
Network Working Group R. Barnes
Internet-Draft Cisco
Intended status: Informational J. Millican
Expires: August 6, 2018 Facebook
 E. Omara
 Google
 K. Cohn-Gordon
 University of Oxford
 R. Robert
 Wire
 February 02, 2018

The Messaging Layer Security (MLS) Protocol
draft-barnes-mls-protocol-00

Abstract

 Messaging applications are increasingly making use of end-to-end
 security mechanisms to ensure that messages are only accessible to
 the communicating endpoints, and not to any servers involved in
 delivering messages. Establishing keys to provide such protections
 is challenging for group chat settings, in which more than two
 participants need to agree on a key but may not be online at the same
 time. In this document, we specify a key establishment protocol that
 provides efficient asynchronous group key establishment with forward
 secrecy and post-compromise security for groups in size ranging from
 two to thousands.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 6, 2018.

Barnes, et al. Expires August 6, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft MLS February 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Basic Assumptions . 4
4. Protocol Overview . 5
5. Binary Trees . 9
5.1. Terminology . 9
5.2. Merkle Trees . 11
5.2.1. Merkle Proofs . 12

5.3. Ratchet Trees . 12
5.3.1. Blank Ratchet Tree Nodes 13

6. Group State . 14
6.1. Cryptographic Objects 15
6.1.1. Curve25519 with SHA-256 15
6.1.2. P-256 with SHA-256 16

6.2. Key Schedule . 17
7. Initialization Keys . 18
7.1. UserInitKey . 18
7.2. GroupInitKey . 19

8. Handshake Messages . 20
8.1. Init . 22
8.2. GroupAdd . 22
8.3. UserAdd . 23
8.4. Update . 24
8.5. Delete . 24

9. Sequencing of State Changes 25
9.1. Server-side enforced ordering 26
9.2. Client-side enforced ordering 26

10. Message Protection . 26
11. Security Considerations 27
11.1. Confidentiality of the Group Secrets 28
11.2. Authentication . 28

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Barnes, et al. Expires August 6, 2018 [Page 2]

Internet-Draft MLS February 2018

11.3. Forward and post-compromise security 28
11.4. Init Key Reuse . 29

12. IANA Considerations . 29
13. Contributors . 29
14. References . 30
14.1. Normative References 30
14.2. Informative References 30

 Authors' Addresses . 31

1. Introduction

 DISCLAIMER: This is a work-in-progress draft of MLS and has not yet
 seen significant security analysis. It should not be used as a basis
 for building production systems.

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH The source for this
 draft is maintained in GitHub. Suggested changes should be submitted
 as pull requests at https://github.com/ekr/mls-protocol.
 Instructions are on that page as well. Editorial changes can be
 managed in GitHub, but any substantive change should be discussed on
 the MLS mailing list.

 Groups of agents who want to send each other encrypted messages need
 a way to derive shared symmetric encryption keys. For two parties,
 this problem has been studied thoroughly, with the Double Ratchet
 emerging as a common solution [doubleratchet] [signal]. Channels
 implementing the Double Ratchet enjoy fine-grained forward secrecy as
 well as post-compromise security, but are nonetheless efficient
 enough for heavy use over low-bandwidth networks.

 For groups of size greater than two, a common strategy is to
 unilaterally broadcast symmetric "sender" keys over existing shared
 symmetric channels, and then for each agent to send messages to the
 group encrypted with their own sender key. Unfortunately, while this
 improves efficiency over pairwise broadcast of individual messages
 and (with the addition of a hash ratchet) provides forward secrecy,
 it is difficult to achieve post-compromise security with sender keys.
 An adversary who learns a sender key can often indefinitely and
 passively eavesdrop on that sender's messages. Generating and
 distributing a new sender key provides a form of post-compromise
 security with regard to that sender. However, it requires
 computation and communications resources that scale linearly as the
 size of the group.

 In this document, we describe a protocol based on tree structures
 that enable asynchronous group keying with forward secrecy and post-
 compromise security. The use of "asynchronous ratcheting trees"
 [art] allows the members of the group to derive and update shared

https://github.com/ekr/mls-protocol

Barnes, et al. Expires August 6, 2018 [Page 3]

Internet-Draft MLS February 2018

 keys with costs that scale as the log of the group size. The use of
 Merkle trees to store identity information allows strong
 authentication of group membership, again with logarithmic cost.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 [TODO: The architecture document uses "Client" instead of
 "Participant". Harmonize terminology.]

 Participant: An agent that uses this protocol to establish shared
 cryptographic state with other participants. A participant is
 defined by the cryptographic keys it holds. An application may
 use one participant per device (keeping keys local to each device)
 or sync keys among a user's devices so that each user appears as a
 single participant.

 Group: A collection of participants with shared cryptographic state.

 Member: A participant that is included in the shared state of a
 group, and has access to the group's secrets.

 Initialization Key: A short-lived Diffie-Hellman key pair used to
 introduce a new member to a group. Initialization keys can be
 published for both individual participants (UserInitKey) and
 groups (GroupInitKey).

 Leaf Key: A short-lived Diffie-Hellman key pair that represents a
 group member's contribution to the group secret, so called because
 the participants leaf keys are the leaves in the group's ratchet
 tree.

 Identity Key: A long-lived signing key pair used to authenticate the
 sender of a message.

 Terminology specific to tree computations is described in Section 5.

 We use the TLS presentation language [I-D.ietf-tls-tls13] to describe
 the structure of protocol messages.

3. Basic Assumptions

 This protocol is designed to execute in the context of a Messaging
 Service (MS) as described in [I-D.rescorla-mls-architecture]. In
 particular, we assume the MS provides the following services:

https://datatracker.ietf.org/doc/html/rfc2119

Barnes, et al. Expires August 6, 2018 [Page 4]

Internet-Draft MLS February 2018

 o A long-term identity key provider which allows participants to
 authenticate protocol messages in a group. These keys MUST be
 kept for the lifetime of the group as there is no mechanism in the
 protocol for changing a participant's identity key.

 o A broadcast channel, for each group, which will relay a message to
 all members of a group. For the most part, we assume that this
 channel delivers messages in the same order to all participants.
 (See Section 9 for further considerations.)

 o A directory to which participants can publish initialization keys,
 and from which participant can download initialization keys for
 other participants.

4. Protocol Overview

 The goal of this protocol is to allow a group of participants to
 exchange confidential and authenticated messages. It does so by
 deriving a sequence of keys known only to group members. Keys should
 be secret against an active network adversary and should have both
 forward and post-compromise secrecy with respect to compromise of a
 participant.

 We describe the information stored by each participant as a _state_,
 which includes both public and private data. An initial state,
 including an initial set of participants, is set up by a group
 creator using the _Init_ algorithm and based on information pre-
 published by the initial members. The creator sends the _GroupInit_
 message to the participants, who can then set up their own group
 state and derive the same shared key. Participants then exchange
 messages to produce new shared states which are causally linked to
 their predecessors, forming a logical Directed Acyclic Graph (DAG) of
 states. Participants can send _Update_ messages for post-compromise
 secrecy and new participants can be added or existing participants
 removed from the group.

 The protocol algorithms we specify here follow. Each algorithm
 specifies both (i) how a participant performs the operation and (ii)
 how other participants update their state based on it.

 There are four major operations in the lifecycle of a group:

 o Adding a member, initiated by a current member

 o Adding a member, initiated by the new member

 o Key update

Barnes, et al. Expires August 6, 2018 [Page 5]

Internet-Draft MLS February 2018

 o Removal of a member

 Before the initialization of a group, participants publish
 UserInitKey objects to a directory provided to the Messaging Service.

 Group
 A B C Directory Channel
UserInitKeyA			
--->			
	UserInitKeyB		
	---------------------------->		
		UserInitKeyC	
		------------->	

 When a participant A wants to establish a group with B and C, it
 first downloads InitKeys for B and C. It then initializes a group
 state containing only itself and uses the InitKeys to compute
 GroupAdd messages to add B and C, in a sequence chosen by A. These
 messages are broadcasted to the Group, and processed in sequence by B
 and C. Messages received before a participant has joined the group
 are ignored. Only after A has received its GroupAdd messages back
 from the server does it update its state to reflect their addition.

Barnes, et al. Expires August 6, 2018 [Page 6]

Internet-Draft MLS February 2018

 Group
 A B C Directory Channel
UserInitKeyB, UserInitKeyC			
<---			
			GroupAdd(A->AB)
--->			
			GroupAdd(AB->ABC)
--->			
			GroupAdd(A->AB)
<---			
state.add(B)	<--		
	state.init()	x---------------------------------	
			GroupAdd(AB->ABC)
<---			
state.add(C)	<--		
	state.add(C)	<---------------------------------	
		state.init()	

 Subsequent additions of group members proceed in the same way. Any
 member of the group can download an InitKey for a new participant and
 broadcast a GroupAdd which the current group can use to update their
 state and the new participant can use to initialize its state.

 It is sometimes necessary for a new participant to join without an
 explicit invitation from a current member. For example, if a user
 that is authorized to be in the group logs in on a new device, that
 device will need to join the group as a new participant, but will not
 have been invited.

 In these "user-initiated join" cases, the "InitKey + Add message"
 flow is reversed. We assume that at some previous point, a group
 member has published a GroupInitKey reflecting the current state of
 the group (A, B, C). The new participant Z downloads that
 GroupInitKey from the directory, generates a UserAdd message, and
 broadcasts it to the group. Once current members process this
 message, they will have a shared state that also includes Z.

Barnes, et al. Expires August 6, 2018 [Page 7]

Internet-Draft MLS February 2018

 Group
 A B ... Z Directory Channel
GroupInitKey			
--->			
~ ~ ~ ~ ~			
		GroupInitKey	
		<-------------	
		UserAdd(.->D)	
		---------------------------->	
			UserAdd(.->D)
<--			
state.add(D)	<---		
	state.add(D)	<----------------------------	
		state.init()	

 To enforce forward secrecy and post-compromise security of messages,
 each participant periodically updates its leaf key, the DH key pair
 that represents its contribution to the group key. Any member of the
 group can send an Update at any time by generating a fresh leaf key
 pair and sending an Update message that describes how to update the
 group key with that new key pair. Once all participants have
 processed this message, the group's secrets will be unknown to an
 attacker that had compromised the sender's prior DH leaf private key.

 It is left to the application to determine the interval of time
 between Update messages. This policy could require a change for each
 message, or it could require sending an update every week or more.

 Group
 A B ... Z Directory Channel
 | | | | |
 | Update(A) | | | |
 |-->|
 | | | | |
 | | | | Update(A) |
 |<--|
state.upd(D)	<---		
	state.upd(D)	<----------------------------	
		state.upd(A)	

 Users are deleted from the group in a similar way, as a key update is
 effectively removing the old leaf from the group. Any member of the

Barnes, et al. Expires August 6, 2018 [Page 8]

Internet-Draft MLS February 2018

 group can generate a Delete message that adds new entropy to the
 group state that is known to all members except the deleted member.
 After other participants have processed this message, the group's
 secrets will be unknown to the deleted participant. Note that this
 does not necessarily imply that any member is actually allowed to
 evict other members; groups can layer authentication-based access
 control policies on top of these basic mechanism.

 Group
 A B ... Z Directory Channel
		Delete(B)	
		---------------------------->	
			Delete(B)
<--			
state.del(B)		<----------------------------	
		state.del(B)	

5. Binary Trees

 The protocol uses two types of binary tree structures:

 o Merkle trees for efficiently committing to a set of group
 participants.

 o Asynchronous ratcheting trees for deriving shared secrets among
 this group of participants.

 The two trees in the protocol share a common structure, allowing us
 to maintain a direct mapping between their nodes when manipulating
 group membership. The "nth" leaf in each tree is owned by the "nth"
 group participant.

5.1. Terminology

 We use a common set of terminology to refer to both types of binary
 tree.

 Trees consist of various different types of _nodes_. A node is a
 leaf if it has no children, and a _parent_ otherwise; note that all
 parents in our Merkle or asynchronous ratcheting trees have precisely
 two children, a _left_ child and a _right_ child. A node is the
 root of a tree if it has no parents, and _intermediate_ if it has
 both children and parents. The _descendants_ of a node are that
 node, its children, and the descendants of its children, and we say a

Barnes, et al. Expires August 6, 2018 [Page 9]

Internet-Draft MLS February 2018

 tree _contains_ a node if that node is a descendant of the root of
 the tree. Nodes are _siblings_ if they share the same parent.

 A _subtree_ of a tree is the tree given by the descendants of any
 node, the _head_ of the subtree The _size_ of a tree or subtree is
 the number of leaf nodes it contains. For a given parent node, its
 left subtree is the subtree with its left child as head
 (respectively _right subtree_).

 All trees used in this protocol are left-balanced binary trees. A
 binary tree is _full_ (and _balanced_) if it its size is a power of
 two and for any parent node in the tree, its left and right subtrees
 have the same size. If a subtree is full and it is not a subset of
 any other full subtree, then it is _maximal_.

 A binary tree is _left-balanced_ if for every parent, either the
 parent is balanced, or the left subtree of that parent is the largest
 full subtree that could be constructed from the leaves present in the
 parent's own subtree. Note that given a list of "n" items, there is
 a unique left-balanced binary tree structure with these elements as
 leaves. In such a left-balanced tree, the "k-th" leaf node refers to
 the "k-th" leaf node in the tree when counting from the left,
 starting from 0.

 The _direct path_ of a root is the empty list, and of any other node
 is the concatenation of that node with the direct path of its parent.
 The _copath_ of a node is the list of siblings of nodes in its direct
 path, excluding the root, which has no sibling. The _frontier_ of a
 tree is the list of heads of the maximal full subtrees of the tree,
 ordered from left to right.

 For example, in the below tree:

 o The direct path of C is (C, CD, ABCD)

 o The copath of C is (D, AB, EFG)

 o The frontier of the tree is (ABCD, EF, G)

Barnes, et al. Expires August 6, 2018 [Page 10]

Internet-Draft MLS February 2018

 ABCDEFG
 / \
 / \
 / \
 ABCD EFG
 / \ / \
 / \ / \
 AB CD EF \
 / \ / \ / \ \
 A B C D E F G

 We extend both types of tree to include a concept of "blank" nodes;
 which are used to replace group members who have been removed. We
 expand on how these are used and implemented in the sections below.

 (Note that left-balanced binary trees are the same structure that is
 used for the Merkle trees in the Certificate Transparency protocol
 [I-D.ietf-trans-rfc6962-bis].)

5.2. Merkle Trees

 Merkle trees are used to efficiently commit to a collection of group
 members. We require a hash function, denoted H, to construct this
 tree.

 Each node in a Merkle tree is the output of the hash function,
 computed as follows:

 o Leaf nodes: "H(0x01 || leaf-value)"

 o Parent nodes: "H(0x02 || left-value || right-value)"

 o Blank leaf nodes: "H(0x00)"

 The below tree provides an example of a size 2 tree, containing
 identity keys "A" and "B".

 * H(2 || H(1 || A) || H(1 || B))
 / \
 / \
 H(1 || A) * * H(1 || B)

 In Merkle trees, blank nodes appear only at the leaves. In
 computation of intermediate nodes, they are treated in the same way
 as other nodes.

Barnes, et al. Expires August 6, 2018 [Page 11]

Internet-Draft MLS February 2018

5.2.1. Merkle Proofs

 A proof of a given leaf being a member of the Merkle tree consists of
 the value of the leaf node, as well as the values of each node in its
 copath. From these values, its path to the root can be verified;
 proving the inclusion of the leaf in the Merkle tree.

 In the below tree, we denote with a star the Merkle proof of
 membership for leaf node "A". For brevity, we notate "Hash(0x02 ||
 A || B)" as "AB".

 ABCD
 / \
 AB CD*
 / \ / \
 A B* C D

5.3. Ratchet Trees

 Ratchet trees are used for generating shared group secrets. These
 are constructed as a series of Diffie-Hellman keys in a binary tree
 arrangement, with each user knowing their direct path, and thus being
 able to compute the shared root secret.

 To construct these trees, we require:

 o a Diffie-Hellman finite-field group or elliptic curve;

 o a Derive-Key-Pair function that produces a key pair from an octet
 string, such as the output of a DH computation

 Each node in a ratchet tree contains up to three values:

 o A secret octet string (optional)

 o A DH private key (optional)

 o A DH public key

 To compute the private values (secret and private key) for a given
 node, one must first know the private key from one of its children,
 and the public key from the other child. Then the value of the
 parent is computed as follows:

 o secret = DH(L, R)

 o private, public = Derive-Key-Pair(secret)

Barnes, et al. Expires August 6, 2018 [Page 12]

Internet-Draft MLS February 2018

 Ratchet trees are constructed as left-balanced trees, defined such
 that each parent node's key pair is derived from the Diffie-Hellman
 shared secret of its two child nodes. To compute the root secret and
 private key, a participant must know the public keys of nodes in its
 copath, as well as its own leaf private key.

 For example, the ratchet tree consisting of the private keys (A, B,
 C, D) is constructed as follows:

 DH(DH(AB), DH(CD))
 / \
 DH(AB) DH(CD)
 / \ / \
 A B C D

 Ratchet trees constructed this way provide the property that one must
 hold at least one private key from the tree to compute the secret
 root key. With all participants holding one leaf private key; this
 allows any individual to update their own key and change the shared
 root key, such that only group members can compute the new key.

5.3.1. Blank Ratchet Tree Nodes

 Nodes in a ratchet tree can have a special value "_", used to
 indicate that the node should be ignored during path computations.
 Such nodes are used to replace leaves when participants are deleted
 from the group.

 If any node in the copath of a leaf is _, it should be ignored during
 the computation of the path. For example, the tree consisting of the
 private keys (A, _, C, D) is constructed as follows:

 DH(A, DH(CD))
 / \
 A DH(CD)
 / \ / \
 A _ C D

 If two sibling nodes are both _, their parent value also becomes _.

 Blank nodes effectively result in an unbalanced tree, but allow the
 tree management to behave as for a balanced tree for programming
 simplicity.

Barnes, et al. Expires August 6, 2018 [Page 13]

Internet-Draft MLS February 2018

6. Group State

 The state of an MLS group at a given time comprises:

 o A group identifier (GID)

 o A ciphersuite used for cryptographic computations

 o A Merkle tree over the participants' identity keys

 o A ratchet tree over the participants' leaf key pairs

 o A message master secret (known only to participants)

 o An add key pair (private key known only to participants)

 o An init secret (known only to participants)

 Since a group can evolve over time, a session logically comprises a
 sequence of states. The time in which each individual state is used
 is called an "epoch", and each state is assigned an epoch number that
 increments when the state changes.

 MLS handshake messages provide each node with enough information
 about the trees to authenticate messages within the group and compute
 the group secrets.

 Thus, each participant will need to store the following information
 about each state of the group:

 1. The participant's index in the identity/ratchet trees

 2. The private key associated with the participant's leaf public
 key

 3. The private key associated with the participant's identity
 public key

 4. The current epoch number

 5. The group identifier (GID)

 6. A subset of the identity tree comprising at least the copath for
 the participant's leaf

 7. A subset of the ratchet tree comprising at least the copath for
 the participant's leaf

Barnes, et al. Expires August 6, 2018 [Page 14]

Internet-Draft MLS February 2018

 8. The current message encryption shared secret, called the master
 secret

 9. The current add key pair

 10. The current init secret

6.1. Cryptographic Objects

 Each MLS session uses a single ciphersuite that specifies the
 following primitives to be used in group key computations:

 o A hash function

 o A Diffie-Hellman finite-field group or elliptic curve

 The ciphersuite must also specify an algorithm "Derive-Key-Pair" that
 maps octet strings with the same length as the output of the hash
 function to key pairs for the Diffie-Hellman group.

 Public keys and Merkle tree nodes used in the protocol are opaque
 values in a format defined by the ciphersuite, using the following
 four types:

 uint16 CipherSuite;
 opaque DHPublicKey<1..2^16-1>;
 opaque SignaturePublicKey<1..2^16-1>;
 opaque MerkleNode<1..255>

 [[OPEN ISSUE: In some cases we will want to include a raw key when we
 sign and in others we may want to include an identity or a
 certificate containing the key. This type needs to be extended to
 accommodate that.]]

6.1.1. Curve25519 with SHA-256

 This ciphersuite uses the following primitives:

 o Hash function: SHA-256

 o Diffie-Hellman group: Curve25519 [RFC7748]

 Given an octet string X, the private key produced by the Derive-Key-
 Pair operation is SHA-256(X). (Recall that any 32-octet string is a
 valid Curve25519 private key.) The corresponding public key is
 X25519(SHA-256(X), 9).

https://datatracker.ietf.org/doc/html/rfc7748

Barnes, et al. Expires August 6, 2018 [Page 15]

Internet-Draft MLS February 2018

 Implementations SHOULD use the approach specified in [RFC7748] to
 calculate the Diffie-Hellman shared secret. Implementations MUST
 check whether the computed Diffie-Hellman shared secret is the all-
 zero value and abort if so, as described in Section 6 of [RFC7748].
 If implementers use an alternative implementation of these elliptic
 curves, they SHOULD perform the additional checks specified in

Section 7 of {{RFC7748]}

6.1.2. P-256 with SHA-256

 This ciphersuite uses the following primitives:

 o Hash function: SHA-256

 o Diffie-Hellman group: secp256r1 (NIST P-256)

 Given an octet string X, the private key produced by the Derive-Key-
 Pair operation is SHA-256(X), interpreted as a big-endian integer.
 The corresponding public key is the result of multiplying the
 standard P-256 base point by this integer.

 P-256 ECDH calculations (including parameter and key generation as
 well as the shared secret calculation) are performed according to
 [IEEE1363] using the ECKAS-DH1 scheme with the identity map as key
 derivation function (KDF), so that the shared secret is the
 x-coordinate of the ECDH shared secret elliptic curve point
 represented as an octet string. Note that this octet string (Z in
 IEEE 1363 terminology) as output by FE2OSP, the Field Element to
 Octet String Conversion Primitive, has constant length for any given
 field; leading zeros found in this octet string MUST NOT be
 truncated.

 (Note that this use of the identity KDF is a technicality. The
 complete picture is that ECDH is employed with a non-trivial KDF
 because MLS does not directly use this secret for anything other than
 for computing other secrets.)

 Clients MUST validate remote public values by ensuring that the point
 is a valid point on the elliptic curve. The appropriate validation
 procedures are defined in Section 4.3.7 of [X962] and alternatively
 in Section 5.6.2.3 of [keyagreement]. This process consists of three
 steps: (1) verify that the value is not the point at infinity (O),
 (2) verify that for Y = (x, y) both integers are in the correct
 interval, (3) ensure that (x, y) is a correct solution to the
 elliptic curve equation. For these curves, implementers do not need
 to verify membership in the correct subgroup.

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc7748#section-6
https://datatracker.ietf.org/doc/html/rfc7748

Barnes, et al. Expires August 6, 2018 [Page 16]

Internet-Draft MLS February 2018

6.2. Key Schedule

 Group keys are derived using the HKDF-Extract and HKDF-Expand
 functions as defined in [RFC5869], as well as the functions defined
 below:

 Derive-Secret(Secret, Label, ID, Epoch, Msg) =
 HKDF-Expand(Secret, HkdfLabel, Length)

 Where HkdfLabel is specified as:

 struct {
 uint16 length = Length;
 opaque label<7..255> = "mls10 " + Label;
 opaque group_id<0..2^16-1> = ID;
 uint32 epoch = Epoch;
 opaque message<1..2^16-1> = Msg
 } HkdfLabel;

 The Hash function used by HKDF is the ciphersuite hash algorithm.
 Hash.length is its output length in bytes. In the below diagram:

 o HKDF-Extract takes its Salt argument form the top and its IKM
 argument from the left

 o Derive-Secret takes its Secret argument from the incoming arrow

 When processing a handshake message, a participant combines the
 following information to derive new epoch secrets:

 o The init secret from the previous epoch

 o The update secret for the current epoch

 o The handshake message that caused the epoch change

 o The current group identifier (GID) and epoch

 The derivation of the update secret depends on the change being made,
 as described below.

 For UserAdd or GroupAdd, the new user does not know the prior epoch
 init secret. Instead, entropy from the prior epoch is added via the
 update secret, and an all-zero vector with the same length as a hash
 output is used in the place of the init secret.

 Given these inputs, the derivation of secrets for an epoch proceeds
 as shown in the following diagram:

https://datatracker.ietf.org/doc/html/rfc5869

Barnes, et al. Expires August 6, 2018 [Page 17]

Internet-Draft MLS February 2018

 Init Secret [n-1] (or 0)
 |
 V
 Update Secret -> HKDF-Extract = Epoch Secret
 |
 |
 +--> Derive-Secret(., "msg", ID, Epoch, Msg)
 | = message_master_secret
 |
 +--> Derive-Secret(., "add", ID, Epoch, Msg)
 | |
 | V
 | Derive-Key-Pair(.) = Add Key Pair
 |
 V
 Derive-Secret(., "init", ID, Epoch, Msg)
 |
 V
 Init Secret [n]

7. Initialization Keys

 In order to facilitate asynchronous addition of participants to a
 group, it is possible to pre-publish initialization keys that provide
 some public information about a user or group. UserInitKey messages
 provide information about a potential group member, that a group
 member can use to add this user to a group without asynchronously.
 GroupInitKey messages provide information about a group that a new
 user can use to join the group without any of the existing members of
 the group being online.

7.1. UserInitKey

 A UserInitKey object specifies what ciphersuites a client supports,
 as well as providing public keys that the client can use for key
 derivation and signing. The client's identity key is intended to be
 stable throughout the lifetime of the group; there is no mechanism to
 change it. Init keys are intended to be used a very limited number
 of times, potentially once. (see Section 11.4).

 The init_keys array MUST have the same length as the cipher_suites
 array, and each entry in the init_keys array MUST be a public key for
 the DH group defined by the corresponding entry in the cipher_suites
 array.

 The whole structure is signed using the client's identity key. A
 UserInitKey object with an invalid signature field MUST be considered

Barnes, et al. Expires August 6, 2018 [Page 18]

Internet-Draft MLS February 2018

 malformed. The input to the signature computation comprises all of
 the fields except for the signature field.

 struct {
 CipherSuite cipher_suites<0..255>;
 DHPublicKey init_keys<1..2^16-1>;
 SignaturePublicKey identity_key;
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } UserInitKey;

7.2. GroupInitKey

 A GroupInitKey object specifies the aspects of a group's state that a
 new member needs to initialize its state (together with an identity
 key and a fresh leaf key pair).

 o The current epoch number

 o The number of participants currently in the group

 o The group ID

 o The cipher suite used by the group

 o The public key of the current update key pair for the group

 o The frontier of the identity tree, as a sequence of hash values

 o The frontier of the ratchet tree, as a sequence of public keys

 GroupInitKey messages are not themselves signed. A GroupInitKey
 should not be published "bare"; instead, it should be published by
 constructing a handshake message with type "none", which will include
 a signature by a member of the group and a proof of membership in the
 group.

 struct {
 uint32 epoch;
 uint32 group_size;
 opaque group_id<0..2^16-1>;
 CipherSuite cipher_suite;
 DHPublicKey add_key;
 MerkleNode identity_frontier<0..2^16-1>;
 DHPublicKey ratchet_frontier<0..2^16-1>;
 } GroupInitKey;

Barnes, et al. Expires August 6, 2018 [Page 19]

Internet-Draft MLS February 2018

8. Handshake Messages

 Over the lifetime of a group, its state will change for:

 o Group initialization

 o A current member adding a new participant

 o A new participant adding themselves

 o A current participant updating its leaf key

 o A current member deleting another current member

 In MLS, these changes are accomplished by broadcasting "handshake"
 messages to the group. Note that unlike TLS and DTLS, there is not a
 consolidated handshake phase to the protocol. Rather, handshake
 messages are exchanged throughout the lifetime of a group, whenever a
 change is made to the group state.

 An MLS handshake message encapsulates a specific message that
 accomplishes a change to the group state. It also includes two other
 important features:

 o A GroupInitKey so that a new participant can observe the latest
 state of the handshake and initialize itself

 o A signature by a member of the group, together with a Merkle
 inclusion proof that demonstrates that the signer is a legitimate
 member of the group.

 Before considering a handshake message valid, the recipient MUST
 verify both that the signature is valid, the Merkle inclusion proof
 is valid, and the sender is authorized to make the change according
 to group policy. The input to the signature computations comprises
 the entire handshake message except for the signature field.

 The Merkle tree head to be used for validating the inclusion proof
 MUST be one that the recipient trusts to represent the current list
 of participant identity keys.

Barnes, et al. Expires August 6, 2018 [Page 20]

Internet-Draft MLS February 2018

 enum {
 none(0),
 init(1),
 user_add(2),
 group_add(3),
 update(4),
 delete(5),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type;
 uint24 inner_length;
 select (Handshake.msg_type) {
 case none: struct{};
 case init: Init;
 case user_add: UserAdd;
 case group_add: GroupAdd;
 case update: Update;
 case delete: Delete;
 };

 uint32 prior_epoch;
 GroupInitKey init_key;

 uint32 signer_index;
 MerkleNode identity_proof<1..2^16-1>;
 SignaturePublicKey identity_key;

 SignatureScheme algorithm;
 opaque signature<1..2^16-1>;
 } Handshake;

 [[OPEN ISSUE: There will be a need to integrate credentials from an
 authentication service that associate identities to the identity keys
 used to sign messages. This integration will enable meaningful
 authentication (of identities, rather than keys), and will need to be
 done in such a way as to prevent unknown key share attacks.]]

 [[OPEN ISSUE: The GroupAdd and Delete operations create a "double-
 join" situation, where a participants leaf key is also known to
 another participant. When a participant A is double-joined to
 another B, deleting A will not remove them from the conversation,
 since they will still hold the leaf key for B. These situations are
 resolved by updates, but since operations are asynchronous and
 participants may be offline for a long time, the group will need to
 be able to maintain security in the presence of double-joins.]]

Barnes, et al. Expires August 6, 2018 [Page 21]

Internet-Draft MLS February 2018

 [[OPEN ISSUE: It is not possible for the recipient of a handshake
 message to verify that ratchet tree information in the message is
 accurate, because each node can only compute the secret and private
 key for nodes in its direct path. This creates the possibility that
 a malicious participant could cause a denial of service by sending a
 handshake message with invalid values for public keys in the ratchet
 tree.]]

8.1. Init

 [[OPEN ISSUE: Direct initialization is currently undefined. A
 participant can create a group by initializing its own state to
 reflect a group including only itself, then adding the initial
 participants. This has computation and communication complexity O(N
 log N) instead of the O(N) complexity of direct initialization.]]

8.2. GroupAdd

 A GroupAdd message is sent by a group member to add a new participant
 to the group. The content of the message is only the UserInitKey for
 the user being added.

 struct {
 UserInitKey init_key;
 } GroupAdd;

 A group member generates such a message by requesting from the
 directory a UserInitKey for the user to be added. The new
 participant processes the message together with the private key
 corresponding to the UserInitKey to initialize his state as follows:

 o Compute the participant's leaf key pair by combining the init key
 in the UserInitKey with the prior epoch's add key pair

 o Use the frontiers in the GroupInitKey of the Handshake message to
 add its keys to the trees

 An existing participant receiving a GroupAdd message first verifies
 the signature on the message, then verifies its identity proof
 against the identity tree held by the participant. The participant
 then updates its state as follows:

 o Compute the new participant's leaf key pair by combining the leaf
 key in the UserInitKey with the prior epoch add key pair

 o Update the group's identity tree and ratchet tree with the new
 participant's information

Barnes, et al. Expires August 6, 2018 [Page 22]

Internet-Draft MLS February 2018

 The update secret resulting from this change is the output of a DH
 computation between the private key for the root of the ratchet tree
 and the add public key from the previous epoch.

 [[ALTERNATIVE: The sender could also generate the new participant's
 leaf using a fresh key pair, as opposed to a key pair derived from
 the prior epoch's secret. This would reduce the "double-join"
 problem, at the cost of the GroupAdd having to include a new ratchet
 frontier.]]

8.3. UserAdd

 A UserAdd message is sent by a new group participant to add
 themselves to the group, based on having already had access to a
 GroupInitKey for the group.

 struct {
 DHPublicKey add_path<1..2^16-1>;
 } UserAdd;

 A new participant generates this message using the following steps:

 o Fetch a GroupInitKey for the group

 o Use the frontiers in the GroupInitKey to add its keys to the trees

 o Compute the direct path from the new participant's leaf in the new
 ratchet tree (the add_path).

 An existing participant receiving a UserAdd first verifies the
 signature on the message, then verifies its identity inclusion proof
 against the updated identity tree expressed in the GroupInitKey of
 the Handshake message (since the signer is not included in the prior
 group state held by the existing participant). The participant then
 updates its state as follows:

 o Update trees with the descriptions in the new GroupInitKey

 o Update the local ratchet tree with the add path in the UserAdd
 message, replacing any common nodes with the values in the add
 path

 The update secret resulting from this change is the output of a DH
 computation between the private key for the root of the ratchet tree
 and the add public key from the previous epoch.

Barnes, et al. Expires August 6, 2018 [Page 23]

Internet-Draft MLS February 2018

8.4. Update

 An Update message is sent by a group participant to update its leaf
 key pair. This operation provides post-compromise security with
 regard to the participant's prior leaf private key.

 struct {
 DHPublicKey ratchetPath<1..2^16-1>;
 } Update;

 The sender of an Update message creates it in the following way:

 o Generate a fresh leaf key pair

 o Compute its direct path in the current ratchet tree

 An existing participant receiving a Update message first verifies the
 signature on the message, then verifies its identity proof against
 the identity tree held by the participant. The participant then
 updates its state as follows:

 o Update the cached ratchet tree by replacing nodes in the direct
 path from the updated leaf with the corresponding nodes in the
 Update message

 The update secret resulting from this change is the secret for the
 root node of the ratchet tree.

8.5. Delete

 A delete message is sent by a group member to remove one or more
 participants from the group.

 struct {
 uint32 deleted;
 DHPublicKey path<1..2^16-1>;
 } Delete;

 The sender of a Delete message must know the deleted node's copath.
 Based on this knowledge, it computes a Delete message as follows:

 o Generate a fresh leaf key pair

 o Compute the direct path from the deleted node's index with the
 fresh leaf key pair in the current ratchet tree

 An existing participant receiving a Update message first verifies the
 signature on the message, then verifies its identity proof against

Barnes, et al. Expires August 6, 2018 [Page 24]

Internet-Draft MLS February 2018

 the identity tree held by the participant. The participant then
 updates its state as follows:

 o Update the cached ratchet tree by replacing nodes in the direct
 path from the deleted leaf with the corresponding nodes in the
 Update message

 o Update the cached ratchet tree and identity tree by replacing the
 deleted node's leaves with blank nodes

 The update secret resulting from this change is the secret for the
 root node of the ratchet tree after both updates.

9. Sequencing of State Changes

 [[OPEN ISSUE: This section has an initial set of considerations
 regarding sequencing. It would be good to have some more detailed
 discussion, and hopefully have a mechanism to deal with this issue.
]]

 Each handshake message is premised on a given starting state,
 indicated in its "prior_epoch" field. If the changes implied by a
 handshake messages are made starting from a different state, the
 results will be incorrect.

 This need for sequencing is not a problem as long as each time a
 group member sends a handshake message, it is based on the most
 current state of the group. In practice, however, there is a risk
 that two members will generate handshake messages simultaneously,
 based on the same state.

 When this happens, there is a need for the members of the group to
 deconflict the simultaneous handshake messages. There are two
 general approaches:

 o Have the delivery service enforce a total order

 o Have a signal in the message that clients can use to break ties

 In either case, there is a risk of starvation. In a sufficiently
 busy group, a given member may never be able to send a handshake
 message, because he always loses to other members. The degree to
 which this is a practical problem will depend on the dynamics of the
 application.

 Regardless of how messages are kept in sequence, implementations MUST
 only update their cryptographic state when valid handshake messages
 are received. Generation of handshake messages MUST be stateless,

Barnes, et al. Expires August 6, 2018 [Page 25]

Internet-Draft MLS February 2018

 since the endpoint cannot know at that time whether the change
 implied by the handshake message will succeed or not.

9.1. Server-side enforced ordering

 With this approach, the delivery service ensures that incoming
 messages are added to an ordered queue and outgoing messages are
 dispatched in the same order. The server is trusted to resolve
 conflicts during race-conditions (when two members send a message at
 the same time), as the server doesn't have any additional knowledge
 thanks to the confidentiality of the messages.

 Messages should have a counter field sent in clear-text that can be
 checked by the server and used for tie-breaking. The counter starts
 at 0 and is incremented for every new incoming message. If two group
 members send a message with the same counter, the first message to
 arrive will be accepted by the server and the second one will be
 rejected. The rejected message needs to be sent again with the
 correct counter number.

 To prevent counter manipulation by the server, the counter's
 integrity can be ensured by including the counter in a signed message
 envelope.

 This applies to all messages, not only state changing messages.

9.2. Client-side enforced ordering

 Order enforcement can be implemented on the client as well, one way
 to achieve it is to use a two step update protocol: the first client
 sends a proposal to update and the proposal is accepted when it gets
 50%+ approval from the rest of the group, then it sends the approved
 update. Clients which didn't get their proposal accepted, will wait
 for the winner to send their update before retrying new proposals.

 While this seems safer as it doesn't rely on the server, it is more
 complex and harder to implement. It also could cause starvation for
 some clients if they keep failing to get their proposal accepted.

 [[OPEN ISSUE: Another possibility here is batching + deterministic
 selection.]]

10. Message Protection

 [[OPEN ISSUE: This section has initial considerations about message
 protection. This issue clearly needs more specific recommendations,
 possibly a protocol specification in this document or a separate one.
]]

Barnes, et al. Expires August 6, 2018 [Page 26]

Internet-Draft MLS February 2018

 The primary purpose of this protocol is to enable an authenticated
 group key exchange among participants. In order to protect messages
 sent among those participants, an application will need to specify
 how messages are protected.

 For every epoch, the root key of the ratcheting tree can be used to
 derive key material for symmetric operations such as encryption/AEAD
 and MAC; AEAD or MAC MUST be used to ensure that the message
 originated from a member of the group.

 In addition, asymmetric signatures SHOULD be used to authenticate the
 sender of a message.

 In combination with server-side enforced ordering, data from previous
 messages is used (as a salt when hashing) to:

 o add freshness to derived symmetric keys

 o cryptographically bind the transcript of all previous messages
 with the current group shared secret

 Possible candidates for that are:

 o the key used for the previous message (hash ratcheting)

 o the counter of the previous message (needs to be known to new
 members of the group)

 o the hash of the previous message (proof that other participants
 saw the same history)

 The requirement for this is that all participants know these values.
 If additional clear-text fields are attached to messages (like the
 counter), those fields MUST be protected by a signed message
 envelope.

 Alternatively, the hash of the previous message can also be included
 as an additional field rather than change the encryption key. This
 allows for a more flexible approach, because the receiving party can
 choose to ignore it (if the value is not known, or if transcript
 security is not required).

11. Security Considerations

 The security goals of MLS are described in [[the architecture doc]].
 We describe here how the protocol achieves its goals at a high level,
 though a complete security analysis is outside of the scope of this
 document.

Barnes, et al. Expires August 6, 2018 [Page 27]

Internet-Draft MLS February 2018

11.1. Confidentiality of the Group Secrets

 Group secrets are derived from (i) previous group secrets, and (ii)
 the root key of a ratcheting tree. Only group members know their
 leaf private key in the group, therefore, the root key of the group's
 ratcheting tree is secret and thus so are all values derived from it.

 Initial leaf keys are known only by their owner and the group
 creator, because they are derived from an authenticated key exchange
 protocol. Subsequent leaf keys are known only by their owner.
 [[TODO: or by someone who replaced them.]]

 Note that the long-term identity keys used by the protocol MUST be
 distributed by an "honest" authentication service for parties to
 authenticate their legitimate peers.

11.2. Authentication

 There are two forms of authentication we consider. The first form
 considers authentication with respect to the group. That is, the
 group members can verify that a message originated from one of the
 members of the group. This is implicitly guaranteed by the secrecy
 of the shared key derived from the ratcheting trees: if all members
 of the group are honest, then the shared group key is only known to
 the group members. By using AEAD or appropriate MAC with this shared
 key, we can guarantee that a participant in the group (who knows the
 shared secret key) has sent a message.

 The second form considers authentication with respect to the sender,
 meaning the group members can verify that a message originated from a
 particular member of the group. This property is provided by digital
 signatures on the messages under identity keys.

 [[OPEN ISSUE: Signatures under the identity keys, while simple, have
 the side-effect of preclude deniability. We may wish to allow other
 options, such as (ii) a key chained off of the identity key, or (iii)
 some other key obtained through a different manner, such as a
 pairwise channel that provides deniability for the message
 contents.]]

11.3. Forward and post-compromise security

 Message encryption keys are derived via a hash ratchet, which
 provides a form of forward secrecy: learning a message key does not
 reveal previous message or root keys. Post-compromise security is
 provided by Update operations, in which a new root key is generated
 from the latest ratcheting tree. If the adversary cannot derive the

Barnes, et al. Expires August 6, 2018 [Page 28]

Internet-Draft MLS February 2018

 updated root key after an Update operation, it cannot compute any
 derived secrets.

11.4. Init Key Reuse

 Initialization keys are intended to be used only once and then
 deleted. Reuse of init keys is not believed to be inherently
 insecure [dhreuse], although it can complicate protocol analyses.

12. IANA Considerations

 TODO: Registries for protocol parameters, e.g., ciphersuites

13. Contributors

 o Benjamin Beurdouche
 INRIA
 benjamin.beurdouche@ens.fr

 o Karthikeyan Bhargavan
 INRIA
 karthikeyan.bhargavan@inria.fr

 o Cas Cremers
 University of Oxford
 cas.cremers@cs.ox.ac.uk

 o Alan Duric
 Wire
 alan@wire.com

 o Srinivas Inguva
 Twitter
 singuva@twitter.com

 o Albert Kwon
 MIT
 kwonal@mit.edu

 o Eric Rescorla
 Mozilla
 ekr@rtfm.com

 o Thyla van der Merwe
 Royal Holloway, University of London
 thyla.van.der@merwe.tech

Barnes, et al. Expires August 6, 2018 [Page 29]

Internet-Draft MLS February 2018

14. References

14.1. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-23 (work in progress),
 January 2018.

 [IEEE1363]
 "IEEE Standard Specifications for Password-Based Public-
 Key Cryptographic Techniques", IEEE standard,
 DOI 10.1109/ieeestd.2009.4773330, n.d..

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [X962] ANSI, "Public Key Cryptography For The Financial Services
 Industry: The Elliptic Curve Digital Signature Algorithm
 (ECDSA)", ANSI X9.62, 1998.

14.2. Informative References

 [art] Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J.,
 and K. Milner, "On Ends-to-Ends Encryption: Asynchronous
 Group Messaging with Strong Security Guarantees", January
 2018, <https://eprint.iacr.org/2017/666.pdf>.

 [dhreuse] Menezes, A. and B. Ustaoglu, "On reusing ephemeral keys in
 Diffie-Hellman key agreement protocols", International
 Journal of Applied Cryptography Vol. 2, pp. 154,
 DOI 10.1504/ijact.2010.038308, 2010.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-23
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://eprint.iacr.org/2017/666.pdf

Barnes, et al. Expires August 6, 2018 [Page 30]

Internet-Draft MLS February 2018

 [doubleratchet]
 Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L.,
 and D. Stebila, "A Formal Security Analysis of the Signal
 Messaging Protocol", 2017 IEEE European Symposium on
 Security and Privacy (EuroS&P),
 DOI 10.1109/eurosp.2017.27, April 2017.

 [I-D.ietf-trans-rfc6962-bis]
 Laurie, B., Langley, A., Kasper, E., Messeri, E., and R.
 Stradling, "Certificate Transparency Version 2.0", draft-

ietf-trans-rfc6962-bis-27 (work in progress), October
 2017.

 [keyagreement]
 Barker, E., Chen, L., Roginsky, A., and M. Smid,
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography", National Institute
 of Standards and Technology report,
 DOI 10.6028/nist.sp.800-56ar2, May 2013.

 [signal] (ed), T. and M. Marlinspike, "The Double Ratchet
 Algorithm", n.d.,
 <https://www.signal.org/docs/specifications/

doubleratchet/>.

Authors' Addresses

 Richard Barnes
 Cisco

 Email: rlb@ipv.sx

 Jon Millican
 Facebook

 Email: jmillican@fb.com

 Emad Omara
 Google

 Email: emadomara@google.com

https://datatracker.ietf.org/doc/html/draft-ietf-trans-rfc6962-bis-27
https://datatracker.ietf.org/doc/html/draft-ietf-trans-rfc6962-bis-27
https://www.signal.org/docs/specifications/doubleratchet/
https://www.signal.org/docs/specifications/doubleratchet/

Barnes, et al. Expires August 6, 2018 [Page 31]

Internet-Draft MLS February 2018

 Katriel Cohn-Gordon
 University of Oxford

 Email: me@katriel.co.uk

 Raphael Robert
 Wire

 Email: raphael@wire.com

Barnes, et al. Expires August 6, 2018 [Page 32]

