
Network Working Group R. Barnes
Internet-Draft Mozilla
Intended status: Standards Track J. Hoffman-Andrews
Expires: January 7, 2016 EFF
 J. Kasten
 University of Michigan
 July 06, 2015

Automatic Certificate Management Environment (ACME)
draft-barnes-acme-03

Abstract

 Certificates in the Web's X.509 PKI (PKIX) are used for a number of
 purposes, the most significant of which is the authentication of
 domain names. Thus, certificate authorities in the Web PKI are
 trusted to verify that an applicant for a certificate legitimately
 represents the domain name(s) in the certificate. Today, this
 verification is done through a collection of ad hoc mechanisms. This
 document describes a protocol that a certificate authority (CA) and
 an applicant can use to automate the process of verification and
 certificate issuance. The protocol also provides facilities for
 other certificate management functions, such as certificate
 revocation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 7, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Barnes, et al. Expires January 7, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft ACME July 2015

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Deployment Model and Operator Experience 4
3. Terminology . 5
4. Protocol Overview . 6
5. Protocol Elements . 9
5.1. HTTPS Requests . 9
5.2. Registration Objects 10
5.3. Authorization Objects 11
5.4. Errors . 13
5.5. Replay protection . 14
5.5.1. Replay-Nonce . 14
5.5.2. "nonce" (Nonce) JWS header parameter 15

5.6. Key Agreement . 15
6. Certificate Management 16
6.1. Resources . 16
6.2. Directory . 18
6.3. Registration . 18
6.3.1. Recovery Keys . 20

6.4. Account Recovery . 22
6.4.1. MAC-Based Recovery 23
6.4.2. Contact-Based Recovery 25

6.5. Identifier Authorization 27
6.6. Certificate Issuance 31
6.7. Certificate Renewal 33
6.8. Certificate Revocation 34

7. Identifier Validation Challenges 35
7.1. Simple HTTP . 37
7.2. Domain Validation with Server Name Indication (DVSNI) . . 39
7.3. Proof of Possession of a Prior Key 42
7.4. DNS . 44

8. IANA Considerations . 46
9. Security Considerations 47
9.1. Threat model . 47
9.2. Integrity of Authorizations 48
9.3. Preventing Authorization Hijacking 51
9.4. Denial-of-Service Considerations 52

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Barnes, et al. Expires January 7, 2016 [Page 2]

Internet-Draft ACME July 2015

9.5. CA Policy Considerations 53
10. Acknowledgements . 53
11. References . 54
11.1. Normative References 54
11.2. Informative References 55

 Authors' Addresses . 56

1. Introduction

 Certificates in the Web PKI are most commonly used to authenticate
 domain names. Thus, certificate authorities in the Web PKI are
 trusted to verify that an applicant for a certificate legitimately
 represents the domain name(s) in the certificate.

 Existing Web PKI certificate authorities tend to run on a set of ad
 hoc protocols for certificate issuance and identity verification. A
 typical user experience is something like:

 o Generate a PKCS#10 [RFC2314] Certificate Signing Request (CSR).

 o Cut-and-paste the CSR into a CA web page.

 o Prove ownership of the domain by one of the following methods:

 * Put a CA-provided challenge at a specific place on the web
 server.

 * Put a CA-provided challenge at a DNS location corresponding to
 the target domain.

 * Receive CA challenge at a (hopefully) administrator-controlled
 e-mail address corresponding to the domain and then respond to
 it on the CA's web page.

 o Download the issued certificate and install it on their Web
 Server.

 With the exception of the CSR itself and the certificates that are
 issued, these are all completely ad hoc procedures and are
 accomplished by getting the human user to follow interactive natural-
 language instructions from the CA rather than by machine-implemented
 published protocols. In many cases, the instructions are difficult
 to follow and cause significant confusion. Informal usability tests
 by the authors indicate that webmasters often need 1-3 hours to
 obtain and install a certificate for a domain. Even in the best
 case, the lack of published, standardized mechanisms presents an
 obstacle to the wide deployment of HTTPS and other PKIX-dependent

https://datatracker.ietf.org/doc/html/rfc2314

Barnes, et al. Expires January 7, 2016 [Page 3]

Internet-Draft ACME July 2015

 systems because it inhibits mechanization of tasks related to
 certificate issuance, deployment, and revocation.

 This document describes an extensible framework for automating the
 issuance and domain validation procedure, thereby allowing servers
 and infrastructural software to obtain certificates without user
 interaction. Use of this protocol should radically simplify the
 deployment of HTTPS and the practicality of PKIX authentication for
 other protocols based on TLS [RFC5246].

2. Deployment Model and Operator Experience

 The major guiding use case for ACME is obtaining certificates for Web
 sites (HTTPS [RFC2818]). In that case, the server is intended to
 speak for one or more domains, and the process of certificate
 issuance is intended to verify that the server actually speaks for
 the domain.

 Different types of certificates reflect different kinds of CA
 verification of information about the certificate subject. "Domain
 Validation" (DV) certificates are by far the most common type. For
 DV validation, the CA merely verifies that the requester has
 effective control of the web server and/or DNS server for the domain,
 but does not explicitly attempt to verify their real-world identity.
 (This is as opposed to "Organization Validation" (OV) and "Extended
 Validation" (EV) certificates, where the process is intended to also
 verify the real-world identity of the requester.)

 DV certificate validation commonly checks claims about properties
 related to control of a domain name - properties that can be observed
 by the issuing authority in an interactive process that can be
 conducted purely online. That means that under typical
 circumstances, all steps in the request, verification, and issuance
 process can be represented and performed by Internet protocols with
 no out-of-band human intervention.

 When an operator deploys a current HTTPS server, it generally prompts
 him to generate a self-signed certificate. When an operator deploys
 an ACME-compatible web server, the experience would be something like
 this:

 o The ACME client prompts the operator for the intended domain
 name(s) that the web server is to stand for.

 o The ACME client presents the operator with a list of CAs from
 which it could get a certificate. (This list will change over
 time based on the capabilities of CAs and updates to ACME

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2818

Barnes, et al. Expires January 7, 2016 [Page 4]

Internet-Draft ACME July 2015

 configuration.) The ACME client might prompt the operator for
 payment information at this point.

 o The operator selects a CA.

 o In the background, the ACME client contacts the CA and requests
 that a certificate be issued for the intended domain name(s).

 o Once the CA is satisfied, the certificate is issued and the ACME
 client automatically downloads and installs it, potentially
 notifying the operator via e-mail, SMS, etc.

 o The ACME client periodically contacts the CA to get updated
 certificates, stapled OCSP responses, or whatever else would be
 required to keep the server functional and its credentials up-to-
 date.

 The overall idea is that it's nearly as easy to deploy with a CA-
 issued certificate as a self-signed certificate, and that once the
 operator has done so, the process is self-sustaining with minimal
 manual intervention. Close integration of ACME with HTTPS servers,
 for example, can allow the immediate and automated deployment of
 certificates as they are issued, optionally sparing the human
 administrator from additional configuration work.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The two main roles in ACME are "client" and "server". The ACME
 client uses the protocol to request certificate management actions,
 such as issuance or revocation. An ACME client therefore typically
 runs on a web server, mail server, or some other server system which
 requires valid TLS certificates. The ACME server runs at a
 certificate authority, and responds to client requests, performing
 the requested actions if the client is authorized.

 For simplicity, in all HTTPS transactions used by ACME, the ACME
 client is the HTTPS client and the ACME server is the HTTPS server.

 In the discussion below, we will refer to three different types of
 keys / key pairs:

 Subject Public Key: A public key to be included in a certificate.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Barnes, et al. Expires January 7, 2016 [Page 5]

Internet-Draft ACME July 2015

 Account Key Pair: A key pair for which the ACME server considers the
 holder of the private key authorized to manage certificates for a
 given identifier. The same key pair may be authorized for
 multiple identifiers.

 Recovery Key: A MAC key that can a client can use to demonstrate
 that it participated in a prior registration transaction.

 ACME messaging is based on HTTPS [RFC2818] and JSON [RFC7159]. Since
 JSON is a text-based format, binary fields are Base64-encoded. For
 Base64 encoding, we use the variant defined in [RFC7515]. The
 important features of this encoding are (1) that it uses the URL-safe
 character set, and (2) that "=" padding characters are stripped.

 Some HTTPS bodies in ACME are authenticated and integrity-protected
 by being encapsulated in a JSON Web Signature (JWS) object [RFC7515].
 ACME uses a profile of JWS, with the following restrictions:

 o The JWS MUST use the Flattened JSON Serialization

 o The JWS MUST be encoded using UTF-8

 o The JWS Header or Protected Header MUST include "alg" and "jwk"
 fields

 o The JWS MUST NOT have the value "none" in its "alg" field

 Additionally, JWS objects used in ACME MUST include the "nonce"
 header parameter, defined below.

4. Protocol Overview

 ACME allows a client to request certificate management actions using
 a set of JSON messages carried over HTTPS. In some ways, ACME
 functions much like a traditional CA, in which a user creates an
 account, adds identifiers to that account (proving control of the
 domains), and requests certificate issuance for those domains while
 logged in to the account.

 In ACME, the account is represented by an account key pair. The "add
 a domain" function is accomplished by authorizing the key pair for a
 given domain. Certificate issuance and revocation are authorized by
 a signature with the key pair.

 The first phase of ACME is for the client to register with the ACME
 server. The client generates an asymmetric key pair and associates
 this key pair with a set of contact information by signing the

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7515

Barnes, et al. Expires January 7, 2016 [Page 6]

Internet-Draft ACME July 2015

 contact information. The server acknowledges the registration by
 replying with a registration object echoing the client's input.

 Client Server

 Contact Information
 Signature ------->

 <------- Registration

 Before a client can issue certificates, it must establish an
 authorization with the server for an account key pair to act for the
 identifier(s) that it wishes to include in the certificate. To do
 this, the client must demonstrate to the server both (1) that it
 holds the private key of the account key pair, and (2) that it has
 authority over the identifier being claimed.

 Proof of possession of the account key is built into the ACME
 protocol. All messages from the client to the server are signed by
 the client, and the server verifies them using the public key of the
 account key pair.

 To verify that the client controls the identifier being claimed, the
 server issues the client a set of challenges. Because there are many
 different ways to validate possession of different types of
 identifiers, the server will choose from an extensible set of
 challenges that are appropriate for the identifier being claimed.
 The client responds with a set of responses that tell the server
 which challenges the client has completed. The server then validates
 the challenges to check that the client has accomplished the
 challenge.

 For example, if the client requests a domain name, the server might
 challenge the client to provision a record in the DNS under that
 name, or to provision a file on a web server referenced by an A or
 AAAA record under that name. The server would then query the DNS for
 the record in question, or send an HTTP request for the file. If the
 client provisioned the DNS or the web server as expected, then the
 server considers the client authorized for the domain name.

Barnes, et al. Expires January 7, 2016 [Page 7]

Internet-Draft ACME July 2015

 Client Server

 Identifier
 Signature ------->

 <------- Challenges

 Responses
 Signature ------->

 <------- Updated Challenge

 <~~~~~~~~Validation~~~~~~~~>

 Poll ------->

 <------- Authorization

 Once the client has authorized an account key pair for an identifier,
 it can use the key pair to authorize the issuance of certificates for
 the identifier. To do this, the client sends a PKCS#10 Certificate
 Signing Request (CSR) to the server (indicating the identifier(s) to
 be included in the issued certificate) and a signature over the CSR
 by the private key of the account key pair.

 If the server agrees to issue the certificate, then it creates the
 certificate and provides it in its response. The certificate is
 assigned a URI, which the client can use to fetch updated versions of
 the certificate.

 Client Server

 CSR
 Signature -------->

 <-------- Certificate

 To revoke a certificate, the client simply sends a revocation
 request, signed with an authorized key pair, and the server indicates
 whether the request has succeeded.

 Client Server

 Revocation request
 Signature -------->

 <-------- Result

Barnes, et al. Expires January 7, 2016 [Page 8]

Internet-Draft ACME July 2015

 Note that while ACME is defined with enough flexibility to handle
 different types of identifiers in principle, the primary use case
 addressed by this document is the case where domain names are used as
 identifiers. For example, all of the identifier validation
 challenges described in Section 7 below address validation of domain
 names. The use of ACME for other protocols will require further
 specification, in order to describe how these identifiers are encoded
 in the protocol, and what types of validation challenges the server
 might require.

5. Protocol Elements

 This section describes several components that are used by ACME, and
 general rules that apply to ACME transactions.

5.1. HTTPS Requests

 Each ACME function is accomplished by the client sending a sequence
 of HTTPS requests to the server, carrying JSON messages. Use of
 HTTPS is REQUIRED. Clients SHOULD support HTTP public key pinning
 [RFC7469], and servers SHOULD emit pinning headers. Each subsection
 of Section 6 below describes the message formats used by the
 function, and the order in which messages are sent.

 All ACME requests with a non-empty body MUST encapsulate the body in
 a JWS object, signed using the account key pair. The server MUST
 verify the JWS before processing the request. (For readability,
 however, the examples below omit this encapsulation.) Encapsulating
 request bodies in JWS provides a simple authentication of requests by
 way of key continuity.

 Note that this implies that GET requests are not authenticated.
 Servers MUST NOT respond to GET requests for resources that might be
 considered sensitive.

 An ACME request carries a JSON dictionary that provides the details
 of the client's request to the server. In order to avoid attacks
 that might arise from sending a request object to a resource of the
 wrong type, each request object MUST have a "resource" field that
 indicates what type of resource the request is addressed to, as
 defined in the below table:

https://datatracker.ietf.org/doc/html/rfc7469

Barnes, et al. Expires January 7, 2016 [Page 9]

Internet-Draft ACME July 2015

 +----------------------+------------------+
 | Resource type | "resource" value |
 +----------------------+------------------+
 | New registration | new-reg |
 | | |
 | Recover registration | recover-reg |
 | | |
 | New authorization | new-authz |
 | | |
 | New certificate | new-cert |
 | | |
 | Revoke certificate | revoke-cert |
 | | |
 | Registration | reg |
 | | |
 | Authorization | authz |
 | | |
 | Challenge | challenge |
 | | |
 | Certificate | cert |
 +----------------------+------------------+

 Other fields in ACME request bodies are described below.

 ACME servers that are intended to be generally accessible need to use
 Cross-Origin Resource Sharing (CORS) in order to be accessible from
 browser-based clients [W3C.CR-cors-20130129]. Such servers SHOULD
 set the Access-Control-Allow-Origin header field to the value "*".

5.2. Registration Objects

 An ACME registration resource represents a set of metadata associated
 to an account key pair. Registration resources have the following
 structure:

 key (required, dictionary): The public key of the account key pair,
 encoded as a JSON Web Key object [RFC7517].

 contact (optional, array of string): An array of URIs that the
 server can use to contact the client for issues related to this
 authorization. For example, the server may wish to notify the
 client about server-initiated revocation.

 agreement (optional, string): A URI referring to a subscriber
 agreement or terms of service provided by the server (see below).
 Including this field indicates the client's agreement with the
 referenced terms.

https://datatracker.ietf.org/doc/html/rfc7517

Barnes, et al. Expires January 7, 2016 [Page 10]

Internet-Draft ACME July 2015

 authorizations (optional, string): A URI from which a list of
 authorizations granted to this account can be fetched via a GET
 request. The result of the GET request MUST be a JSON object
 whose "authorizations" field is an array of strings, where each
 string is the URI of an authorization belonging to this
 registration. The server SHOULD include pending authorizations,
 and SHOULD NOT include authorizations that are invalid or expired.

 certificates (optional, string): A URI from which a list of
 certificates issued for this account can be fetched via a GET
 request. The result of the GET request MUST be a JSON object
 whose "certificates" field is an array of strings, where each
 string is the URI of a certificate. The server SHOULD NOT include
 expired certificates.

 {
 "resource": "new-reg",
 "contact": [
 "mailto:cert-admin@example.com",
 "tel:+12025551212"
],
 "agreement": "https://example.com/acme/terms",
 "authorizations": "https://example.com/acme/reg/1/authz",
 "certificates": "https://example.com/acme/reg/1/cert",
 }

5.3. Authorization Objects

 An ACME authorization object represents server's authorization for an
 account to represent an identifier. In addition to the identifier,
 an authorization includes several metadata fields, such as the status
 of the authorization (e.g., "pending", "valid", or "revoked") and
 which challenges were used to validate possession of the identifier.

 The structure of an ACME authorization resource is as follows:

 identifier (required, dictionary of string): The identifier that the
 account is authorized to represent

 type (required, string): The type of identifier.

 value (required, string): The identifier itself.

 status (optional, string): The status of this authorization.
 Possible values are: "unknown", "pending", "processing", "valid",
 "invalid" and "revoked". If this field is missing, then the
 default value is "pending".

Barnes, et al. Expires January 7, 2016 [Page 11]

Internet-Draft ACME July 2015

 expires (optional, string): The date after which the server will
 consider this authorization invalid, encoded in the format
 specified in RFC 3339 [RFC3339].

 challenges (required, array): The challenges that the client needs
 to fulfill in order to prove possession of the identifier (for
 pending authorizations). For final authorizations, the challenges
 that were used. Each array entry is a dictionary with parameters
 required to validate the challenge, as specified in Section 7.

 combinations (optional, array of arrays of integers): A collection
 of sets of challenges, each of which would be sufficient to prove
 possession of the identifier. Clients complete a set of
 challenges that that covers at least one set in this array.
 Challenges are identified by their indices in the challenges
 array. If no "combinations" element is included in an
 authorization object, the client completes all challenges.

 The only type of identifier defined by this specification is a fully-
 qualified domain name (type: "dns"). The value of the identifier
 MUST be the ASCII representation of the domain name. Wildcard domain
 names (with "*" as the first label) MUST NOT be included in
 authorization requests. See Section 6.6 below for more information
 about wildcard domains.

 {
 "status": "valid",
 "expires": "2015-03-01",

 "identifier": {
 "type": "dns",
 "value": "example.org"
 },

 "challenges": [
 {
 "type": "simpleHttp",
 "status": "valid",
 "validated": "2014-12-01T12:05Z",
 "token": "IlirfxKKXAsHtmzK29Pj8A"
 "path": "Hf5GrX4Q7EBax9hc2jJnfw"
 }
],
 }

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Barnes, et al. Expires January 7, 2016 [Page 12]

Internet-Draft ACME July 2015

5.4. Errors

 Errors can be reported in ACME both at the HTTP layer and within ACME
 payloads. ACME servers can return responses with an HTTP error
 response code (4XX or 5XX). For example: If the client submits a
 request using a method not allowed in this document, then the server
 MAY return status code 405 (Method Not Allowed).

 When the server responds with an error status, it SHOULD provide
 additional information using problem document
 [I-D.ietf-appsawg-http-problem]. The "type" and "detail" fields MUST
 be populated. To facilitate automatic response to errors, this
 document defines the following standard tokens for use in the "type"
 field (within the "urn:acme:" namespace):

 +----------------+--+
 | Code | Semantic |
 +----------------+--+
badCSR	The CSR is unacceptable (e.g., due to a short
	key)
badNonce	The client sent an unacceptable anti-replay
	nonce
connection	The server could not connect to the client for
	DV
dnssec	The server could not validate a DNSSEC signed
	domain
malformed	The request message was malformed
serverInternal	The server experienced an internal error
tls	The server experienced a TLS error during DV
unauthorized	The client lacks sufficient authorization
unknownHost	The server could not resolve a domain name
 +----------------+--+

 Authorization and challenge objects can also contain error
 information to indicate why the server was unable to validate
 authorization.

 TODO: Flesh out errors and syntax for them

Barnes, et al. Expires January 7, 2016 [Page 13]

Internet-Draft ACME July 2015

5.5. Replay protection

 In order to protect ACME resources from any possible replay attacks,
 ACME requests have a mandatory anti-replay mechanism. This mechanism
 is based on the server maintaining a list of nonces that it has
 issued to clients, and requiring any signed request from the client
 to carry such a nonce.

 An ACME server MUST include an Replay-Nonce header field in each
 successful response it provides to a client, with contents as
 specified below. In particular, the ACME server MUST provide a
 Replay-Nonce header field in response to a HEAD request for any valid
 resource. (This allows clients to easily obtain a fresh nonce.) It
 MAY also provide nonces in error responses.

 Every JWS sent by an ACME client MUST include, in its protected
 header, the "nonce" header parameter, with contents as defined below.
 As part of JWS verification, the ACME server MUST verify that the
 value of the "nonce" header is a value that the server previously
 provided in a Replay-Nonce header field. Once a nonce value has
 appeared in an ACME request, the server MUST consider it invalid, in
 the same way as a value it had never issued.

 When a server rejects a request because its nonce value was
 unacceptable (or not present), it SHOULD provide HTTP status code 400
 (Bad Request), and indicate the ACME error code "urn:acme:badNonce".

 The precise method used to generate and track nonces is up to the
 server. For example, the server could generate a random 128-bit
 value for each response, keep a list of issued nonces, and strike
 nonces from this list as they are used.

5.5.1. Replay-Nonce

 The "Replay-Nonce" header field includes a server-generated value
 that the server can use to detect unauthorized replay in future
 client requests. The server should generate the value provided in
 Replay-Nonce in such a way that they are unique to each message, with
 high probability.

 The value of the Replay-Nonce field MUST be an octet string encoded
 according to the base64url encoding described in Section 2 of
 [RFC7515]. Clients MUST ignore invalid Replay-Nonce values.

 base64url = [A-Z] / [a-z] / [0-9] / "-" / "_"

 Replay-Nonce = *base64url

https://datatracker.ietf.org/doc/html/rfc7515#section-2
https://datatracker.ietf.org/doc/html/rfc7515#section-2

Barnes, et al. Expires January 7, 2016 [Page 14]

Internet-Draft ACME July 2015

 The Replay-Nonce header field SHOULD NOT be included in HTTP request
 messages.

5.5.2. "nonce" (Nonce) JWS header parameter

 The "nonce" header parameter provides a unique value that enables the
 verifier of a JWS to recognize when replay has occurred. The "nonce"
 header parameter MUST be carried in the protected header of the JWS.

 The value of the "nonce" header parameter MUST be an octet string,
 encoded according to the base64url encoding described in Section 2 of
 [RFC7515]. If the value of a "nonce" header parameter is not valid
 according to this encoding, then the verifier MUST reject the JWS as
 malformed.

5.6. Key Agreement

 Certain elements of the protocol will require the establishment of a
 shared secret between the client and the server, in such a way that
 an entity observing the ACME protocol cannot derive the secret. In
 these cases, we use a simple ECDH key exchange, based on the system
 used by CMS [RFC5753]:

 o Inputs:

 * Client-generated key pair

 * Server-generated key pair

 * Length of the shared secret to be derived

 * Label

 o Perform the ECDH primitive operation to obtain Z (Section 3.3.1 of
 [SEC1])

 o Select a hash algorithm according to the curve being used:

 * For "P-256", use SHA-256

 * For "P-384", use SHA-384

 * For "P-521", use SHA-512

 o Derive the shared secret value using the KDF in Section 3.6.1 of
 [SEC1] using Z and the selected hash algorithm, and with the UTF-8
 encoding of the label as the SharedInfo value

https://datatracker.ietf.org/doc/html/rfc7515#section-2
https://datatracker.ietf.org/doc/html/rfc7515#section-2
https://datatracker.ietf.org/doc/html/rfc5753

Barnes, et al. Expires January 7, 2016 [Page 15]

Internet-Draft ACME July 2015

 In cases where the length of the derived secret is shorter than the
 output length of the chosen hash algorithm, the KDF referenced above
 reduces to a single hash invocation. The shared secret is equal to
 the leftmost octets of the following:

 H(Z || 00000001 || label)

6. Certificate Management

 In this section, we describe the certificate management functions
 that ACME enables:

 o Account Key Registration

 o Account Recovery

 o Account Key Authorization

 o Certificate Issuance

 o Certificate Renewal

 o Certificate Revocation

6.1. Resources

 ACME is structured as a REST application with a few types of
 resources:

 o Registration resources, representing information about an account

 o Authorization resources, representing an account's authorization
 to act for an identifier

 o Challenge resources, representing a challenge to prove control of
 an identifier

 o Certificate resources, representing issued certificates

 o A "directory" resource

 o A "new-registration" resource

 o A "new-authorization" resource

 o A "new-certificate" resource

 o A "revoke-certificate" resource

Barnes, et al. Expires January 7, 2016 [Page 16]

Internet-Draft ACME July 2015

 For the "new-X" resources above, the server MUST have exactly one
 resource for each function. This resource may be addressed by
 multiple URIs, but all must provide equivalent functionality.

 In general, the intent is for authorization and certificate resources
 to contain only public information, so that CAs may publish these
 resources to document what certificates have been issued and how they
 were authorized. Non-public information, such as contact
 information, is stored in registration resources.

 ACME uses different URIs for different management functions. Each
 function is listed in a directory along with its corresponding URI,
 so clients only need to be configured with the directory URI.

 The "up" link relation is used with challenge resources to indicate
 the authorization resource to which a challenge belongs. It is also
 used from certificate resources to indicate a resource from which the
 client may fetch a chain of CA certificates that could be used to
 validate the certificate in the original resource.

 The following diagram illustrates the relations between resources on
 an ACME server. The solid lines indicate link relations, and the
 dotted lines correspond to relationships expressed in other ways,
 e.g., the Location header in a 201 (Created) response.

 directory
 .
 .
 ..

 V "next" V "next" V V
 new-reg ---+----> new-authz ---+----> new-cert revoke-cert
 . | . | . ^
 . | . | . | "revoke"
 V | V | V |
 reg* ----+ authz -----+ cert-----------+
 . ^ |
 . | "up" | "up"
 V | V
 challenge cert-chain

 The following table illustrates a typical sequence of requests
 required to establish a new account with the server, prove control of
 an identifier, issue a certificate, and fetch an updated certificate
 some time after issuance. The "->" is a mnemonic for a Location
 header pointing to a created resource.

Barnes, et al. Expires January 7, 2016 [Page 17]

Internet-Draft ACME July 2015

 +--------------------+----------------+--------------+
 | Action | Request | Response |
 +--------------------+----------------+--------------+
 | Register | POST new-reg | 201 -> reg |
 | | | |
 | Request challenges | POST new-authz | 201 -> authz |
 | | | |
 | Answer challenges | POST challenge | 200 |
 | | | |
 | Poll for status | GET authz | 200 |
 | | | |
 | Request issuance | POST new-cert | 201 -> cert |
 | | | |
 | Check for new cert | GET cert | 200 |
 +--------------------+----------------+--------------+

 The remainder of this section provides the details of how these
 resources are structured and how the ACME protocol makes use of them.

6.2. Directory

 In order to help clients configure themselves with the right URIs for
 each ACME operation, ACME servers provide a directory object. This
 should be the root URL with which clients are configured. It is a
 JSON dictionary, whose keys are the "resource" values listed in

Section 5.1, and whose values are the URIs used to accomplish the
 corresponding function.

 Clients access the directory by sending a GET request to the
 directory URI.

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "new-reg": "https://example.com/acme/new-reg",
 "recover-reg": "https://example.com/acme/recover-reg",
 "new-authz": "https://example.com/acme/new-authz",
 "new-cert": "https://example.com/acme/new-cert",
 "revoke-cert": "https://example.com/acme/revoke-cert"
 }

6.3. Registration

 A client creates a new account with the server by sending a POST
 request to the server's new-registration URI. The body of the
 request is a stub registration object containing only the "contact"
 field (along with the required "resource" field).

Barnes, et al. Expires January 7, 2016 [Page 18]

Internet-Draft ACME July 2015

 POST /acme/new-registration HTTP/1.1
 Host: example.com

 {
 "resource": "new-reg",
 "contact": [
 "mailto:cert-admin@example.com",
 "tel:+12025551212"
],
 }
 /* Signed as JWS */

 The server MUST ignore any values provided in the "key",
 "authorizations", and "certificates" fields in registration bodies
 sent by the client, as well as any other fields that it does not
 recognize. If new fields are specified in the future, the
 specification of those fields MUST describe whether they may be
 provided by the client.

 The server creates a registration object with the included contact
 information. The "key" element of the registration is set to the
 public key used to verify the JWS (i.e., the "jwk" element of the JWS
 header). The server returns this registration object in a 201
 (Created) response, with the registration URI in a Location header
 field. The server MUST also indicate its new-authorization URI using
 the "next" link relation.

 If the server already has a registration object with the provided
 account key, then it MUST return a 409 (Conflict) response and
 provide the URI of that registration in a Location header field.
 This allows a client that has an account key but not the
 corresponding registration URI to recover the registration URI.

 If the server wishes to present the client with terms under which the
 ACME service is to be used, it MUST indicate the URI where such terms
 can be accessed in a Link header with link relation "terms-of-
 service". As noted above, the client may indicate its agreement with
 these terms by updating its registration to include the "agreement"
 field, with the terms URI as its value.

Barnes, et al. Expires January 7, 2016 [Page 19]

Internet-Draft ACME July 2015

 HTTP/1.1 201 Created
 Content-Type: application/json
 Location: https://example.com/acme/reg/asdf
 Link: <https://example.com/acme/new-authz>;rel="next"
 Link: <https://example.com/acme/recover-reg>;rel="recover"
 Link: <https://example.com/acme/terms>;rel="terms-of-service"

 {
 "key": { /* JWK from JWS header */ },

 "contact": [
 "mailto:cert-admin@example.com",
 "tel:+12025551212"
]
 }

 If the client wishes to update this information in the future, it
 sends a POST request with updated information to the registration
 URI. The server MUST ignore any updates to the "key",
 "authorizations, or "certificates" fields, and MUST verify that the
 request is signed with the private key corresponding to the "key"
 field of the request before updating the registration.

 Servers SHOULD NOT respond to GET requests for registration resources
 as these requests are not authenticated. If a client wishes to query
 the server for information about its account (e.g., to examine the
 "contact" or "certificates" fields), then it SHOULD do so by sending
 a POST request with an empty update. That is, it should send a JWS
 whose payload is trivial ({"resource":"reg"}).

6.3.1. Recovery Keys

 If the client wishes to establish a secret key with the server that
 it can use to recover this account later (a "recovery key"), then it
 must perform a simple key agreement protocol as part of the new-
 registration transaction. The client and server perform an ECDH
 exchange through the new-registration transaction (using the
 technique in Section 5.6), and the result is the recovery key.

 To request a recovery key, the client includes a "recoveryKey" field
 in its new-registration request. The value of this field is a JSON
 object.

 client (required, JWK): The client's ECDH public key

 length (required, number): The length of the derived secret, in
 octets.

Barnes, et al. Expires January 7, 2016 [Page 20]

Internet-Draft ACME July 2015

 In the client's request, this object contains a JWK for a random ECDH
 public key generated by the client and the client-selected length
 value. Clients need to choose length values that balance security
 and usability. On the one hand, a longer secret makes it makes it
 more difficult for an attacker to recover the secret when it is used
 to for recovery (see Section 6.4.1). On the other hand, clients may
 which to make the recovery key short enough for a user to easily
 write it down.

 POST /acme/new-registration HTTP/1.1
 Host: example.com

 {
 "resource": "new-reg",
 "contact": [
 "mailto:cert-admin@example.com",
 "tel:+12025551212"
],
 "recoveryKey": {
 "client": { "kty": "EC", ... },
 "length": 128
 }
 }
 /* Signed as JWS */

 The server MUST validate that the elliptic curve ("crv") and length
 value chosen by the client are acceptable, and that is otherwise
 willing to create a recovery key. If not, then it MUST reject the
 new-registration request.

 If the server agrees to create a recovery key, then it generates its
 own random ECDH key pair and combines it with with the client's
 public key as described in Section 5.6 above, using the label
 "recovery". The derived secret value is the recovery key. The
 server then returns to the client the ECDH key that it generated.
 The server MUST generate a fresh key pair for every transaction.

 server (required, JWK): The server's ECDH public key

Barnes, et al. Expires January 7, 2016 [Page 21]

Internet-Draft ACME July 2015

 HTTP/1.1 201 Created
 Content-Type: application/json
 Location: https://example.com/acme/reg/asdf

 {
 "key": { /* JWK from JWS header */ },

 "contact": [
 "mailto:cert-admin@example.com",
 "tel:+12025551212"
],

 "recoveryKey": {
 "server": { "kty": "EC", ... }
 }
 }

 On receiving the server's response, the client can compute the
 recovery key by combining the server's public key together with the
 private key corresponding to the public key that it sent to the
 server.

 Clients may refresh the recovery key associated with a registration
 by sending a POST request with a new recoveryKey object. If the
 server agrees to refresh the recovery key, then it responds in the
 same way as to a new registration request that asks for a recovery
 key.

 POST /acme/reg/asdf HTTP/1.1
 Host: example.com

 {
 "resource": "reg",
 "recoveryKey": {
 "client": { "kty": "EC", ... }
 }
 }
 /* Signed as JWS */

6.4. Account Recovery

 Once a client has created an account with an ACME server, it is
 possible that the private key for the account will be lost. The
 recovery contacts included in the registration allows the client to
 recover from this situation, as long as it still has access to these
 contacts.

Barnes, et al. Expires January 7, 2016 [Page 22]

Internet-Draft ACME July 2015

 By "recovery", we mean that the information associated with an old
 account key is bound to a new account key. When a recovery process
 succeeds, the server provides the client with a new registration
 whose contents are the same as base registration object - except for
 the "key" field, which is set to the new account key. The server
 reassigns resources associated with the base registration to the new
 registration (e.g., authorizations and certificates). The server
 SHOULD delete the old registration resource after it has been used as
 a base for recovery.

 In addition to the recovery mechanisms defined by ACME, individual
 client implementations may also offer implementation-specific
 recovery mechanisms. For example, if a client creates account keys
 deterministically from a seed value, then this seed could be used to
 recover the account key by re-generating it. Or an implementation
 could escrow an encrypted copy of the account key with a cloud
 storage provider, and give the encryption key to the user as a
 recovery value.

6.4.1. MAC-Based Recovery

 With MAC-based recovery, the client proves to the server that it
 holds a secret value established in the initial registration
 transaction. The client requests MAC-based recovery by sending a MAC
 over the new account key, using the recovery key from the initial
 registration.

 method (required, string): The string "mac"

 base (required, string): The URI for the registration to be
 recovered.

 mac (required, string): A JSON-formatted JWS object using an HMAC
 algorithm, whose payload is the JWK representation of the public
 key of the new account key pair.

Barnes, et al. Expires January 7, 2016 [Page 23]

Internet-Draft ACME July 2015

 POST /acme/recover-reg HTTP/1.1
 Host: example.com

 {
 "resource": "recover-reg",
 "method": "mac",
 "base": "https://example.com/acme/reg/asdf",
 "mac": {
 "header": { "alg": "HS256" },
 "payload": base64(JWK(newAccountKey)),
 "signature": "5wUrDI3eAaV4wl2Rfj3aC0Pp--XB3t4YYuNgacv_D3U"
 }
 }
 /* Signed as JWS, with new account key */

 On receiving such a request the server MUST verify that:

 o The base registration has a recovery key associated with it

 o The "alg" value in the "mac" JWS represents a MAC algorithm

 o The "mac" JWS is valid according to the validation rules in
 [RFC7515], using the recovery key as the MAC key

 o The JWK in the payload represents the new account key (i.e. the
 key used to verify the ACME message)

 If those conditions are met, and the recovery request is otherwise
 acceptable to the server, then the recovery process has succeeded.
 The server creates a new registration resource based on the base
 registration and the new account key, and returns it on a 201
 (Created) response, together with a Location header indicating a URI
 for the new registration. If the recovery request is unsuccessful,
 the server returns an error response, such as 403 (Forbidden).

https://datatracker.ietf.org/doc/html/rfc7515

Barnes, et al. Expires January 7, 2016 [Page 24]

Internet-Draft ACME July 2015

 HTTP/1.1 201 Created
 Content-Type: application/json
 Location: https://example.com/acme/reg/asdf
 Link: <https://example.com/acme/new-authz>;rel="next"
 Link: <https://example.com/acme/recover-reg>;rel="recover"
 Link: <https://example.com/acme/terms>;rel="terms-of-service"

 {
 "key": { /* JWK from JWS header */ },

 "contact": [
 "mailto:cert-admin@example.com",
 "tel:+12025551212"
],

 "authorizations": "...",
 "certificate": "..."
 }

6.4.2. Contact-Based Recovery

 In the contact-based recovery process, the client requests that the
 server send a message to one of the contact URIs registered for the
 account. That message indicates some action that the server requires
 the client's user to perform, e.g., clicking a link in an email. If
 the user successfully completes the server's required actions, then
 the server will bind the account to the new account key.

 (Note that this process is almost entirely out of band with respect
 to ACME. ACME only allows the client to initiate the process, and
 the server to indicate the result.)

 To initiate contact-based recovery, the client sends a POST request
 to the server's recover-registration URI, with a body specifying
 which registration is to be recovered. The body of the request MUST
 be signed by the client's new account key pair.

 method (required, string): The string "contact"

 base (required, string): The URI for the registration to be
 recovered.

Barnes, et al. Expires January 7, 2016 [Page 25]

Internet-Draft ACME July 2015

 POST /acme/recover-reg HTTP/1.1
 Host: example.com

 {
 "resource": "recover-reg",
 "method": "contact",
 "base": "https://example.com/acme/reg/asdf"
 }
 /* Signed as JWS, with new account key */

 If the server agrees to attempt contact-based recovery, then it
 creates a new registration resource containing a stub registration
 object. The stub registration has the client's new account key and
 anonymized contacts, in order to allow the client to know which
 contacts to check. The server returns the stub contact in a 201
 (Created) response, along with a Location header field indicating the
 URI for the new registration resource (which will be the registration
 URI if the recovery succeeds).

 HTTP/1.1 201 Created
 Content-Type: application/json
 Location: https://example.com/acme/reg/qwer

 {
 "key": { /* new account key from JWS header */ },

 "contact": [
 "mailto:c********n@example.com",
 "tel:+1********12"
]
 }

 After recovery has been initiated, the server follows its chosen
 recovery process, out-of-band to ACME. While the recovery process is
 ongoing, the client may poll the registration resource's URI for
 status, by sending a POST request with a trivial body
 ({"resource":"reg"}). If the recovery process is still pending, the
 server sends a 202 (Accepted) status code, and a Retry-After header
 field. If the recovery process has failed, the server sends an error
 code (e.g., 404), and SHOULD delete the stub registration resource.

 If the recovery process has succeeded, then the server will send a
 200 (OK) response, containing the full registration object (copied
 from the old registration). The client may now use this in the same
 way as if he had gotten it from a new-registration transaction.

Barnes, et al. Expires January 7, 2016 [Page 26]

Internet-Draft ACME July 2015

6.5. Identifier Authorization

 The identifier authorization process establishes the authorization of
 an account to manage certificates for a given identifier. This
 process must assure the server of two things: First, that the client
 controls the private key of the account key pair, and second, that
 the client holds the identifier in question. This process may be
 repeated to associate multiple identifiers to a key pair (e.g., to
 request certificates with multiple identifiers), or to associate
 multiple accounts with an identifier (e.g., to allow multiple
 entities to manage certificates).

 As illustrated by the figure in the overview section above, the
 authorization process proceeds in two phases. The client first
 requests a new authorization, and the server issues challenges, then
 the client responds to those challenges and the server validates the
 client's responses.

 To begin the key authorization process, the client sends a POST
 request to the server's new-authorization resource. The body of the
 POST request MUST contain a JWS object, whose payload is a partial
 authorization object. This JWS object MUST contain only the
 "identifier" field, so that the server knows what identifier is being
 authorized. The server MUST ignore any other fields present in the
 client's request object.

 The authorization object is implicitly tied to the account key used
 to sign the request. Once created, the authorization may only be
 updated by that account.

 POST /acme/new-authorization HTTP/1.1
 Host: example.com

 {
 "resource": "new-authz",
 "identifier": {
 "type": "dns",
 "value": "example.org"
 }
 }
 /* Signed as JWS */

 Before processing the authorization further, the server SHOULD
 determine whether it is willing to issue certificates for the
 identifier. For example, the server should check that the identifier
 is of a supported type. Servers might also check names against a
 blacklist of known high-value identifiers. If the server is
 unwilling to issue for the identifier, it SHOULD return a 403

Barnes, et al. Expires January 7, 2016 [Page 27]

Internet-Draft ACME July 2015

 (Forbidden) error, with a problem document describing the reason for
 the rejection.

 If the server is willing to proceed, it builds a pending
 authorization object from the initial authorization object submitted
 by the client.

 o "identifier" the identifier submitted by the client.

 o "status": MUST be "pending"

 o "challenges" and "combinations": As selected by the server's
 policy for this identifier

 o The "expires" field MUST be absent.

 The server allocates a new URI for this authorization, and returns a
 201 (Created) response, with the authorization URI in a Location
 header field, and the JSON authorization object in the body.

Barnes, et al. Expires January 7, 2016 [Page 28]

Internet-Draft ACME July 2015

 HTTP/1.1 201 Created
 Content-Type: application/json
 Location: https://example.com/authz/asdf
 Link: <https://example.com/acme/new-cert>;rel="next"

 {
 "status": "pending",

 "identifier": {
 "type": "dns",
 "value": "example.org"
 },

 "challenges": [
 {
 "type": "simpleHttp",
 "uri": "https://example.com/authz/asdf/0",
 "token": "IlirfxKKXAsHtmzK29Pj8A"
 },
 {
 "type": "dns",
 "uri": "https://example.com/authz/asdf/1"
 "token": "DGyRejmCefe7v4NfDGDKfA"
 }
 },

 "combinations": [
 [0, 2],
 [1, 2]
]
 }

 The client needs to respond with information to complete the
 challenges. To do this, the client updates the authorization object
 received from the server by filling in any required information in
 the elements of the "challenges" dictionary. For example, if the
 client wishes to complete the "simpleHttp" challenge, it needs to
 provide the "path" component. (This is also the stage where the
 client should perform any actions required by the challenge.)

 The client sends these updates back to the server in the form of a
 JSON object with the response fields required by the challenge type,
 carried in a POST request to the challenge URI (not authorization URI
 or the new-authorization URI). This allows the client to send
 information only for challenges it is responding to.

Barnes, et al. Expires January 7, 2016 [Page 29]

Internet-Draft ACME July 2015

 For example, if the client were to respond to the "simpleHttp"
 challenge in the above authorization, it would send the following
 request:

 POST /acme/authz/asdf/0 HTTP/1.1
 Host: example.com

 {
 "resource": "challenge",
 "type": "simpleHttp",
 "path": "Hf5GrX4Q7EBax9hc2jJnfw"
 }
 /* Signed as JWS */

 The server updates the authorization document by updating its
 representation of the challenge with the response fields provided by
 the client. The server MUST ignore any fields in the response object
 that are not specified as response fields for this type of challenge.
 The server provides a 200 (OK) response with the updated challenge
 object as its body.

 Presumably, the client's responses provide the server with enough
 information to validate one or more challenges. The server is said
 to "finalize" the authorization when it has completed all the
 validations it is going to complete, and assigns the authorization a
 status of "valid" or "invalid", corresponding to whether it considers
 the account authorized for the identifier. If the final state is
 "valid", the server MUST add an "expires" field to the authorization.
 When finalizing an authorization, the server MAY remove the
 "combinations" field (if present) or remove any challenges still
 pending. The server SHOULD NOT remove challenges with status
 "invalid".

 Usually, the validation process will take some time, so the client
 will need to poll the authorization resource to see when it is
 finalized. For challenges where the client can tell when the server
 has validated the challenge (e.g., by seeing an HTTP or DNS request
 from the server), the client SHOULD NOT begin polling until it has
 seen the validation request from the server.

 To check on the status of an authorization, the client sends a GET
 request to the authorization URI, and the server responds with the
 current authorization object. In responding to poll requests while
 the validation is still in progress, the server MUST return a 202
 (Accepted) response with a Retry-After header field.

Barnes, et al. Expires January 7, 2016 [Page 30]

Internet-Draft ACME July 2015

 GET /acme/authz/asdf HTTP/1.1
 Host: example.com

 HTTP/1.1 200 OK

 {
 "status": "valid",
 "expires": "2015-03-01",

 "identifier": {
 "type": "dns",
 "value": "example.org"
 },

 "challenges": [
 {
 "type": "simpleHttp"
 "status": "valid",
 "validated": "2014-12-01T12:05Z",
 "token": "IlirfxKKXAsHtmzK29Pj8A"
 "path": "Hf5GrX4Q7EBax9hc2jJnfw"
 }
]
 }

6.6. Certificate Issuance

 The holder of an authorized key pair for an identifier may use ACME
 to request that a certificate be issued for that identifier. The
 client makes this request by sending a POST request to the server's
 new-certificate resource. The body of the POST is a JWS object whose
 JSON payload contains a Certificate Signing Request (CSR) [RFC2986].
 The CSR encodes the parameters of the requested certificate;
 authority to issue is demonstrated by the JWS signature by an account
 key, from which the server can look up related authorizations.

 csr (required, string): A CSR encoding the parameters for the
 certificate being requested. The CSR is sent in the
 Base64-encoded version of the DER format. (Note: This field uses
 the same modified Base64-encoding rules used elsewhere in this
 document, so it is different from PEM.)

https://datatracker.ietf.org/doc/html/rfc2986

Barnes, et al. Expires January 7, 2016 [Page 31]

Internet-Draft ACME July 2015

 POST /acme/new-cert HTTP/1.1
 Host: example.com
 Accept: application/pkix-cert

 {
 "resource": "new-cert",
 "csr": "5jNudRx6Ye4HzKEqT5...FS6aKdZeGsysoCo4H9P",
 }
 /* Signed as JWS */

 The CSR encodes the client's requests with regard to the content of
 the certificate to be issued. The CSR MUST indicate the requested
 identifiers, either in the commonName portion of the requested
 subject name, or in an extensionRequest attribute [RFC2985]
 requesting a subjectAltName extension.

 The values provided in the CSR are only a request, and are not
 guaranteed. The server or CA may alter any fields in the certificate
 before issuance. For example, the CA may remove identifiers that are
 not authorized for the account key that signed the request.

 It is up to the server's local policy to decide which names are
 acceptable in a certificate, given the authorizations that the server
 associates with the client's account key. A server MAY consider a
 client authorized for a wildcard domain if it is authorized for the
 underlying domain name (without the "*" label). Servers SHOULD NOT
 extend authorization across identifier types. For example, if a
 client is authorized for "example.com", then the server should not
 allow the client to issue a certificate with an iPAddress
 subjectAltName, even if it contains an IP address to which
 example.com resolves.

 If the CA decides to issue a certificate, then the server creates a
 new certificate resource and returns a URI for it in the Location
 header field of a 201 (Created) response.

 HTTP/1.1 201 Created
 Location: https://example.com/acme/cert/asdf

 If the certificate is available at the time of the response, it is
 provided in the body of the response. If the CA has not yet issued
 the certificate, the body of this response will be empty. The client
 should then send a GET request to the certificate URI to poll for the
 certificate. As long as the certificate is unavailable, the server
 MUST provide a 202 (Accepted) response and include a Retry-After
 header to indicate when the server believes the certificate will be
 issued (as in the example above).

https://datatracker.ietf.org/doc/html/rfc2985

Barnes, et al. Expires January 7, 2016 [Page 32]

Internet-Draft ACME July 2015

 GET /acme/cert/asdf HTTP/1.1
 Host: example.com
 Accept: application/pkix-cert

 HTTP/1.1 202 Accepted
 Retry-After: 120

 The default format of the certificate is DER (application/pkix-cert).
 The client may request other formats by including an Accept header in
 its request.

 The server provides metadata about the certificate in HTTP headers.
 In particular, the server MUST include a Link relation header field
 [RFC5988] with relation "up" to provide a certificate under which
 this certificate was issued. The server MAY also include an Expires
 header as a hint to the client about when to renew the certificate.
 (Of course, the real expiration of the certificate is controlled by
 the notAfter time in the certificate itself.)

 GET /acme/cert/asdf HTTP/1.1
 Host: example.com
 Accept: application/pkix-cert

 HTTP/1.1 200 OK
 Content-Type: application/pkix-cert
 Link: <https://example.com/acme/ca-cert>;rel="up";title="issuer"
 Link: <https://example.com/acme/revoke-cert>;rel="revoke"
 Location: https://example.com/acme/cert/asdf
 Content-Location: https://example.com/acme/cert-seq/12345

 [DER-encoded certificate]

6.7. Certificate Renewal

 Often, a client wishes to request a new certificate with the same
 contents as another certificates, but with updated notBefore and
 notAfter dates. This operation is referred to as "renewal" of the
 certificate.

 If the CA allows a certificate to be renewed, then it publishes
 renewed versions of the certificate through the same certificate URI.
 Clients retrieve renewed versions of the certificate using a GET
 query to the certificate URI, which the server should then return in
 a 200 (OK) response. The server SHOULD provide a URI for each
 specific certificate in the Content-Location header field, as shown
 above. Requests to specific certificate URIs MUST always result in
 the same certificate.

https://datatracker.ietf.org/doc/html/rfc5988

Barnes, et al. Expires January 7, 2016 [Page 33]

Internet-Draft ACME July 2015

 To avoid unnecessary renewals, the CA may choose not to issue a
 renewed certificate until it receives such a request. In such cases,
 if the CA requires some time to generate the new certificate, the CA
 MUST return a 202 (Accepted) response, with a Retry-After header
 field that indicates when the new certificate will be available. The
 CA MAY include the current (non-renewed) certificate as the body of
 the response.

 From the client's perspective, there is no difference between a
 certificate URI that allows renewal and one that does not. If the
 client wishes to obtain a renewed certificate, and a GET request to
 the certificate URI does not yield one, then the client may initiate
 a new-certificate transaction to request one.

6.8. Certificate Revocation

 To request that a certificate be revoked, the client sends a POST
 request to the ACME server's revoke-cert URI. The body of the POST
 is a JWS object whose JSON payload contains the certificate to be
 revoked:

 certificate (required, string): The certificate to be revoked, in
 the Base64-encoded version of the DER format. (Note: This field
 uses the same modified Base64-encoding rules used elsewhere in
 this document, so it is different from PEM.)

 POST /acme/revoke-cert HTTP/1.1
 Host: example.com

 {
 "resource": "revoke-cert",
 "certificate": "MIIEDTCCAvegAwIBAgIRAP8..."
 }
 /* Signed as JWS */

 Revocation requests are different from other ACME request in that
 they can be signed either with an account key pair or the key pair in
 the certificate. Before revoking a certificate, the server MUST
 verify at least one of these conditions applies:

 o the public key of the key pair signing the request matches the
 public key in the certificate.

 o the key pair signing the request is an account key, and the
 corresponding account is authorized to act for all of the
 identifier(s) in the certificate.

Barnes, et al. Expires January 7, 2016 [Page 34]

Internet-Draft ACME July 2015

 If the revocation succeeds, the server responds with status code 200
 (OK). If the revocation fails, the server returns an error.

 HTTP/1.1 200 OK
 Content-Length: 0

 --- or ---

 HTTP/1.1 403 Forbidden
 Content-Type: application/problem+json
 Content-Language: en

 {
 "type": "urn:acme:error:unauthorized"
 "detail": "No authorization provided for name example.net"
 "instance": "http://example.com/doc/unauthorized"
 }

7. Identifier Validation Challenges

 There are few types of identifier in the world for which there is a
 standardized mechanism to prove possession of a given identifier. In
 all practical cases, CAs rely on a variety of means to test whether
 an entity applying for a certificate with a given identifier actually
 controls that identifier.

 Challenges provide the server with assurance the an account key
 holder is also the entity that controls an identifier. For each type
 of challenge, it must be the case that in order for an entity to
 successfully complete the challenge the entity must both:

 o Hold the private key of the account key pair used to respond to
 the challenge

 o Control the identifier in question

Section 9 documents how the challenges defined in this document meet
 these requirements. New challenges will need to document how they
 do.

 To accommodate this reality, ACME includes an extensible challenge/
 response framework for identifier validation. This section describes
 an initial set of Challenge types. Each challenge must describe:

 o Content of Challenge payloads (in Challenge messages)

 o Content of Response payloads (in authorizationRequest messages)

Barnes, et al. Expires January 7, 2016 [Page 35]

Internet-Draft ACME July 2015

 o How the server uses the Challenge and Response to verify control
 of an identifier

 The general structure of Challenge and Response payloads is as
 follows:

 type (required, string): The type of Challenge or Response encoded
 in the object.

 uri (required, string): The URI to which a response can be posted.

 status (optional, string): : The status of this authorization.
 Possible values are: "unknown", "pending", "processing", "valid",
 "invalid" and "revoked". If this field is missing, then the default
 value is "pending".

 validated (optional, string): : The time at which this challenge was
 completed by the server, encoded in the format specified in RFC 3339
 [RFC3339].

 error (optional, dictionary of string): : The error that occurred
 while the server was validating the challenge, if any. This field is
 structured as a problem document [I-D.ietf-appsawg-http-problem].

 All additional fields are specified by the Challenge type. The
 server MUST ignore any values provided in the "uri", "status",
 "validated", and "error" fields of a Response payload. If the server
 sets a Challenge's "status" to "invalid", it SHOULD also include the
 "error" field to help the client diagnose why they failed the
 challenge.

 Different challenges allow the server to obtain proof of different
 aspects of control over an identifier. In some challenges, like
 Simple HTTP and DVSNI, the client directly proves its ability to do
 certain things related to the identifier. In the Proof of Possession
 challenge, the client proves historical control of the identifier, by
 reference to a prior authorization transaction or certificate.

 The choice of which Challenges to offer to a client under which
 circumstances is a matter of server policy. A CA may choose
 different sets of challenges depending on whether it has interacted
 with a domain before, and how. For example:

 o New domain with no known certificates: Domain Validation (DVSNI or
 Simple HTTP)

 o Domain for which known certs exist from other CAs: DV + Proof of
 Possession of previous CA-signed key

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Barnes, et al. Expires January 7, 2016 [Page 36]

Internet-Draft ACME July 2015

 o Domain with a cert from this CA, lost account key: DV + PoP of
 ACME-certified Subject key

 o Domain with a cert from this CA, all keys and recovery tokens
 lost: Out of band proof of authority for the domain

 The identifier validation challenges described in this section all
 relate to validation of domain names. If ACME is extended in the
 future to support other types of identifier, there will need to be
 new Challenge types, and they will need to specify which types of
 identifier they apply to.

7.1. Simple HTTP

 With Simple HTTP validation, the client in an ACME transaction proves
 its control over a domain name by proving that it can provision
 resources on an HTTP server that responds for that domain name. The
 ACME server challenges the client to provision a file with a specific
 string as its contents.

 As a domain may resolve to multiple IPv4 and IPv6 addresses, the
 server will connect to at least one of the hosts found in A and AAAA
 records, at its discretion. The HTTP server may be made available
 over either HTTPS or unencrypted HTTP; the client tells the server in
 its response which to check.

 type (required, string): The string "simpleHttp"

 token (required, string): The value to be provisioned in the file.
 This value MUST have at least 128 bits of entropy, in order to
 prevent an attacker from guessing it. It MUST NOT contain any
 non-ASCII characters.

 {
 "type": "simpleHttp",
 "token": "evaGxfADs6pSRb2LAv9IZf17Dt3juxGJ+PCt92wr+oA"
 }

 A client responds to this challenge by signing a JWS object and
 provisioning it as a resource on the HTTP server for the domain in
 question. The payload of the JWS MUST be a JSON dictionary
 containing the fields "type", "token", "path", and "tls" from the
 ACME challenge and response (see below), and no other fields. If the
 "tls" field is not included in the response, then validation object
 MUST have its "tls" field set to "true". The JWS MUST be signed with
 the client's account key pair. This JWS is NOT REQUIRED to have a
 "nonce" header parameter (as with the JWS objects that carry ACME

Barnes, et al. Expires January 7, 2016 [Page 37]

Internet-Draft ACME July 2015

 request objects), but MUST otherwise meet the guidelines laid out in
Section 3.

 {
 "type": "simpleHttp",
 "token": "evaGxfADs6pSRb2LAv9IZf17Dt3juxGJ+PCt92wr+oA",
 "path": "6tbIMBC5Anhl5bOlWT5ZFA",
 "tls": false,
 }

 The path at which the resource is provisioned is determined by the
 client, but MUST begin with ".well-known/acme-challenge/". The
 content type of the resource, if provided, MUST be "application/
 jose+json". In addition to expressing the path in the JWS as
 described above, the client returns the part of the path coming after
 that prefix in its Response message.

 type (required, string): The string "simpleHttp"

 path (required, string): The string to be appended to the standard
 prefix ".well-known/acme-challenge/" in order to form the path at
 which the nonce resource is provisioned. The value MUST be
 comprised entirely of characters from the URL-safe alphabet for
 Base64 encoding [RFC4648], and MUST NOT be longer than 25
 characters (sufficient for 128 bits of base64-encoded data).

 tls (optional, boolean, default true): If this attribute is present
 and set to "false", the server will perform its validation check
 over unencrypted HTTP (on port 80) rather than over HTTPS.
 Otherwise the check will be done over HTTPS, on port 443.

 {
 "type": "simpleHttp",
 "path": "6tbIMBC5Anhl5bOlWT5ZFA",
 "tls": false
 }
 /* Signed as JWS */

 Given a Challenge/Response pair, the server verifies the client's
 control of the domain by verifying that the resource was provisioned
 as expected.

 1. Form a URI by populating the URI template [RFC6570]
 "{scheme}://{domain}/.well-known/acme-challenge/{path}", where:

 * the scheme field is set to "http" if the "tls" field in the
 response is present and set to false, and "https" otherwise;

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc6570

Barnes, et al. Expires January 7, 2016 [Page 38]

Internet-Draft ACME July 2015

 * the domain field is set to the domain name being verified; and

 * the path field is the path provided in the response.

 2. Verify that the resulting URI is well-formed.

 3. Dereference the URI using an HTTP or HTTPS GET request. If using
 HTTPS, the ACME server MUST ignore the certificate provided by
 the HTTPS server.

 4. Verify that the Content-Type header of the response is either
 absent, or has the value "application/jose+json"

 5. Verify that the body of the response is a valid JWS of the type
 indicated by the Content-Type header (if present), signed with
 the client's account key

 6. Verify that the payload of the JWS meets the following criteria:

 * It is a valid JSON dictionary

 * It has exactly four fields

 * Its "type" field is set to "simpleHttp"

 * Its "token" field is equal to the "token" field in the
 challenge

 * Its "path" field is equal to the "path" field in the response

 * Its "tls" field is equal to the "tls" field in the response,
 or "true" if the "tls" field was absent

 Comparisons of the "path" and "token" fields MUST be performed in
 terms of Unicode code points, taking into account the encodings of
 the stored nonce and the body of the request.

 If all of the above verifications succeed, then the validation is
 successful. If the request fails, or the body does not pass these
 checks, then it has failed.

7.2. Domain Validation with Server Name Indication (DVSNI)

 The Domain Validation with Server Name Indication (DVSNI) validation
 method proves control over a domain name by requiring the client to
 configure a TLS server referenced by an A/AAAA record under the
 domain name to respond to specific connection attempts utilizing the
 Server Name Indication extension [RFC6066]. The server verifies the

https://datatracker.ietf.org/doc/html/rfc6066

Barnes, et al. Expires January 7, 2016 [Page 39]

Internet-Draft ACME July 2015

 client's challenge by accessing the reconfigured server and verifying
 a particular challenge certificate is presented.

 type (required, string): The string "dvsni"

 token (required, string): A random 16-byte octet string, hex-encoded

 {
 "type": "dvsni",
 "token": "a82d5ff8ef740d12881f6d3c2277ab2e",
 }

 In response to the challenge, the client uses its account private key
 to sign a JWS over a JSON object describing the challenge. The
 validation object covered by the signature MUST have the following
 fields and no others:

 type (required, string): The string "dvsni"

 token (required, string): A random 16-byte octet string, hex-encoded

 {
 "type": "dvsni",
 "token": "a82d5ff8ef740d12881f6d3c2277ab2e",
 }

 The client serializes the validation object to UTF-8, then uses its
 account private key to sign a JWS with the serialized JSON object as
 its payload. This JWS is NOT REQUIRED to have the "nonce" header
 parameter.

 The client will generate a self-signed certificate with the subject's
 organizationName field set to the "signature" value from the JWS,
 i.e., the base64-encoded signature value, and a
 subjectAlternativeName extension containing a single dNSName of
 "<token>.acme.invalid". The client will then configure the TLS
 server at the domain such that when a handshake is initiated with the
 Server Name Indication extension set to "<token>.acme.invalid", the
 generated test certificate is presented.

 The response to the DVSNI challenge provides the validation JWS to
 the server.

 type (required, string): The string "dvsni"

 validation (required, string): The JWS object computed on the
 validation object

Barnes, et al. Expires January 7, 2016 [Page 40]

Internet-Draft ACME July 2015

 {
 "type": "dvsni",
 "validation": {
 "header": { "alg": "HS256" },
 "payload": "qzu9...6bjn",
 "signature": "gfj9XqFv07e1wU66hSLYkiFqYakPSjAu8TsyXRg85nM"
 }
 }

 Given a Challenge/Response pair, the ACME server verifies the
 client's control of the domain by verifying that the TLS server was
 configured appropriately.

 1. Verify the validation JWS using the account key for which the
 challenge was issued

 2. Decode the payload of the JWS as UTF-8 encoded JSON

 3. Verfiy that there are exactly two fields in the decoded object,
 and that:

 * The "type" field is set to "dvsni"

 * The "token" field matches the "token" value in the challenge

 4. Open a TLS connection to the domain name being validated on port
 443, presenting the value "<token>.acme.invalid" in the SNI
 field.

 5. Verify the following properties of the certificate provided by
 the TLS server:

 * The organizationName field in the subject matches the
 "signature" value in the "validation" JWS

 * The certificate contains a single subjectAltName of the form
 "<token>.acme.invalid".

 It is RECOMMENDED that the ACME server validation TLS connections
 from multiple vantage points to reduce the risk of DNS hijacking
 attacks.

 If all of the above verifications succeed, then the validation is
 successful. Otherwise, the validation fails.

Barnes, et al. Expires January 7, 2016 [Page 41]

Internet-Draft ACME July 2015

7.3. Proof of Possession of a Prior Key

 The Proof of Possession challenge verifies that a client possesses a
 private key corresponding to a server-specified public key, as
 demonstrated by its ability to sign with that key. This challenge is
 meant to be used when the server knows of a public key that is
 already associated with the identifier being claimed, and wishes for
 new authorizations to be authorized by the holder of the
 corresponding private key. For DNS identifiers, for example, this
 can help guard against domain hijacking.

 This method is useful if a server policy calls for issuing a
 certificate only to an entity that already possesses the subject
 private key of a particular prior related certificate (perhaps issued
 by a different CA). It may also help enable other kinds of server
 policy that are related to authenticating a client's identity using
 digital signatures.

 This challenge proceeds in much the same way as the proof of
 possession of the authorized key pair in the main ACME flow
 (challenge + authorizationRequest). The server provides a nonce and
 the client signs over the nonce. The main difference is that rather
 than signing with the private key of the key pair being authorized,
 the client signs with a private key specified by the server. The
 server can specify which key pair(s) are acceptable directly (by
 indicating a public key), or by asking for the key corresponding to a
 certificate.

 The server provides the following fields as part of the challenge:

 type (required, string): The string "proofOfPossession"

 identifier (required, identifier): The ACME identifier for which
 authorization is being validated

 hints (required, object): A JSON object that contains various clues
 for the client about what the requested key is, such that the
 client can find it. Entries in the hints object may include:

 jwks (required, array of JWK): A JSON Web Key object describing
 acceptable public keys

 certs (optional, array of string): An array of certificates, in
 Base64-encoded DER format, that contain acceptable public keys.

Barnes, et al. Expires January 7, 2016 [Page 42]

Internet-Draft ACME July 2015

 {
 "type": "proofOfPossession",
 "hints": {
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "n": "AMswMT...3aVtjE"
 },
 "certs": ["MIIF7z...bYVQLY"]
 }
 }

 In response to this challenge, the client uses the private key
 corresponding to one of the acceptable public keys to sign a JWS
 object including data related to the challenge. The validation
 object covered by the signature has the following fields:

 type (required, string): The string "proofOfPossession"

 identifiers (required, identifier): A list of identifiers for which
 the holder of the prior key authorizes the new key

 accountKey (required, JWK): The client's account public key

 {
 "type": "proofOfPossession",
 "identifiers: [{"type": "dns", "value": "example.com"}],
 "accountKey": { "kty": "RSA", ... }
 }

 This JWS is NOT REQUIRED to have a "nonce" header parameter (as with
 the JWS objects that carry ACME request objects). This allows proof-
 of-possession response objects to be computed off-line. For example,
 as part of a domain transfer, the new domain owner might require the
 old domain owner to sign a proof-of-possession validation object, so
 that the new domain owner can present that in an ACME transaction
 later.

 The validation JWS MUST contain a "jwk" header parameter indicating
 the public key under which the server should verify the JWS.

 The client's response includes the server-provided nonce, together
 with a signature over that nonce by one of the private keys requested
 by the server.

 type (required, string): The string "proofOfPossession"

 authorization (required, JWS): The validation JWS

Barnes, et al. Expires January 7, 2016 [Page 43]

Internet-Draft ACME July 2015

 {
 "type": "proofOfPossession",
 "authorization": {
 "header": {
 "alg": "RS256",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "n": "AMswMT...3aVtjE"
 }
 },
 "payload": "SfiR1...gSAl7A",
 "signature": "XcQLfL...cW5beg"
 }
 }

 To validate a proof-of-possession challenge, the server performs the
 following steps:

 1. Verify that the public key in the "jwk" header of the
 "authorization" JWS is one of the keys listed in the challenge's
 "hints" section

2. Verify the "authorization" JWS using the key indicated in its
 "jwk" header

 3. Decode the payload of the JWS as UTF-8 encoded JSON

 4. Verify that there are exactly three fields in the decoded object,
 and that:

 * The "type" field is set to "proofOfPossession"

 * The "identifier" field contains the identifier for which
 authorization is being validated

 * The "accountKey" field matches the account key for which the
 challenge was issued

 If all of the above verifications succeed, then the validation is
 successful. Otherwise, the validation fails.

7.4. DNS

 When the identifier being validated is a domain name, the client can
 prove control of that domain by provisioning resource records under
 it. The DNS challenge requires the client to provision a TXT record

Barnes, et al. Expires January 7, 2016 [Page 44]

Internet-Draft ACME July 2015

 containing a designated value under a specific validation domain
 name.

 type (required, string): The string "dns"

 token (required, string): A random value with at least 128 bits of
 entropy. It MUST NOT contain any characters outside the URL-safe
 Base64 alphabet.

 {
 "type": "dns",
 "token": "evaGxfADs6pSRb2LAv9IZf17Dt3juxGJ+PCt92wr+oA",
 }

 In response to this challenge, the client uses its account private
 key to sign a JWS over a JSON object describing the challenge. The
 validation object covered by the signature MUST have the following
 fields and no others:

 type (required, string): The string "dns"

 token (required, string): The token value in the challenge

 {
 "type": "dns",
 "token": "evaGxfADs6pSRb2LAv9IZf17Dt3juxGJ+PCt92wr+oA",
 }

 The client serializes the validation object to UTF-8, then uses its
 account private key to sign a JWS with the serialized JSON object as
 its payload. This JWS is NOT REQUIRED to have the "nonce" header
 parameter.

 The record provisioned to the DNS is the "signature" value from the
 JWS, i.e., the base64-encoded signature value. The client constructs
 the validation domain name by appending the label "_acme-challenge"
 to the domain name being validated, then provisions a TXT record with
 the signature value under that name. For example, if the domain name
 being validated is "example.com", then the client would provision the
 following DNS record:

 _acme-challenge.example.com. 300 IN TXT "gfj9Xq...Rg85nM"

 The response to a DNS challenge provides the validation JWS to the
 server.

 type (required, string): The string "dns"

Barnes, et al. Expires January 7, 2016 [Page 45]

Internet-Draft ACME July 2015

 validation (required, JWS): The JWS object computed with the
 validation object and the account key

 {
 "type": "dns"
 "clientPublicKey": { "kty": "EC", ... },
 "validation": {
 "header": { "alg": "HS256" },
 "payload": "qzu9...6bjn",
 "signature": "gfj9XqFv07e1wU66hSLYkiFqYakPSjAu8TsyXRg85nM"
 }
 }

 To validate a DNS challenge, the server performs the following steps:

 1. Verify the validation JWS using the account key for which this
 challenge was issued

 2. Decode the payload of the JWS as UTF-8 encoded JSON

 3. Verify that there are exactly two fields in the decoded object,
 and that:

 * The "type" field is set to "dns"

 * The "token" field matches the "token" value in the challenge

 4. Query for TXT records under the validation domain name

 5. Verify that the contents of one of the TXT records match the
 "signature" value in the "validation" JWS

 If all of the above verifications succeed, then the validation is
 successful. If no DNS record is found, or DNS record and response
 payload do not pass these checks, then the validation fails.

8. IANA Considerations

 TODO

 o Register .well-known path

 o Register Replay-Nonce HTTP header

 o Register "nonce" JWS header parameter

 o Register "urn:acme" namespace

Barnes, et al. Expires January 7, 2016 [Page 46]

Internet-Draft ACME July 2015

 o Create identifier validation method registry

 o Registries of syntax tokens, e.g., message types / error types?

9. Security Considerations

 ACME is a protocol for managing certificates that attest to
 identifier/key bindings. Thus the foremost security goal of ACME is
 to ensure the integrity of this process, i.e., to ensure that the
 bindings attested by certificates are correct, and that only
 authorized entities can manage certificates. ACME identifies clients
 by their account keys, so this overall goal breaks down into two more
 precise goals:

 1. Only an entity that controls a identifier can get an account key
 authorized for that identifier

 2. Once authorized, an account key's authorizations cannot be
 improperly transferred to another account key

 In this section, we discuss the threat model that underlies ACME and
 the ways that ACME achieves these security goals within that threat
 model. We also discuss the denial-of-service risks that ACME servers
 face, and a few other miscellaneous considerations.

9.1. Threat model

 As a service on the Internet, ACME broadly exists within the Internet
 threat model [RFC3552]. In analyzing ACME, it is useful to think of
 an ACME server interacting with other Internet hosts along three
 "channels":

 o An ACME channel, over which the ACME HTTPS requests are exchanged

 o A validation channel, over which the ACME server performs
 additional requests to validate a client's control of an
 identifier

 o A contact channel, over which the ACME server sends messages to
 the registered contacts for ACME clients

https://datatracker.ietf.org/doc/html/rfc3552

Barnes, et al. Expires January 7, 2016 [Page 47]

Internet-Draft ACME July 2015

 +------------+
 | ACME | ACME Channel
 | Client |--------------------+
 +------------+ |
 ^ V
 | Contact Channel +------------+
 +--------------------| ACME |
 | Server |
 +------------+
 +------------+ |
 | Validation |<-------------------+
 | Server | Validation Channel
 +------------+

 In practice, the risks to these channels are not entirely separate,
 but they are different in most cases. Each of the three channels,
 for example, uses a different communications pattern: the ACME
 channel will comprise inbound HTTPS connections to the ACME server,
 the validation channel outbound HTTP or DNS requests, and the contact
 channel will use channels such as email and PSTN.

 Broadly speaking, ACME aims to be secure against active and passive
 attackers on any individual channel. Some vulnerabilities arise
 (noted below), when an attacker can exploit both the ACME channel and
 one of the others.

 On the ACME channel, in addition to network-layer attackers, we also
 need to account for application-layer man in the middle attacks, and
 for abusive use of the protocol itself. Protection against
 application-layer MitM addresses potential attackers such as Content
 Distribution Networks (CDNs) and middleboxes with a TLS MitM
 function. Preventing abusive use of ACME means ensuring that an
 attacker with access to the validation or contact channels can't
 obtain illegitimate authorization by acting as an ACME client
 (legitimately, in terms of the protocol).

9.2. Integrity of Authorizations

 ACME allows anyone to request challenges for an identifier by
 registering an account key and sending a new-authorization request
 under that account key. The integrity of the authorization process
 thus depends on the identifier validation challenges to ensure that
 the challenge can only be completed by someone who both (1) holds the
 private key of the account key pair, and (2) controls the identifier
 in question.

Barnes, et al. Expires January 7, 2016 [Page 48]

Internet-Draft ACME July 2015

 Validation resposnes need to be bound to an account key pair in order
 to avoid situations where an ACME MitM can switch out a legitimate
 domain holder's account key for one of his choosing, e.g.:

 o Legitimate domain holder registers account key pair A

 o MitM registers account key pair B

 o Legitimate domain holder sends a new-authorization request signed
 under account key A

 o MitM suppresses the legitimate request, but sends the same request
 signed under account key B

 o ACME server issues challenges and MitM forwards them to the
 legitimate domain holder

 o Legitimate domain holder provisions the validation response

 o ACME server performs validation query and sees the response
 provisioned by the legitimate domain holder

 o Because the challenges were issued in response to a message signed
 account key B, the ACME server grants authoriztion to account key
 B (the MitM) instead of account key A (the legitimate domain
 holder)

 All of the challenges above that require an out-of-band query by the
 server have a binding to the account private key, such that the only
 the account private key holder can successfully respond to the
 validation query:

 o Simple HTTP: The value provided in the validation request is
 signed by the account private key.

 o DVSNI: The validation TLS request uses the account key pair as the
 server's key pair.

 o DNS: The MAC covers the account key, and the MAC key is derived
 from an ECDH public key signed with the accont private key.

 o Proof of possession of a prior key: The signature by the prior key
 covers the account public key.

 The association of challenges to identifiers is typically done by
 requiring the client to perform some action that only someone who
 effectively controls the identifier can perform. For the challenges
 in this document, the actions are:

Barnes, et al. Expires January 7, 2016 [Page 49]

Internet-Draft ACME July 2015

 o Simple HTTP: Provision files under .well-known on a web server for
 the domain

 o DVSNI: Configure a TLS server for the domain

 o DNS: Provision DNS resource records for the domain

 o Proof of possession of a prior key: Sign using the private key
 specified by the server

 There are several ways that these assumptions can be violated, both
 by misconfiguration and by attack. For example, on a web server that
 allows non-administrative users to write to .well-known, any user can
 claim to own the server's hostname by responding to a Simple HTTP
 challenge, and likewise for TLS configuration and DVSNI.

 The use of hosting providers is a particular risk for ACME
 validation. If the owner of the domain has outsourced operation of
 DNS or web services to a hosting provider, there is nothing that can
 be done against tampering by the hosting provider. As far as the
 outside world is concerned, the zone or web site provided by the
 hosting provider is the real thing.

 The DNS is a common point of vulnerability for all of these
 challenges. An entity that can provision false DNS records for a
 domain can attack the DNS challenge directly, and can provision false
 A/AAAA records to direct the ACME server to send its DVSNI or Simple
 HTTP validation query to a server of the attacker's choosing. There
 are a few different mitigations that ACME servers can apply:

 o Checking the DNSSEC status of DNS records used in ACME validation
 (for zones that are DNSSEC-enabled)

 o Querying the DNS from multiple vantage points to address local
 attackers

 o Applying mitigations against DNS off-path attackers, e.g., adding
 entropy to requests [I-D.vixie-dnsext-dns0x20] or only using TCP

 Given these considerations, the ACME validation process makes it
 impossible for any attacker on the ACME channel, or a passive
 attacker on the validation channel to hijack the authorization
 process to authorize a key of the attacker's choice.

 An attacker that can only see the ACME channel would need to convince
 the validation server to provide a response that would authorize the
 attacker's account key, but this is prevented by binding the
 validation response to the account key used to request challenges. A

Barnes, et al. Expires January 7, 2016 [Page 50]

Internet-Draft ACME July 2015

 passive attacker on the validation channel can observe the correct
 validation response and even replay it, but that response can only be
 used with the account key for which it was generated.

 An active attacker on the validation channel can subvert the ACME
 process, by performing normal ACME transactions and providing a
 validation response for his own account key. The risks due to
 hosting providers noted above are a particular case. For identifiers
 where the server already has some credential associated with the
 domain this attack can be prevented by requiring the client to
 complete a proof-of-possession challenge.

9.3. Preventing Authorization Hijacking

 The account recovery processes described in Section 6.4 allow
 authorization to be transferred from one account key to another, in
 case the former account key pair's private key is lost. ACME needs
 to prevent these processes from being exploited by an attacker to
 hijack the authorizations attached to one key and assign them to a
 key of the attacker's choosing.

 Recovery takes place in two steps: 1. Provisioning recovery
 information (contact or recovery key) 2. Using recovery information
 to recover an account

 The provisioning process needs to ensure that only the account key
 holder ends up with information that is useful for recovery. The
 recovery process needs to assure that only the (now former) account
 key holder can successfully execute recovery, i.e., that this entity
 is the only one that can choose the new account key that receives the
 capabilities held by the account being recovered.

 MAC-based recovery can be performed if the attacker knows the account
 key and registration URI for the account being recovered. Both of
 these are difficult to obtain for a network attacker, because ACME
 usess HTTPS), though if the recovery key and registration URI are
 sufficiently preductable, the attacker might be able to guess them.
 An ACME MitM can see the registration URI, but still has to guess the
 recovery key, since neitherthe ECDH in the provisioning phase nor
 HMAC in the recovery phase will reveal it to him.

 ACME clients can thus mitigate problems with MAC-based recovery by
 using long recovery keys. ACME servers should enforce a minimum
 recovery key length, and impose rate limits on recovery to limit an
 attacker's ability to test different guesses about the recovery key.

 Contact-based recovery uses both the ACME channel and the contact
 channel. The provisioning process is only visible to an ACME MitM,

Barnes, et al. Expires January 7, 2016 [Page 51]

Internet-Draft ACME July 2015

 and even then, the MitM can only observe the contact information
 provided. If the ACME attacker does not also have access to the
 contact channel, there is no risk.

 The security of the contact-based recovery process is entirely
 dependent on the security of the contact channel. The details of
 this will depend on the specific out-of-band technique used by the
 server. For example:

 o If the server requires a user to click a link in a message sent to
 a contact address, then the contact channel will need to ensure
 that the message is only available to the legitimate owner of the
 contact address. Otherwise, a passive attacker could see the link
 and click it first, or an active attacker could redirect the
 message.

 o If the server requires a user to respond to a message sent to a
 contact address containing a secret value, then the contact
 channel will need to ensure that an attacker cannot observe the
 secret value and spoof a message from the contact address.

 In practice, many contact channels that can be used to reach many
 clients do not provide strong assurances of the types noted above.
 In designing and deploying contact-based recovery schemes, ACME
 servers operators will need to find an appropriate balance between
 using contact channels that can reach many clients and using contact-
 based recovery schemes that acheive an appropriate level of risk
 using those contact channels.

9.4. Denial-of-Service Considerations

 As a protocol run over HTTPS, standard considerations for TCP-based
 and HTTP-based DoS mitigation also apply to ACME.

 At the application layer, ACME requires the server to perform a few
 potentially expensive operations. Identifier validation transactions
 require the ACME server to make outbound connections to potentially
 attacker-controlled servers, and certificate issuance can require
 interactions with cryptographic hardware.

 In addition, an attacker can also cause the ACME server to send
 validation requests to a domain of its choosing by submitting
 authorization requests for the victim domain.

 All of these attacks can be mitigated by the application of
 appropriate rate limits. Issues closer to the front end, like POST
 body validation, can be addressed using HTTP request limiting. For
 validation and certificate requests, there are other identifiers on

Barnes, et al. Expires January 7, 2016 [Page 52]

Internet-Draft ACME July 2015

 which rate limits can be keyed. For example, the server might limit
 the rate at which any individual account key can issue certificates,
 or the rate at which validation can be requested within a given
 subtree of the DNS.

9.5. CA Policy Considerations

 The controls on issuance enabled by ACME are focused on validating
 that a certificate applicant controls the identifier he claims.
 Before issuing a certificate, however, there are many other checks
 that a CA might need to perform, for example:

 o Has the client agreed to a subscriber agreement?

 o Is the claimed identifier syntactically valid?

 o For domain names:

 * If the leftmost label is a '*', then have the appropriate
 checks been applied?

 * Is the name on the Public Suffix List?

 * Is the name a high-value name?

 * Is the name a known phishing domain?

 o Is the key in the CSR sufficiently strong?

 o Is the CSR signed with an acceptable algorithm?

 CAs that use ACME to automate issuance will need to ensure that their
 servers perform all necessary checks before issuing.

10. Acknowledgements

 In addition to the editors listed on the front page, this document
 has benefited from contributions from a broad set of contributors,
 all the way back to its inception.

 o Peter Eckersley, EFF

 o Eric Rescorla, Mozilla

 o Seth Schoen, EFF

 o Alex Halderman, University of Michigan

Barnes, et al. Expires January 7, 2016 [Page 53]

Internet-Draft ACME July 2015

 o Martin Thomson, Mozilla

 o Jakub Warmuz, University of Oxford

 This document draws on many concepts established by Eric Rescorla's
 "Automated Certificate Issuance Protocol" draft. Martin Thomson
 provided helpful guidance in the use of HTTP.

11. References

11.1. Normative References

 [I-D.ietf-appsawg-http-problem]
 Nottingham, M. and E. Wilde, "Problem Details for HTTP
 APIs", draft-ietf-appsawg-http-problem-00 (work in
 progress), September 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2314] Kaliski, B., "PKCS #10: Certification Request Syntax
 Version 1.5", RFC 2314, March 1998.

 [RFC2985] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
 Classes and Attribute Types Version 2.0", RFC 2985,
 November 2000.

 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 November 2000.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC4514] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP): String Representation of Distinguished Names", RFC

4514, June 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-http-problem-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2314
https://datatracker.ietf.org/doc/html/rfc2985
https://datatracker.ietf.org/doc/html/rfc2986
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226

Barnes, et al. Expires January 7, 2016 [Page 54]

Internet-Draft ACME July 2015

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5753] Turner, S. and D. Brown, "Use of Elliptic Curve
 Cryptography (ECC) Algorithms in Cryptographic Message
 Syntax (CMS)", RFC 5753, January 2010.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570, March 2012.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7469] Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
 Extension for HTTP", RFC 7469, April 2015.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, May 2015.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517, May 2015.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, May
 2015.

 [SEC1] Standards for Efficient Cryptography Group, "SEC 1:
 Elliptic Curve Cryptography", May 2009,
 <http://www.secg.org/sec1-v2.pdf>.

11.2. Informative References

 [I-D.vixie-dnsext-dns0x20]
 Vixie, P. and D. Dagon, "Use of Bit 0x20 in DNS Labels to
 Improve Transaction Identity", draft-vixie-dnsext-

dns0x20-00 (work in progress), March 2008.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5753
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7469
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518
http://www.secg.org/sec1-v2.pdf
https://datatracker.ietf.org/doc/html/draft-vixie-dnsext-dns0x20-00
https://datatracker.ietf.org/doc/html/draft-vixie-dnsext-dns0x20-00
https://datatracker.ietf.org/doc/html/rfc2818

Barnes, et al. Expires January 7, 2016 [Page 55]

Internet-Draft ACME July 2015

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552, July
 2003.

 [W3C.CR-cors-20130129]
 Kesteren, A., "Cross-Origin Resource Sharing", World Wide
 Web Consortium CR CR-cors-20130129, January 2013,
 <http://www.w3.org/TR/2013/CR-cors-20130129>.

Authors' Addresses

 Richard Barnes
 Mozilla

 Email: rlb@ipv.sx

 Jacob Hoffman-Andrews
 EFF

 Email: jsha@eff.org

 James Kasten
 University of Michigan

 Email: jdkasten@umich.edu

https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
http://www.w3.org/TR/2013/CR-cors-20130129

Barnes, et al. Expires January 7, 2016 [Page 56]

