MAC algorithms
 such as "HS*" MUST NOT be used.) The client MUST verify that this
 algorithm is supported for the indicated key before responding to
 this challenge.

 nonce (required, string): A random 16-byte octet string,
 Base64-encoded

 hints (required, object): A JSON object that contains various clues
 for the client about what the requested key is, such that the
 client can find it. Entries in the hints object may include:

 jwk (required, object): A JSON Web Key object describing the public
 key whose corresponding private key should be used to generate the
 signature [I-D.ietf-jose-json-web-key]

 certFingerprints (optional, array): An array of certificate
 fingerprints, hex-encoded SHA1 hashes of DER-encoded certificates
 that are known to contain this key

 certs (optional, array): An array of certificates, in Base64-encoded
 DER format, that contain acceptable public keys.

 subjectKeyIdentifiers (optional, array): An array of hex-encoded
 Subject Key Identifiers (SKIDs) from certificate(s) that contain

Barnes, et al. Expires November 14, 2015 [Page 31]

Internet-Draft ACME May 2015

 the key. Because of divergences in the way that SKIDs are
 calculated [RFC5280], there may conceivably be more than one of
 these.

 serialNumbers (optional, array of numbers): An array of serial
 numbers of certificates that are known to contain the requested
 key

 issuers (optional, array): An array of X.509 Distinguished Names
 [RFC5280] of CAs that have been observed to issue certificates for
 this key, in text form [RFC4514]

 authorizedFor (optional, array): An array of domain names, if any,
 for which this server regards the key as an ACME Authorized key.

 {
 "type": "proofOfPossession",
 "alg": "RS256",
 "nonce": "eET5udtV7aoX8Xl8gYiZIA",
 "hints" : {
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "n": "KxITJ0rNlfDMAtfDr8eAw...fSSoehDFNZKQKzTZPtQ"
 },
 "certFingerprints": [
 "93416768eb85e33adc4277f4c9acd63e7418fcfe",
 "16d95b7b63f1972b980b14c20291f3c0d1855d95",
 "48b46570d9fc6358108af43ad1649484def0debf"
],
 "subjectKeyIdentifiers": [
 "d0083162dcc4c8a23ecb8aecbd86120e56fd24e5"
],
 "serialNumbers": [34234239832, 23993939911, 17],
 "issuers": [
 "C=US, O=SuperT LLC, CN=SuperTrustworthy Public CA",
 "O=LessTrustworthy CA Inc, CN=LessTrustworthy But StillSecure"
],
 "authorizedFor": ["www.example.com", "example.net"]
 }
 }

 In this case the server is challenging the client to prove its
 control over the private key that corresponds to the public key
 specified in the jwk object. The signing algorithm is specified by
 the alg field. The nonce value is used by the server to identify

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4514

Barnes, et al. Expires November 14, 2015 [Page 32]

Internet-Draft ACME May 2015

 this challenge and is also used, also with a client-provided
 signature nonce, as part of the signature input.

 signature-input = signature-nonce || server-nonce

 The client's response includes the server-provided nonce, together
 with a signature over that nonce by one of the private keys requested
 by the server.

 type (required, string): The string "proofOfPossession"

 nonce (required, string): The server nonce that the server
 previously associated with this challenge

 signature (required, object): The ACME signature computed over the
 signature-input using the server-specified algorithm

 {
 "type": "proofOfPossession",
 "nonce": "eET5udtV7aoX8Xl8gYiZIA",
 "signature": {
 "alg": "RS256",
 "nonce": "eET5udtV7aoX8Xl8gYiZIA",
 "sig": "KxITJ0rNlfDMAtfDr8eAw...fSSoehDFNZKQKzTZPtQ",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "n": "KxITJ0rNlfDMAtfDr8eAw...fSSoehDFNZKQKzTZPtQ"
 }
 }
 }

 Note that just as in the authorizationRequest message, there are two
 nonces here, once provided by the client (inside the signature
 object) and one provided by the server in its challenge (outside the
 signature object). The signature covers the concatenation of these
 two nonces (as specified in the signature-input above).

 If the server is able to validate the signature and confirm that the
 jwk and alg objects are unchanged from the original challenge, the
 server can conclude that the client is in control of the private key
 that corresponds to the specified public key. The server can use
 this evidence in support of its authorization and certificate
 issuance policies.

Barnes, et al. Expires November 14, 2015 [Page 33]

Internet-Draft ACME May 2015

6.6. DNS

 When the identifier being validated is a domain name, the client can
 prove control of that domain by provisioning records under it. The
 DNS challenge requires the client to provision a TXT record
 containing a validation token under a specific validation domain
 name.

 type (required, string): The string "dns"

 token (required, string): An ASCII string that is to be provisioned
 in the TXT record. This string SHOULD be randomly generated, with
 at least 128 bits of entropy (e.g., a hex-encoded random octet
 string).

 {
 "type": "dns",
 "token": "17817c66b60ce2e4012dfad92657527a"
 }

 In response to this challenge, the client first MUST verify that the
 token contains only ASCII characters. If so, the client constructs
 the validation domain name by appending the label "_acme-challenge"
 to the domain name being validated. For example, if the domain name
 being validated is "example.com", then the client would provision the
 following DNS record:

 _acme-challenge.example.com. IN TXT "17817c66b60ce2e4012dfad92657527a"

 The response to a DNS challenge is simply an acknowledgement that the
 relevant record has been provisioned.

 type (required, string): The string "dns"

 {
 "type": "dns"
 }

 To validate a DNS challenge, the server queries for TXT records under
 the validation domain name. If it receives a record whose contents
 match the token in the challenge, then the validation succeeds.
 Otherwise, the validation fails.

Barnes, et al. Expires November 14, 2015 [Page 34]

Internet-Draft ACME May 2015

6.7. Other possibilities

 For future work:

 o Email

 o DNSSEC

 o WHOIS

7. IANA Considerations

 TODO

 o Register .well-known path

 o Create identifier validation method registry

 o Registries of syntax tokens, e.g., message types / error types?

8. Security Considerations

 TODO

 o General authorization story

 o PoP nonce entropy

 o ToC/ToU; duration of key authorization

 o Clients need to protect recovery key

 o CA needs to perform a very wide range of issuance policy
 enforcement and sanity-check steps

 o Parser safety (for JSON, JWK, ASN.1, and any other formats that
 can be parsed by the ACME server)

9. Acknowledgements

 This document draws on many concepts established by Eric Rescorla's
 "Automated Certificate Issuance Protocol" draft. Martin Thomson
 provided helpful guidance in the use of HTTP.

Barnes, et al. Expires November 14, 2015 [Page 35]

Internet-Draft ACME May 2015

10. References

10.1. Normative References

 [I-D.ietf-appsawg-http-problem]
 Nottingham, M. and E. Wilde, "Problem Details for HTTP
 APIs", draft-ietf-appsawg-http-problem-00 (work in
 progress), September 2014.

 [I-D.ietf-jose-json-web-algorithms]
 Jones, M., "JSON Web Algorithms (JWA)", draft-ietf-jose-

json-web-algorithms-40 (work in progress), January 2015.

 [I-D.ietf-jose-json-web-key]
 Jones, M., "JSON Web Key (JWK)", draft-ietf-jose-json-web-

key-41 (work in progress), January 2015.

 [I-D.ietf-jose-json-web-signature]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature-41
 (work in progress), January 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2314] Kaliski, B., "PKCS #10: Certification Request Syntax
 Version 1.5", RFC 2314, March 1998.

 [RFC2985] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
 Classes and Attribute Types Version 2.0", RFC 2985,
 November 2000.

 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 November 2000.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC4514] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP): String Representation of Distinguished Names", RFC

4514, June 2006.

https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-http-problem-00
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-40
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-40
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-41
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-41
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature-41
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2314
https://datatracker.ietf.org/doc/html/rfc2985
https://datatracker.ietf.org/doc/html/rfc2986
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4514

Barnes, et al. Expires November 14, 2015 [Page 36]

Internet-Draft ACME May 2015

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570, March 2012.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

10.2. Informative References

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

Authors' Addresses

 Richard Barnes
 Mozilla

 Email: rlb@ipv.sx

 Peter Eckersley
 EFF

 Email: pde@eff.org

 Seth Schoen
 EFF

 Email: schoen@eff.org

 Alex Halderman
 University of Michigan

 Email: jhalderm@eecs.umich.edu

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc2818

Barnes, et al. Expires November 14, 2015 [Page 37]

Internet-Draft ACME May 2015

 James Kasten
 University of Michigan

 Email: jdkasten@umich.edu

Barnes, et al. Expires November 14, 2015 [Page 38]

