
Network Working Group R. Barnes
Internet-Draft BBN Technologies
Intended status: Standards Track June 15, 2012
Expires: December 17, 2012

JavaScript Message Security Format
draft-barnes-jose-jsms-00.txt

Abstract

 Many applications require the ability to send cryptographically
 secured messages. While the IETF has defined a number of formats for
 such messages (e.g. CMS) those formats use encodings which are not
 easy to use in modern applications. This document describes the
 JavaScript Message Security format (JSMS), a new cryptographic
 message format which is based on JavaScript Object Notation (JSON)
 and thus is easy for many applications to generate and parse.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 17, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Barnes Expires December 17, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSMS June 2012

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions Used In This Document 3
3. Overview . 3
3.1. Operational Modes . 4
3.2. Design Principles . 4
3.3. Certificate Processing 5
3.4. Certificate Discovery 5

4. Message Format . 5
4.1. Data types . 6
4.2. Basic Types . 6
4.3. SignedData . 7
4.3.1. Signature . 7
4.3.2. Generating a SignedData Object 8
4.3.3. Verifying a SignedData Object 8

4.4. AuthenticatedData . 9
4.4.1. Generating an AuthenticatedData Object 9
4.4.2. Verifying an AuthenticatedData Object 9

4.5. EncryptedData . 10
4.5.1. Generating an EncryptedData Object 10
4.5.2. Decrypting a EncryptedData Object 11

4.6. Useful Objects . 11
4.6.1. AlgorithmIdentifier 11
4.6.2. PublicKey . 14
4.6.3. WrappedKey . 16

5. Compact Format . 17
6. Examples . 18
6.1. Parameters . 18
6.2. SignedData . 18
6.3. AuthenticatedData . 19
6.4. EncryptedData . 20

7. Mapping to CMS . 20
8. Comparison to JWS/JWE/JWK 21
9. IANA Considerations . 22
10. Security Considerations 22
11. Acknowledgements . 23
12. References . 23
12.1. Normative References 23
12.2. Informative References 24

Appendix A. Acknowledgments 25
 Author's Address . 25

Barnes Expires December 17, 2012 [Page 2]

Internet-Draft JSMS June 2012

1. Introduction

 Many applications require the ability to send cryptographically
 secured (encrypted, digitally signed, etc.) messages. While the IETF
 has defined a number of formats for such messages, those formats are
 widely viewed as being excessively complicated for the demands of Web
 applications, which typically only need the ability to secure simple
 messages. In addition, existing formats use encoding mechanisms
 (e.g., ASN.1 DER) which are not congenial for many classes of
 applications (e.g., Web applications). This presents an obstacle to
 the deployment of strong security by such applications.

 This document describes a new cryptographic message format,
 JavaScript Message Security (JSMS). This format is intended to meet
 the need of modern applications, including JavaScript-based Web
 applications. While JSMS is modeled on existing formats --
 principally CMS [RFC5652] -- it uses JavaScript Object Notation
 (JSON) rather than ASN.1, making it far easier for applications to
 handle. In the interest of simplicity, JSMS also omits many of less
 commonly used CMS modes (such as password-based encryption).

2. Conventions Used In This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In order to enable JSON to carry binary data, JSMS makes extensive
 use of Base64 encoding [RFC4648]. Whenever this document refers to
 Base64 encoding, we mean the URL-safe variant "base64url" encoding.
 As stated in section 3.1 of [RFC4648], Base64 does not allow
 linefeeds. Since linefeeds are not valid characters in a JSON
 string, whenever a field is specified to be Base64-encoded in this
 document, it MUST NOT include any line breaks. Base64-encoded fields
 also MUST NOT include JSON-encoded linefeeds such as "\n". Any
 linebreaks in the middle of Base64-encoded sections of the examples
 in this document have been inserted in order to make the examples fit
 on the page. Any trailing "=" characters SHOULD be removed. They
 are not needed, because JSON strings have defined lengths (namely the
 number of characters between unescaped '"' characters).

3. Overview

 The JSMS message format is simply a JSON [RFC4627] object with an
 appropriate collection of fields. Each operating mode will have a
 separate set of fields, with a common field to distinguish between

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648#section-3.1
https://datatracker.ietf.org/doc/html/rfc4627

Barnes Expires December 17, 2012 [Page 3]

Internet-Draft JSMS June 2012

 the modes.

3.1. Operational Modes

 JSMS supports three operational modes:
 Signed Data
 A block of data signed by a single signer using his asymmetric key
 and optionally carrying his certificate.
 Authenticated Data
 A block of data with authentication and integrity protection
 provided using a symmetric-key Message Authentication Code (MAC).
 The MAC key may be provided in encrypted form (as with Encryped
 Data) or identified by name.
 Encrypted Data
 A block of data encrypted under a random message encryption key
 (MEK). The MEK is then separately encrypted for each recipient,
 either via symmetric or asymmetric encryption. The data is always
 integrity protected, through the use of an Authenticated
 Encryption with Associated Data (AEAD) algorithm such as AES-GCM
 or AES-CCM.

 Any other desired security functions are provided by composition of
 these modes. For instance, a signed and encrypted message is
 produced by first creating a Signed message and then encrypting that
 data.

3.2. Design Principles

 In general, JSMS follows the following design principles.

 Minimize implementation complexity
 Wherever possible, protocol choices have been made such that the
 time and effort required to implement the protocol in many
 different programming languages will be minimized. This means
 that optimizations for bandwidth, CPU, and memory utilization have
 been explicitly avoided.
 Base64 as the only encoding
 Any data that does not have a straightforward string
 representation (binary values, large integers, etc.) is base64-
 encoded (see: [RFC4648]). In some cases, hexadecimal encodings
 might be more convenient, but consistency is even more important
 to reduce implementation complexity.
 No canonicalization
 In many cryptographic message formats, canonical encodings are
 used to allow the same value to be computed at both sender and
 recipient (e.g., for digital signatures). This is inconvenient in
 JSON, which just views messages as a bundle of key/value pairs.
 Instead, whenever canonicalization would be required, the relevant

https://datatracker.ietf.org/doc/html/rfc4648

Barnes Expires December 17, 2012 [Page 4]

Internet-Draft JSMS June 2012

 data is serialized and base64-encoded for transport, allowing both
 sides to run computations over the same original set of octets.
 In-memory processing
 We assume that the entire message can fit in main memory and make
 no effort to design a wire representation which can be handled in
 small chunks in a single pass. This means, for instance, that
 there is no need to have a message digest indicator at the
 beginning of the message and then the signature at the end, as is
 done in CMS. Fields are simply serialized in whatever order is
 most convenient for the JSON implementation. The examples in this
 document are generally shown in whatever order seems most readable
 and are not normative.
 Consistency with CMS
 To simplify the adaptation of existing cryptographic modules and
 the validation of JSMS implementations, changes from the CMS
 cryptographic operations are minimized. JSMS is semantically
 equivalent to a profile of CMS, as described in Section 7.

3.3. Certificate Processing

 Experience has shown that certificate handling (path construction) is
 one of the trickier parts of building a cryptographic system. While
 JSMS supports PKIX certificates, its certificate processing is far
 simpler than that of CMS. (It also supports the use of bare public
 keys in order to avoid the use of X.509 altogether.) When a JSMS
 agent provides its certificate, it must provide an ordered chain (as
 in TLS [RFC5246]) terminating in its own certificate, thus removing
 the need to construct certificate paths. The certificates MUST be
 ordered with the end-entity certificate first and each certificate
 that follows signing the certificate immediately preceding it.

3.4. Certificate Discovery

 JSMS will often be used in an online messaging environments with
 users that have an address of the form user@domain, such as email,
 XMPP, or SIP. As such, protocols such as WebFinger
 [I-D.hammer-webfinger] or an end-to-end protocol can be used to
 retrieve appropriate certificates. Downstream uses of JSMS SHOULD
 define a discovery mechanism suitable for the intended use.

4. Message Format

 A JSMS object is a JSON object that encodes cryptographic informaton
 related to a content byte string. This document specifies the set of
 keys that must be present in a JSMS object, what the associated
 values are, and how these values are generated and processed in order
 to realize security features. In processing JSMS objects, unknown

https://datatracker.ietf.org/doc/html/rfc5246

Barnes Expires December 17, 2012 [Page 5]

Internet-Draft JSMS June 2012

 keys MUST be ignored.

 JSMS defines three top-level types of secure object, each of which
 provides a specific cryptographic protection to a byte string.

 SignedData: Signature using a public-key digital signature algorithm
 AuthenticatedData: Authentication using a Message Authentication
 Code (MAC)
 EncryptedData: Encryption and authentication using an Authenticated
 Encryption with Associated Data (AEAD) algorithm

4.1. Data types

 For each field in a JSON object, we define the type of information
 that must be included in that field. At base are the object, array,
 string, number types defined by JSON. We also use two special sub-
 classes of strings: Fields with type "Token" contain a string drawn
 from a defined list of strings (e.g., an IANA registry for algorithm
 names). Fields with type "ByteString" contain a Base64-encoded byte
 string (note the considerations related to Base64 encoding in

Section 2 above).

 In addition to the primitive data types, Section 4.6 defines a
 collection of useful object types that are used by the top-level JSMS
 objects. These are simply referred to by name when they appear as a
 field value in another object.

4.2. Basic Types

 The following elements are common to all JSMS messages:

 "version": REQUIRED Number. The version of JSMS used by this
 objec.t. This field MUST be set to 1.
 "type": REQUIRED Token. The type of this JSMS object. This field
 MUST be set to one of the following values
 "signed": SignedData object
 "authenticated": AuthenticatedData object
 "encrypted": EncryptedData object
 "content": OPTIONAL ByteString. The content byte string, Base64-
 encoded.

 If the "content" key is not present in a given JSMS object, then the
 JSMS object is "detached". In this case, the content must be
 associated with the JSMS object through some out-of-band mechanism
 before the JSMS object can be processed. Note that there is a risk
 that detached JSMS object might become invalid if the content is
 transformed, even if this transformation preserves the semantics of
 the content. For example, if the content is a JSON object, and the

Barnes Expires December 17, 2012 [Page 6]

Internet-Draft JSMS June 2012

 object passes through an intermediate process that adds whitespace or
 re-orders the fields in the object (neither of which changes the
 meaning of the object), then the recipient will not be able to verify
 the signature. For this reason, detached JSMS objects SHOULD NOT be
 used unless there is a canonical form for the content being
 processed.

4.3. SignedData

 A SignedData object MUST have a "type" field set to "signed". In
 addition, a SignedData object contains the following keys:

 "digestAlgorithm": REQUIRED AlgorithmIdentifier. The digest
 algorithm used in signing the content.
 "signatures": REQUIRED Array of Signature. One or more digital
 signatures over the content.
 "certificates": OPTIONAL Array of String. A certificate chain
 associating the signer's public key with an identifier. Each
 element in the array is a string containing the Base64-encoded
 representation of a DER-formatted certificate. The certificates
 MUST be ordered with the end-entity certificate first and each
 certificate that follows signing the certificate immediately
 preceding it.
 "certificatesURI": OPTIONAL String. An HTTP or HTTPS URI referring
 to a certificate chain. The referenced resource MUST have type
 "application/json" and contain an array of certificates in the
 same format as the "certificates" element above, including the
 ordering constraint.

4.3.1. Signature

 A Signature object represents the signature over the content in the
 SignedData object by a specific key pair. A Signature objec can
 contain the following keys:

 "signatureAlgorithm": REQUIRED AlgorithmIdentifier. The signature
 algorithm used in signing the content.
 "key" REQUIRED PublicKey. The public key identifier for the signer,
 represented as a PublicKey object (see Section 4.6.2)
 "signature" REQUIRED ByteString. The Base64-encoded signature value

 If the "key" value represents the public key as an identifier, then a
 certificate for the signer MUST be provided by setting either the
 "certificates" or "certificatesURL" fields. The subject key in the
 end-entity certificate MUST match the identifier in the "key" value;
 the certificate SHOULD contain the subjectKeyIdentifier field, with a
 value matching the "key" value. (Note that this implies that when
 there are multiple signers, only one key can be represented by ID.)

Barnes Expires December 17, 2012 [Page 7]

Internet-Draft JSMS June 2012

4.3.2. Generating a SignedData Object

 The inputs to the process of generating a SignedData object are:

 o The content, as a byte string
 o A digest algorithm
 o One or more signature algorithms and asymmetric key pairs

 To generate the signature for SignedData object, the originator takes
 the following steps:

 1. Compute the message digest by applying the digest algorithm to
 the content.
 2. For each signing key pair, compute the signature by using the
 signature algorithm to sign the message digest with the private
 key from the asymmetric key pair.

 The originator then encodes the SignedData object by including the
 appropriate AlgorithmIdentifiers for the digest algorithms, a
 Signature object for each signature, and (optionally) the content.

4.3.3. Verifying a SignedData Object

 To verify a SignedData object, the recipient takes the following
 steps:

 1. Verify that the digest and signature algorithms are supported.
 Otherwise, report an error and fail.
 2. Compute the content byte string by decoding the "content" value
 of the JSMS object. If the JSMS object does not contain a
 "content" field, retrieve the content by other means.
 3. Compute the message digest by applying the digest algorithm to
 the content.
 4. Compute the signature by decoding the "signature" value of the
 JSMS object.
 5. Compute the public key:
 * If the key is represented directly, then decode it according
 to the rules specified by the algorithm name.
 * If the key is represented by an ID, then retrieve the
 corresponding subject public key from the end-entity
 certificate . If no "certificates" or "certificatesURI" value
 is present, then report an error and fail.
 * If the key is represented by a URI, retrieve the public key
 from the URI.
 6. Verify the signature by using the signature algorithm to verify
 the message digest with the public key.

Barnes Expires December 17, 2012 [Page 8]

Internet-Draft JSMS June 2012

4.4. AuthenticatedData

 An AuthenticatedData object MUST have a "type" field set to
 "authenticated". In addition, an AuthenticatedData object contains
 the following keys:

 "algorithm": REQUIRED AlgorithmIdentifier. The MAC algorithm used
 to authenticate the content.
 "mac": REQUIRED ByteString. The MAC value
 "keys": OPTIONAL Array of WrappedKey. Wrapped versions of the
 symmetric key used for this MAC. Each element in the array MUST
 be a WrappedKey object (see below)
 "keyId": OPTIONAL ByteString. An opaque identifier for a pre-shared
 MAC key

 An AuthenticatedData object MUST contain either the "key" field or
 the "keyId" field, so that the recipient knows which key to use to
 verify the MAC.

4.4.1. Generating an AuthenticatedData Object

 The inputs to the process of generating a AuthenticatedData object
 are:

 o The content, as a byte string
 o A MAC algorithm
 o A MAC key and key identifier, or
 o One or more recipient keys and key encipherment algorithms

 If the recipient key is specified rather than the MAC key directly,
 then a random MAC key is generated and encoded in a WrappedKey
 objects for each recipient (see Section 4.6.3). Once the MAC key has
 been determined, the originator uses the MAC algorithm and MAC key to
 compute the MAC over the content byte string.

 The originator then encodes the AuthenticatedData object by including
 the appropriate AlgorithmIdentifier for the MAC algorithm and the
 Base64 representations of the MAC value and (optionally) the content.
 If the MAC key was specified directly, then the Base64 representation
 of the key identifier is set as the "keyId" value; otherwise, the
 WrappedKey objects are collected in an array and set as the "keys"
 value.

4.4.2. Verifying an AuthenticatedData Object

 To verify a AuthenticatedData object, the recipient takes the
 following steps:

Barnes Expires December 17, 2012 [Page 9]

Internet-Draft JSMS June 2012

 1. Verify that the MAC algorithm is supported. If not, report an
 error and fail.
 2. Compute the content byte string by decoding the "content" value
 of the JSMS object. If the JSMS object does not contain a
 "content" field, retrieve the content by other means.
 3. Compute the MAC key:
 * If the "keyId" value is present and represents a known key,
 use the identified key.
 * If the "keys" value is present, check each WrappedKey object
 to determine if it matches a known key for this recipient. If
 any of the wrapped keys matches, unwrap the key from the first
 one and use it (see Section Section 4.6.3). Otherwise, report
 an error and fail.
 4. Use the MAC algorithm and MAC key to compute the MAC over the
 content byte string
 5. Decode the MAC value from the "mac" field.
 6. Verify that the computed MAC matches the MAC from the object.

4.5. EncryptedData

 An EncryptedData object MUST have a "type" field set to "encrypted".
 Note also that in an EncryptedData object, the "content" field
 contains the encrypted form of the content, not the content itself
 (as plaintext). An EncryptedData object contains the following keys
 in addition to any common fields:

 "algorithm": REQUIRED AlgorithmIdentifier. The encryption algorithm
 used to encrypt the content
 "keys": REQUIRED Array of WrappedKey. Wrapped versions of the
 symmetric key used to encrypt the content. Each element in the
 array MUST be a WrappedKey object (see Section 4.6.3).
 "mac": OPTIONAL ByteString. The MAC value, if required by the
 algorithm

 Note that although the "mac" field is optional, an EncryptedData
 object always has an integrity check. All of the encryption
 algorithms used in JSMS are "Authenticated Encryption with Associated
 Data" algorithms, which include an authentication / integrity fuction
 by definition. The MAC field is optional because some AEAD
 algorithms have a separate MAC value (e.g., GCM), while others
 incorporate the MAC value into the ciphertext (e.g., CCM).

4.5.1. Generating an EncryptedData Object

 The inputs to the process of generating a SignedData object are:

Barnes Expires December 17, 2012 [Page 10]

Internet-Draft JSMS June 2012

 o The content, as a byte string
 o An encryption algorithm
 o One or more recipient keys and key encipherment algorithms

 The originator generates a random encryption key of a length suitable
 for the encryption algorithm, then encodes it in a WrappedKey object
 for each recipient (see Section 4.6.3). The content is then
 encrypted using the generated encryption key and the specified
 encryption algorithm.

 The originator then encodes the EncryptedData object by including the
 appropriate AlgorithmIdentifier for the encryption algorithm, an
 array containing the WrappedKey objects, and (optionally) the Base64
 representation of the content.

4.5.2. Decrypting a EncryptedData Object

 To decrypt an EncryptedData object, the recipient takes the following
 steps:

 1. Verify that the encryption algorithm is supported. If not,
 report an error and fail.
 2. Compute the content byte string by decoding the "content" value
 of the JSMS object. If the JSMS object does not contain a
 "content" field, retrieve the content by other means.
 3. Locate the encryption key: Check each WrappedKey object to
 determine if it matches a known key for this recipient. If any
 of the wrapped keys matches, unwrap the key from the first one
 and use it (see Section 4.6.3). Otherwise, report an error and
 fail.
 4. Decrypt the content using the encryption key and the specified
 encryption algorithm.
 5. Verify that the integrity check in the AEAD decryption was
 successful. If not, report an error and fail.
 6. Return the decrypted content.

4.6. Useful Objects

 In this section we define some common object types that are used
 across the top-level objects above.

4.6.1. AlgorithmIdentifier

 An AlgorithmIdentifier object names a cryptographic algorithm and
 specifies any associated parameters such as nonces or initialization
 vectors (IVs). If the algorithm has no parameters, then the
 AlgorithmIdentifier object is simply a token representing the name of
 the algorithm, drawn from an IANA registry of algorithm names.

Barnes Expires December 17, 2012 [Page 11]

Internet-Draft JSMS June 2012

 If the algorithm specifies parameters, the AlgorithmIdentifier object
 is a JSON object. There is only one required field, "name". Any
 other fields are specified in the algorithm definition.
 "name": REQUIRED Token. The name of the algorithm, chosen from one
 of the IANA registries defined by this document.

 The following table summarizes the algorithms to be used with JSMS.
 [[More detail to be added later, in a separate document]]

Barnes Expires December 17, 2012 [Page 12]

Internet-Draft JSMS June 2012

 Name Parameters Reference Example
 ===
 SIGNING
 rsa no [RFC3447] "rsa"
 dsa yes (p,q,g) [FIPS186] {name:"dsa",
 p:1, q:2, g:3}
 ecdsa yes (curve) [RFC6090] {name:"ecdsa",
 curve:"P-256"}

 DIGEST
 sha1 no [FIPS180-1] "sha1"
 sha256 no [FIPS180-3] "sha256"
 sha384 no [FIPS180-3] "sha384"
 sha512 no [FIPS180-3] "sha512"

 MAC
 hs1 no [FIPS180-1] "hs1"
 hs256 no [FIPS180-3] "hs256"
 hs384 no [FIPS180-3] "hs384"
 hs512 no [FIPS180-3] "hs512"

 ENCRYPTION
 aes128-ccm yes (n,M) [RFC3610] {name:"aes128-ccm",
 n:"ZONce...lU-g",
 m:8}
 aes128-gcm yes (iv) [McGrew & Viega] {name:"aes128-gcm",
 iv:"ZONce...lU-g"}

 KEY ENCIPHERMENT
 aes no [RFC3394] "aes"
 rsaes-oaep no [RFC3447] "rsaes-oaep"

 KEY AGREEMENT
 dh-es yes (group) [RFC2631] {name:"dh-es",
 group: 14}
 ecdh-es yes (curve) [RFC6090] {name:"ecdh-es",
 curve:"P-256"}
 ===

 Obviously, there will be more detail needed beyond the above, and
 some IANA considerations to create the necessary registries. For
 some algorithms, there will be specific notes about how they are to

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc2631
https://datatracker.ietf.org/doc/html/rfc6090

Barnes Expires December 17, 2012 [Page 13]

Internet-Draft JSMS June 2012

 be used with JSMS, for example:
 o The signature value produced by DSA is comprised of two integers.
 The byte string to be filled in the "signature" field is the two-
 element JSON array containing two integers, "[r,s]"
 o RSAES-OAEP is always used with SHA-256 and the default MGF1
 masking generation function
 o Elliptic curves may only be specified by name, not by directly
 specifying curve parameters. [[We may define our own registry, or
 re-use the ones from TLS/IKE.]]
 o AEAD algorithms are only used for authenticated encryption; there
 is never associated data. Further AEAD algorithms may be defined
 using [draft-mcgrew-aead-aes-cbc-hmac-sha1]

4.6.2. PublicKey

 A PublicKey object describes the public key used by a signer. The
 key may be specified as a JSON structure directly, as a URI, or as an
 identifier. A PublicKey object has the following fields:

 "type" OPTIONAL Token. The name of the algorithm with which this
 key is to be used
 "id" OPTIONAL ByteString. An identifier for the key
 "uri" OPTIONAL String. A URI pointing to a direct form of the key

 If the key is specified directly, then the "type" key MUST be
 present; the "id" and "uri" fields MAY be present. Subsequent
 entries in the array specify the elements of the key, in a manner
 determined by the algorithm. Formats for RSA and ECDH/ECDSA public
 keys are specified below.

 If the key is provided as a URI, then the "uri" field MUST be
 present, containing a URI where the key can be retrieved, in the JSON
 format described above. The method that the recipient of a JSMS
 object uses to retrieve the key will depend on the URI scheme. For
 HTTP URIs, the relying party MUST issue an HTTP request with the GET
 method and an Accept header including the MIME type for JSMS
 PublicKey object, "[[MIMETYPE-TBD]]". For MAILTO, SIP, and XMPP
 URIs, the recipient MAY use the WebFinger protocol
 [I-D.hammer-webfinger] to retrieve a public key for the user.

 If the key is referenced by an opaque identifier or "fingerprint",
 then the "id" field MUST be present, and contain the Base64-encoded
 SHA-1 hash of the public key, represented as a DER-encoded
 subjectPublicKeyInfo data structure. (This fingerprint value is the
 same as the one commonly included in the subjectKeyIdentifier field
 in an X.509 certificate.)

 The recipient of a JSMS object can determine which of the above cases

https://datatracker.ietf.org/doc/html/draft-mcgrew-aead-aes-cbc-hmac-sha1

Barnes Expires December 17, 2012 [Page 14]

Internet-Draft JSMS June 2012

 a given key falls into by seeking the three fields in sequence. If a
 "type" field is present, then the key is represented directly. If a
 "uri" field is present, then the key is represented directly, but
 must be retreived from the URI. Finally, if the "id" field is the
 only one of the three present, then the key is represented by ID
 only, and must be retrieved from somewhere else (e.g., from a
 certificate in the JSMS object).

 Example: {"id": "i1LbR8FCEw-aiFcAAfUvpp75wdY="}

 Example: {"uri": "xmpp:juliet@example.com"}

4.6.2.1. RSA Public Key

 An RSA public key comprises two additional parameters in addition to
 the algorithm identifier "rsa".

 "n": REQUIRED ByteString. The modulus, represented as an integer in
 network byte order (big-endian)
 "e": REQUIRED Integer. The public exponent, represented as an
 integer in network byte order (big-endian)

 Example: {"type":"rsa", "n":98739...04251, "e": 3}

4.6.2.2. Elliptic-Curve Public Key

 Public keys for several types of elliptic curve algorithms, including
 ECDSA and ECDH, have the same format, namely an point on a specified
 elliptic curve. In an elliptic curve PublicKey object, the curve
 parameters are specified in the algorithm identifier, and there are
 two additional fields that specify the point on the curve:

 "x": REQUIRED ByteString. The x coordinate of the point
 "y": REQUIRED Integer. The y coordinate of the point. MUST be
 equal to 0 or 1.

 These coordinates correspond to the compressed form of an elliptic
 curve point, as specified in [[SEC01]]. In terms of the calculation
 specified in section 2.3.3 of [[SEC01]], the "x" coordinate is the
 byte string X and the "y" coordinate is the reduced y coordinate (or,
 equivalently, Y mod 2).

 Example: {"type":"ecdh",
 "x":"IIIs_x1m6Na6xKN37vOwvy7AvFeG9HhBN2EN3u5EZQ4", "y": 1}

Barnes Expires December 17, 2012 [Page 15]

Internet-Draft JSMS June 2012

4.6.3. WrappedKey

 In JSMS objects that use symmetric keys (for MAC or encryption), it
 is necessary for the originator to convey the symmetric key used for
 in JSMS computations to the recipient. The WrappedKey object is a
 JSON object that allows these keys to be provided either using key
 transport or key agreement. The following fields may be present in a
 WrappedKey object:

 "type": REQUIRED TOKEN The type of wrapping being done. This
 document defines the following values for this field:
 "encryption": Symmetric key transport. The "KEKIdentifier" field
 MUST be present. Any other non-required fields MUST be
 ignored.
 "transport": Asymmetric key transport. The "recipientKey" field
 MUST be present. Any other non-required fields MUST be
 ignored.
 "agreement": Key agreement. The "originatorKey" and
 "recipientKey" MUST be present, and the "userKeyMaterial" field
 MAY be present. Any other non-required fields MUST be ignored.
 "algorithm": REQUIRED AlgorithmIdentifier The algorithm used to
 encrypt the symmetric key
 "encryptedKey": REQUIRED BYTES The symmetric key, encrypted
 according to the algorithm indicated by the "algorithm" value
 "KEKIdentifier": OPTIONAL BYTES An opaque identifier for the
 symmtric key encryption key
 "originatorKey": OPTIONAL PublicKey The public key of the originator
 "recipientKey": OPTIONAL PublicKey The public key of the recipient
 "userKeyMaterial": OPTIONAL BYTES User key material

 The techniques used for wrapping and unwrapping the encrypted key is
 determined by "type" and "algorithm" fields. In general, the options
 are the same as for CMS [RFC5280], without the option for password-
 based key wrapping.

 "encryption": The key is encrypted under a pre-shared symmetric
 key encryption key identified by the "KEKIdentifier" field
 "transport": The key is encrypted under the recipient's public key,
 identified in the "recipientKey" field.
 "agreement": The key is encrypted under a shared secret derived
 using a key agreement algorithm combining the originator's private
 key and the recipient's public key, corresponding to the
 "originatorKey" and "recipientKey", respectively. The value
 provided in the "userKeyMaterial" field may be used to provide
 additional entropy.
 [[More detail to be added.]]

https://datatracker.ietf.org/doc/html/rfc5280

Barnes Expires December 17, 2012 [Page 16]

Internet-Draft JSMS June 2012

5. Compact Format

 The compact JSON format of a JSMS object is identical to the normal
 JSMS format, except that field names are replaced with shorter
 equivalent field names. Translations for the field names above are
 given in the table below. In a given JSMS object, field names MUST
 either all be in long form or all be in short form. An
 implementation MUST reject a JSMS object with mixed long and short
 names as improperly formatted.
 Common Signature
 -------------------------- --------------------------
 version v sign atureAlgorithm sa
 type t key k
 signed s signature sg
 authenticated au --------------------------
 encrypted en
 content c
 -------------------------- AlgorithmIdentifier

 name nm
 SignedData --------------------------

 digestAlgorithm da
 signatures ss PublicKey
 certificates ce --------------------------
 certificatesURI cu type t
 -------------------------- id i
 uri u

 AuthenticatedData

 algorithm a WrappedKey
 mac mac --------------------------
 keys ks type t
 keyId ki encryption ec
 -------------------------- transport tr
 agreement ag
 algorithm a
 EncryptedData encryptedKey ek
 -------------------------- KEKIdentifier i
 algorithm a originatorKey o
 keys ks recipientKey r
 mac mac userKeyMaterial uk
 -------------------------- --------------------------

 In applications where a JSMS object is required to be URL-safe, it is
 RECOMMENDED that it be rendered in the compact serialization, then
 Base64-encoded.

Barnes Expires December 17, 2012 [Page 17]

Internet-Draft JSMS June 2012

 [[If there is a desire to avoid double-base64url-encoding things,
 then we could define a mechanism for moving some fields out of the
 object.]]

6. Examples

 This section contains complete examples of all three JSMS types. All
 white space is for readability only, and must be removed before the
 examples can be considered valid JSMS objects.

6.1. Parameters

 RSA key:
 {
 "type": "rsa",
 "n": "AfWGinFrdktMCi4LkD_vcIsqc0m4JSS0rNDk_5Zdi8fwja_qH0M7d3
 U4tPUw7L0gP1iSMakdTKX0S7uTV_v9FeY8_WrxDgbphrH9Zaz0PvTL
 OuiKfRkMWK5A6nzl_PdP7_ujDWkvHKhWcJtM7irdn9K059X21EDtuq
 GJyq7_v_c_",
 "e": "AQAB",
 "d": "EMwfyOqzfJQgZyhl_W40k8SpNdfgDpmqjBiPYubhLqIk7LZns6XDO3
 7ZuLiZxT_WP04uMZ7UmV5URwUJVlxEpmfozhtLooCTP1oWtRQQjhTa
 Pz1f5nRKoHsO8e3PZY7O44ut2prRWNNxYxDk52rH9GTECqGAmDNb1f
 he6zX4KJk="
 }

 Key Tag: HK1RA8AQwcI=
 Symmetric key: rQS8Dx6WQ_xDWTER8mAHnw==

 Content:
 "Attack at dawn!"

6.2. SignedData

 In this object the content is signed under the specified RSA key
 pair, using SHA256 as the digest.

Barnes Expires December 17, 2012 [Page 18]

Internet-Draft JSMS June 2012

 {
 "version": 1,
 "type": "signed",
 "digestAlgorithm": "sha256",
 "content": "QXR0YWNrIGF0IGRhd24h",
 "signatures": [{
 "signatureAlgorithm": "rsa",
 "key": {
 "type": "rsa",
 "n": "AfWGinFrdktMCi4LkD_vcIsqc0m4JSS0rNDk_5Zdi8
 fwja_qH0M7d3U4tPUw7L0gP1iSMakdTKX0S7uTV_v9
 FeY8_WrxDgbphrH9Zaz0PvTLOuiKfRkMWK5A6nzl_P
 dP7_ujDWkvHKhWcJtM7irdn9K059X21EDtuqGJyq7_
 v_c_",
 "e": "AQAB",
 },
 "signature": "AJll1tVYsRtGeHaJenAU-U3x4LxXklNoGrFwyu
 xJWnYIeLZL16Ib7ZPvD79peMiSQAHAdLKcI8e-
 CpU6HNQ-MxeE-tEXvaXOxuNZfVG9LBP9hq_ZwX
 SguffHHzS9lLtVB0OzrXeszXtqD5igmeco1A0E
 8eabzujA4bdN6Umyc7rA"
 }]
 }

6.3. AuthenticatedData

 In this object the content is authenticated with a MAC under a
 randomly-generated key (AuthenticatedData Key above), wrapped using
 the key encryption key above, identified by the above key tag.
 {
 "version": 1,
 "type": "authenticated",
 "algorithm": "hs256",
 "content": "QXR0YWNrIGF0IGRhd24h",
 "mac": "990xwhrsX-COXUN0uF09HUHLU2CjdneeMqTtM4sGVDY=",
 "keys": [{
 "type": "encryption",
 "algorithm": "aes",
 "encryptedKey": "Dbf2O_ZIX0_Zfj-0aU6zQjn3xixj6vm7LVX
 XFDdX4xqie5bZUS1nnstIPYOyzxNx9Udt-J
 LZZh-zM8A_FbsZ8zAibdJ3EPyd",
 "KEKIdentifier": "HK1RA8AQwcI="
 }]
 }

 As another example, the following object is a detached MAC (over the
 same content string) in the compact encoding. Here we use the key as
 the MAC key directly (instead of as a key encryption key). The

Barnes Expires December 17, 2012 [Page 19]

Internet-Draft JSMS June 2012

 object is shown both in raw JSON form and in the Base64 encoding.
 {"v": 1,"t": "au","a": "hs256","ki": "HK1RA8AQwcI=",
 "mac": "PMVmhmrgbj-KNybfMqHu4ySJ0GnVrwe11MKpiuuGlIQ="}

 eyJ2IjogMSwidCI6ICJhdSIsImEiOiAiaHMyNTYiLCJraSI6ICJISzFSQThBUXdj
 ST0iLA0KICAibWFjIjogIlBNVm1obXJnYmotS055YmZNcUh1NHlTSjBHblZyd2Ux
 MU1LcGl1dUdsSVE9In0=

6.4. EncryptedData

 In this object, the content is encrypted under the general AEAD
 algorithm using AES-128-CBC for encryption and HMAC-SHA1 for
 authentication. The keys are described above as "EncryptedData Key
 (E)" and "EncryptedData Key (A)", respectively. The temporary keys
 are wrapped using the PKCS#1 wrapping, under the RSA key pair above.
 {
 "version": 1,
 "type": "encrypted",
 "algorithm": {
 "name": "aes128-ccm",
 "n": "LTR8s7KKbd1QlQ==",
 "m": 8
 },
 "content": "0nkXCLOVxM2oNJOsDCwASLTODIMVZQE=",
 "keys": [{
 "type": "transport",
 "algorithm": "rsaes-oaep",
 "encryptedKey": "AbAxRnd_u7lICJlBskq3kgQVs54RLMgOjNmALXF
 JjKqsQ4kLNL60VAoEswGOd2arGfcxoMCw9wMeSP
 FOIvOXGvSt2wJXR_6kwzOJv_YyTC_eZUJHpcLNr
 jKxB7Zf2_ap24W6JqcOYYVy2DhECcPgyvVRA_Ql
 ZNHFYdqaImgOKJv-",
 "recipientKey": {
 "type": "rsa",
 "n": "AfWGinFrdktMCi4LkD_vcIsqc0m4JSS0rNDk_5Zdi8fwja
 _qH0M7d3U4tPUw7L0gP1iSMakdTKX0S7uTV_v9FeY8_Wrx
 DgbphrH9Zaz0PvTLOuiKfRkMWK5A6nzl_PdP7_ujDWkvHK
 hWcJtM7irdn9K059X21EDtuqGJyq7_v_c_",
 "e": "AQAB",
 }
 }]
 }

7. Mapping to CMS

 The JSMS message format is semantically equivalent to a profile of

Barnes Expires December 17, 2012 [Page 20]

Internet-Draft JSMS June 2012

 the Cryptographic Message Syntax (CMS), and mirrors a fair bit of its
 syntactical structure as well. The top-level message types each map
 to top-level CMS types: SignedData to SignedData, AuthenticatedData
 to AuthenticatedData, and EncryptedData to AuthEnvelopedData
 [RFC5083]. The main difference other than encoding is that many
 optional fields have been removed, for example the protected and
 unprotected attributes.

 This similarity also applies to the secondary objects. Just as in
 CMS, AlgorithmIdentifier objects carry an identifier for the
 algorithm (here a name instead of an OID) and any related parameters.
 The PublicKey object format is an amalgam of the SubjectKeyIdentifier
 from CMS and the SubjectPublicKeyInfo from X.509. PublicKey objects
 can be mapped to CMS constructs by converting them to
 SubjectKeyIdentifier objects (using the appropriate hash) and
 including a certificate containing the public key. The WrappedKey
 object format maps directly to the CMS RecipientInfo structure, with
 the above considerations related to public keys, and without the
 option for password-based wrapping.

 The major way in which JSMS diverges from CMS is that it allows the
 use of static MAC keys, referenced by an identifier. CMS requires
 the use of random MAC keys, encrypted in a RecipientInfo (i.e., a
 WrappedKey) for each recipient. JSMS allows the use of random keys,
 but also includes the "keyId" field to reference static MAC keys
 directly. The security implications of this change are discussed in

Section 10.

 In fact, it should be possible to translate JSMS objects back and
 forth to CMS without changing any values (simply reformatting), with
 only a couple of exception cases:

 o JSMS objects that use static MAC keys cannot be translated to CMS
 because CMS does not allow this keying mechanism.
 o JSMS objects using general AEAD algorithms (according to
 [[draft-mcgrew-aead-aes-cbc-hmac-sha1]]) because the required
 algorithm identifiers have not been defined for CMS.
 o CMS objects using features that are not supported in JSMS (e.g.,
 password-based key wrapping) cannot be translated to JSMS.

8. Comparison to JWS/JWE/JWK

 The overall JSMS structure covers the integrity, authentication, and
 encryption use cases as the JSON Web Encryption (JWE) and JSON Web
 Signature (JWS) specifications. Most of the fields in JWS and JWE
 map conceptually to JSMS fields, with a couple of exceptions. The
 major differences are as follows:

https://datatracker.ietf.org/doc/html/rfc5083
https://datatracker.ietf.org/doc/html/draft-mcgrew-aead-aes-cbc-hmac-sha1

Barnes Expires December 17, 2012 [Page 21]

Internet-Draft JSMS June 2012

 o The signature and MAC functions of the JWS object are separated
 into SignedData and AuthenticatedData JSMS objects.
 o JSMS is pure JSON, whereas in JWE and JWS only the header
 parameters are represented in JSON.
 o JSMS parameters are not integrity-protected, as they are in JWE
 and JWS.
 o JSMS allows for full algorithm agility in key agreement, while JWE
 only allows ECDH-ES.
 o JSMS supports multiple recipients for EncryptedData and
 AuthenticatedData objects via the inclusion of multiple WrappedKey
 objects. Sending a JWE to multiple recipients requires re-
 encryption of the entire object for each recipient.
 o The "typ" and "zip" parameters are not defined in JSMS, but could
 be added without significant change.
 o JSMS requires that recipients MUST ignore unknown header
 parameters, in order to facilitate extensibility.

 The PublicKey structure is analogous to the JSON Web Key (JWK) (with
 the public key parameters specified in the JSON Web Algorithms (JWA)
 document). The JWK "use" and "kid" parameters are not defined in
 JSMS, but could be added without significant change.

9. IANA Considerations

 TODO:
 o Register MIME types
 o Registries for algorithms (signing, hash, MAC, encrypion,
 encipherment, agreement)

10. Security Considerations

 Much more to follow here.

 [[Given the CMS mapping above, import CMS security considerations.
]]

 [[Notes on identity for SignedData and AuthenticatedData: It is
 important to note that the above verification process only checks
 that the JSMS object was signed with a given public key. In order
 for this information to be useful to an applications, it is usually
 necessary to bind the public key to an application-layer identifier.
 If the "certificates" or "certificatesURI" value is present, then the
 recipient SHOULD verify that the chain is valid, and that the the
 end-entity certificate chains to a trust anchor. In this case, the
 recipient can consider the identity asserted in the end-entity
 certificate to be bound to the public key. Applications using this

Barnes Expires December 17, 2012 [Page 22]

Internet-Draft JSMS June 2012

 specification without certificates will need to specify an
 alternative mechanism for binding public keys to identifiers.]]

 [[Notes on the security of static-key MACs. Need to periodically
 refresh keys.]]

 [[For multiple signatures, the considerations of RFC 4853.]]

11. Acknowledgements

 The inspirataion and starting point for this document was
draft-rescorla-jsms-00. Thanks to Eric Rescorla and Joe Hildebrand

 for allowing me to re-use a fair bit of their document, and for some
 helpful early reviews.

12. References

12.1. Normative References

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security

https://datatracker.ietf.org/doc/html/rfc4853
https://datatracker.ietf.org/doc/html/draft-rescorla-jsms-00
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5116

Barnes Expires December 17, 2012 [Page 23]

Internet-Draft JSMS June 2012

 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5649] Housley, R. and M. Dworkin, "Advanced Encryption Standard
 (AES) Key Wrap with Padding Algorithm", RFC 5649,
 September 2009.

 [RFC5840] Grewal, K., Montenegro, G., and M. Bhatia, "Wrapped
 Encapsulating Security Payload (ESP) for Traffic
 Visibility", RFC 5840, April 2010.

 [FIPS-180-3]
 National Institute of Standards and Technology (NIST),
 "Secure Hash Standard (SHS)", FIPS PUB 180-3,
 October 2008.

12.2. Informative References

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [I-D.hammer-webfinger]
 Hammer-Lahav, E., Fitzpatrick, B., and B. Cook, "The
 WebFinger Protocol", draft-hammer-webfinger-00 (work in
 progress), October 2009.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

 [RFC5083] Housley, R., "Cryptographic Message Syntax (CMS)
 Authenticated-Enveloped-Data Content Type", RFC 5083,
 November 2007.

 [I-D.ietf-jose-json-web-signature]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature-02
 (work in progress), May 2012.

 [krawczyk-ate]
 Krawczyk, H., "The Order of Encryption and Authentication
 for Protecting Communications (or: How Secure Is SSL?)",
 Advances in cryptology--CRYPTO 2001 August 2001.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5649
https://datatracker.ietf.org/doc/html/rfc5840
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/draft-hammer-webfinger-00
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5083
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature-02

Barnes Expires December 17, 2012 [Page 24]

Internet-Draft JSMS June 2012

 [GCM] National Institute of Standards and Technology (NIST),
 "Recommendation for Block Cipher Modes of Operation:
 Galois/Counter Mode (GCM) and GMAC", SP 800-38D,
 November 2007.

Appendix A. Acknowledgments

 [TODO]

Author's Address

 Richard Barnes
 BBN Technologies
 1300 N. 17th St.
 Arlington, VA 22209
 USA

 Email: rbarnes@bbn.com

Barnes Expires December 17, 2012 [Page 25]

