
Network Working Group R. Barnes
Internet-Draft Cisco
Intended status: Informational K. Bhargavan
Expires: July 22, 2019 Inria
 January 18, 2019

Hybrid Public Key Encryption
draft-barnes-cfrg-hpke-00

Abstract

 This document describes a scheme for hybrid public-key encryption
 (HPKE). This scheme provides authenticated public key encryption of
 arbitrary-sized plaintexts for a recipient public key. HPKE works
 for any Diffie-Hellman group and has a strong security proof. We
 provide instantiations of the scheme using standard and efficient
 primitives.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 22, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Barnes & Bhargavan Expires July 22, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft HPKE January 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Requirements Notation . 3
3. Security Properties . 3
4. Notation . 3
5. Hybrid Public Key Encryption 3
5.1. Key Encapsulation and Decapsulation 4
5.2. Encryption and Decryption 5

6. Ciphersuites . 6
7. Security Considerations 8
8. IANA Considerations . 8
9. References . 8
9.1. Normative References 8
9.2. Informative References 9

Appendix A. Possible TODOs 9
 Authors' Addresses . 10

1. Introduction

 Hybrid public-key encryption (HPKE) is a substantially more efficient
 solution than traditional public key encryption techniques such as
 those based on RSA or ElGamal. Encrypted messages convey a single
 ciphertext and authentication tag alongside a short public key, which
 may be further compressed. The key size and computational complexity
 of elliptic curve cryptographic primitives for authenticated
 encryption therefore make it compelling for a variety of use case.
 This type of public key encryption has many applications in practice,
 for example, in PGP [RFC6637] and in the developing Messaging Layer
 Security protocol [I-D.ietf-mls-protocol].

 Currently, there are numerous competing and non-interoperable
 standards and variants for hybrid encryption, including ANSI X9.63
 [ANSI], IEEE 1363a [IEEE], ISO/IEC 18033-2 [ISO], and SECG SEC 1
 [SECG]. Lack of a single standard makes selection and deployment of
 a compatible, cross-platform and ecosystem solution difficult to
 define. This document defines an HPKE scheme that provides a subset
 of the functions provided by the collection of schemes above, but
 specified with sufficient clarity that they can be interoperably
 implemented and formally verified.

https://datatracker.ietf.org/doc/html/rfc6637

Barnes & Bhargavan Expires July 22, 2019 [Page 2]

Internet-Draft HPKE January 2019

2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Security Properties

 As a hybrid authentication encryption algorithm, we desire security
 against (adaptive) chosen ciphertext attacks (IND-CCA2 secure). The
 HPKE variants described in this document achieve this property under
 the Random Oracle model assuming the gap Computational Diffie Hellman
 (CDH) problem is hard [S01].

4. Notation

 The following terms are used throughout this document to describe the
 operations, roles, and behaviors of HPKE:

 o Initiator (I): Sender of an encrypted message.

 o Responder (R): Receiver of an encrypted message.

 o Ephemeral (E): A fresh random value meant for one-time use.

 o "||": Concatenation of octet strings, i.e., "0x01 || 0x02 =
 0x0102".

5. Hybrid Public Key Encryption

 HPKE takes as input a recipient public key "pkR" and plaintext "pt"
 and produces, as output, an ephemeral public key "pkE" and ciphertext
 "ct". The ciphertext is encrypted such that only the owner of the
 private key associated with "pkR" can decrypt the ciphertext "ct" to
 recover the plaintext "pt". In the algorithms defined below, we also
 allow the inclusion of Additional Authenticated Data (AAD) which is
 authenticated, but not encrypted (as with an AEAD encryption
 algorithm).

 HPKE variants rely on the following primitives:

 o A Diffie-Hellman scheme:

 * GenerateKeyPair(): Generate an ephemeral key pair "(sk, pk)"
 for the DH group in use

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Barnes & Bhargavan Expires July 22, 2019 [Page 3]

Internet-Draft HPKE January 2019

 * DH(sk, pk): Perform a non-interactive DH exchange using the
 private key sk and public key pk to produce a shared secret

 * Marshal(pk): Produce a fixed-length octet string encoding the
 public key "pk"

 o A Key Derivation Function:

 * Extract(salt, IKM): Extract a pseudorandom key of fixed length
 from input keying material "IKM" and an optional octet string
 "salt"

 * Expand(PRK, info, L): Expand a pseudorandom key "PRK" using
 optional string "info" into "L" bytes of output keying material

 * Nh: The output size of the Extract function

 o An AEAD encryption algorithm [RFC5116]:

 * Seal(key, nonce, aad, pt): Encrypt and authenticate plaintext
 "pt" with associated data "aad" using secret key "key" and
 nonce "nonce", yielding ciphertext and tag "ct"

 * Open(key, nonce, aad, ct): Decrypt ciphertext "ct" using
 associated data "aad" with secret key "key" and nonce "nonce",
 returning plaintext message "pt" or an error

 * Nk: The length in octets of a key for this algorithm

 * Nn: The length in octets of a nonce for this algorithm

 A set of concrete instantiations of these primitives is provided in
Section 6. Ciphersuite values are one octet long.

 In the algorithms that follow, let "Nk" be the length in bytes of a
 symmetric key suitable for encryption and decryption with the AEAD
 scheme in use, and let "Nn" be the length of a in bytes of a suitable
 nonce.

5.1. Key Encapsulation and Decapsulation

 HPKE uses DH to generate an ephemeral secret that is shared between
 the sender and the receiver, then uses this secret to generate one or
 more (key, nonce) pairs for use with an Authenticated Encryption with
 Associated Data (AEAD) algorithm.

https://datatracker.ietf.org/doc/html/rfc5116

Barnes & Bhargavan Expires July 22, 2019 [Page 4]

Internet-Draft HPKE January 2019

 In the below algorithms, the various functions and variables specific
 to the underlying primitives (Expand, Nn, etc.) are understood to be
 in the context of the specified ciphersuite.

 The SetupI() procedure takes as input a ciphersuite (see Section 6),
 peer public key, and info string and generates a shared secret value
 and a public key that the receiver can use to recover shared secret.

 Input: ciphersuite, pkR, info

 1. (skE, pkE) = GenerateKeyPair()
 2. zz = DH(skE, pkR)
 3. secret = Extract(0^Nh, zz)
 4. context = ciphersuite || Marshal(pkE) || Marshal(pkR) || info
 6. keyIR = Expand(secret, "hpke key" || context, Nk)
 8. nonceIR = Expand(secret, "hpke nonce" || context, Nn)

 Output: pkE, keyIR, nonceIR

 In step 3, the octet string "0^Nh" is the all-zero octet string of
 length "Nh". Note that step 4 includes the recipient public key in
 the key derivation step so that the derived key is bound to the
 recipient.

 The SetupR() procedure takes as input a ciphersuite, encapsulated
 secret, secret key, and info string to produce a shared secret.

 Input: ciphersuite, pkE, skR, info

 1. zz = DH(skR, pkE)
 2. secret = Extract(0^Nh, zz)
 3. context = ciphersuite || Marshal(pkE) || Marshal(pkR) || info
 4. keyIR = Expand(secret, "hpke key" || context, Nk)
 5. nonceIR = Expand(secret, "hpke nonce" || context, Nn)

 Output: keyIR, nonceIR

5.2. Encryption and Decryption

 HPKE encryption "Encrypt()" and decryption "Decrypt()" are single-
 shot so shared secrets are never re-used. "Encrypt()" takes as input
 plaintext "pt" and associated data "ad" to encrypt, along with the
 ciphersuite, Responder public key, and an info string, and produces a
 ciphertext "ct" and encapsulated ephemeral key "secretIR", as
 follows:

Barnes & Bhargavan Expires July 22, 2019 [Page 5]

Internet-Draft HPKE January 2019

 Input: ciphersuite, pkR, info, ad, pt

 1. pkE, keyIR, nonceIR = SetupI(ciphersuite, pkR, info)
 2. ct = Seal(keyIR, nonceIR, ad, pt)

 Output: ct, pkE

 Decryption "Decrypt()" mirrors encryption, as follows:

 Input: ciphersuite, skR, pkE, info, ad, ct

 1. keyIR, nonceIR = Decap(ciphersuite, pkE, pkR, info)
 2. pt = Open(keyIR, nonceIR, ad, ct)

 Output: pt

6. Ciphersuites

 The HPKE variants as presented will function correctly for any
 combination of primitives that provides the functions described
 above. In this section, we provide specific instantiations of these
 primitives for standard groups, including: Curve25519, Curve448
 [RFC7748], and the NIST curves (P-256, P-384, P-512).

https://datatracker.ietf.org/doc/html/rfc7748

Barnes & Bhargavan Expires July 22, 2019 [Page 6]

Internet-Draft HPKE January 2019

 +-------------------------+---------+----------+-------------+------+
 | Configuration | DH | KDF | AEAD | Valu |
 | | Group | | | e |
 +-------------------------+---------+----------+-------------+------+
X25519-HKDF-SHA256-AES-	Curve25	HKDF-	AES-GCM-128	0x01
GCM-128	519	SHA256		
X25519-HKDF-	Curve25	HKDF-	ChaCha20Pol	0x02
SHA256-ChaCha20Poly1305	519	SHA256	y1305	
X448-HKDF-SHA512-AES-	Curve44	HKDF-	AES-GCM-256	0x03
GCM-256	8	SHA512		
X448-HKDF-	Curve44	HKDF-	ChaCha20Pol	0x04
SHA512-ChaCha20Poly1305	8	SHA512	y1305	
P256-HKDF-SHA256-AES-	P-256	HKDF-	AES-GCM-128	0x05
GCM-128		SHA256		
P256-HKDF-	P-256	HKDF-	ChaCha20Pol	0x06
SHA256-ChaCha20Poly1305		SHA256	y1305	
P521-HKDF-SHA512-AES-	P-521	HKDF-	AES-GCM-256	0x07
GCM-256		SHA512		
P521-HKDF-	P-521	HKDF-	ChaCha20Pol	0x08
SHA512-ChaCha20Poly1305		SHA512	y1305	
 +-------------------------+---------+----------+-------------+------+

 For the NIST curves P-256 and P-521, the Marshal function of the DH
 scheme produces the normal (non-compressed) representation of the
 public key, according to [SECG]. When these curves are used, the
 recipient of an HPKE ciphertext MUST validate that the ephemeral
 public key "pkE" is on the curve. The relevant validation procedures
 are defined in [keyagreement]

 For the CFRG curves Curve25519 and Curve448, the Marshal function is
 the identity function, since these curves already use fixed-length
 octet strings for public keys.

 The values "Nk" and "Nn" for the AEAD algorithms referenced above are
 as follows:

Barnes & Bhargavan Expires July 22, 2019 [Page 7]

Internet-Draft HPKE January 2019

 +------------------+----+----+
 | AEAD | Nk | Nn |
 +------------------+----+----+
 | AES-GCM-128 | 16 | 12 |
 | | | |
 | AES-GCM-256 | 32 | 12 |
 | | | |
 | ChaCha20Poly1305 | 32 | 12 |
 +------------------+----+----+

7. Security Considerations

 [[TODO]]

8. IANA Considerations

 [[OPEN ISSUE: Should the above table be in an IANA registry?]]

9. References

9.1. Normative References

 [ANSI] "Public Key Cryptography for the Financial Services
 Industry -- Key Agreement and Key Transport Using Elliptic
 Curve Cryptography", n.d..

 [IEEE] "IEEE 1363a, Standard Specifications for Public Key
 Cryptography - Amendment 1 -- Additional Techniques",
 n.d..

 [ISO] "ISO/IEC 18033-2, Information Technology - Security
 Techniques - Encryption Algorithms - Part 2 -- Asymmetric
 Ciphers", n.d..

 [keyagreement]
 Barker, E., Chen, L., Roginsky, A., and M. Smid,
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography", National Institute
 of Standards and Technology report,
 DOI 10.6028/nist.sp.800-56ar2, May 2013.

 [MAEA10] "A Comparison of the Standardized Versions of ECIES",
 n.d., <http://sceweb.sce.uhcl.edu/yang/teaching/

csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF>.

http://sceweb.sce.uhcl.edu/yang/teaching/csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF
http://sceweb.sce.uhcl.edu/yang/teaching/csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF

Barnes & Bhargavan Expires July 22, 2019 [Page 8]

Internet-Draft HPKE January 2019

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [S01] "A Proposal for an ISO Standard for Public Key Encryption
 (verison 2.1)", n.d.,
 <http://www.shoup.net/papers/iso-2_1.pdf>.

 [SECG] "Elliptic Curve Cryptography, Standards for Efficient
 Cryptography Group, ver. 2", n.d.,
 <http://www.secg.org/download/aid-780/sec1-v2.pdf>.

9.2. Informative References

 [I-D.ietf-mls-protocol]
 Barnes, R., Millican, J., Omara, E., Cohn-Gordon, K., and
 R. Robert, "The Messaging Layer Security (MLS) Protocol",

draft-ietf-mls-protocol-03 (work in progress), January
 2019.

 [RFC6637] Jivsov, A., "Elliptic Curve Cryptography (ECC) in
 OpenPGP", RFC 6637, DOI 10.17487/RFC6637, June 2012,
 <https://www.rfc-editor.org/info/rfc6637>.

Appendix A. Possible TODOs

 The following extensions to the basic HPKE functions defined above
 might be worth specifying:

 o Use of general KEM - It could be useful to define the routines in
 this document in terms of a general KEM, as opposed to just DH.
 For example, there are currently more post-quantum KEM proposals
 than DH proposals.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://www.shoup.net/papers/iso-2_1.pdf
http://www.secg.org/download/aid-780/sec1-v2.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-03
https://datatracker.ietf.org/doc/html/rfc6637
https://www.rfc-editor.org/info/rfc6637

Barnes & Bhargavan Expires July 22, 2019 [Page 9]

Internet-Draft HPKE January 2019

 o Sender authentication - It is possible to enable a degree of
 sender authentication by mixing in a long-term key for the sender
 of a ciphertext as well as the recipient. This is done, for
 example, in the libnacl "box" function.

 o PSK authentication - A pre-shared key could be folded into the key
 schedule as another form of authentication.

 o Streaming (multi-message) encryption - In many use cases, it is
 useful to amortize the cost of the DH operation over several AEAD
 encryptions.

 o Multiple recipients - It might be possible to add some
 simplifications / assurances for the case where the same value is
 being encrypted to multiple recipients.

 o Test vectors - Obviously, we can provide decryption test vectors
 in this document. In order to provide known-answer tests, we
 would have to introduce a non-secure deterministic mode where the
 ephemeral key pair is derived from the inputs. And to do that
 safely, we would need to augment the decrypt function to detect
 the deterministic mode and fail.

 o A reference implementation in hacspec or similar

Authors' Addresses

 Richard L. Barnes
 Cisco

 Email: rlb@ipv.sx

 Karthik Bhargavan
 Inria

 Email: karthikeyan.bhargavan@inria.fr

Barnes & Bhargavan Expires July 22, 2019 [Page 10]

