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Abstract

Multipath TCP is a major extension to TCP that allows improving the

resource usage in the current Internet by transmitting data over

several TCP subflows, while still showing one single regular TCP socket

to the application. This document describes our experience in writing a

MultiPath TCP implementation in the Linux kernel and discusses

implementation guidelines that could be useful for other developers who

are planning to add MultiPath TCP to their networking stack. 
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1. Introduction

The MultiPath TCP protocol [I-D.ietf-mptcp-multiaddressed] is a major

TCP extension that allows for simultaneous use of multiple paths, while

being transparent to the applications, fair to regular TCP flows [I-

D.ietf-mptcp-congestion] and deployable in the current Internet. The

MPTCP design goals and the protocol architecture that allow reaching

them are described in [I-D.ietf-mptcp-architecture]. Besides the

protocol architecture, a number of non-trivial design choices need to

be made in order to extend an existing TCP implementation to support

MultiPath TCP. This document gathers a set of guidelines that should

help implementers writing an efficient and modular MPTCP stack. The

guidelines are expected to be applicable regardless of the Operating

System (although the MPTCP implementation described here is done in

Linux [Barre_Multipath]). Another goal is to achieve the greatest level

of modularity without impacting efficiency, hence allowing other

multipath protocols to nicely co-exist in the same stack. In order for

the reader to clearly disambiguate "useful hints" from "important

requirements", we write the latter in their own paragraphs, starting

with the keyword "IMPORTANT". By important requirements, we mean design

options that, if not followed, would lead to an under-performing MPTCP

stack, maybe even slower than regular TCP. 

This draft presents implementation guidelines that are based on the

code which has been implemented in our MultiPath TCP aware Linux kernel

(the version covered here is 0.6) which is available from http://

inl.info.ucl.ac.be/mptcp. We also list configuration guidelines that

have proven to be useful in practice. In some cases, we discuss some

mechanisms that have not yet been implemented. These mechanisms are

clearly listed. During our work in implementing MultiPath TCP, we

evaluated other designs. Some of them are not used anymore in our

implementation. However, we explain in the appendix the reason why

these particular designs have not been considered further. 
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This document is structured as follows. First we propose an

architecture that allows supporting MPTCP in a protocol stack residing

in an operating system. Then we consider a range of problems that must

be solved by an MPTCP stack (compared to a regular TCP stack). In 

Section 4, we propose recommendations on how a system administrator

could correctly configure an MPTCP-enabled host. Finally, we discuss

future work, in particular in the area of MPTCP optimization. 

1.1. Terminology

In this document we use the same terminology as in [I-D.ietf-mptcp-

architecture] and [I-D.ietf-mptcp-multiaddressed]. In addition, we will

use the following implementation-specific terms: 

Meta-socket: A socket structure used to reorder incoming data at

the connection level and schedule outgoing data to subflows. 

Master subsocket: The socket structure that is visible from the

application. If regular TCP is in use, this is the only active

socket structure. If MPTCP is used, this is the socket

corresponding to the first subflow. 

Slave subsocket: Any socket created by the kernel to provide an

additional subflow. Those sockets are not visible to the

application (unless a specific API [I-D.ietf-mptcp-api] is used).

The meta-socket, master and slave subsocket are explained in more

details in Section 2.2. 

Endpoint id: Endpoint identifier. It is the tuple (saddr, sport,

daddr, dport) that identifies a particular subflow, hence a

particular subsocket. 

Fendpoint id: First Endpoint identifier. It is the endpoint

identifier of the Master subsocket. 

Connection id or token: It is a locally unique number, defined in

Section 2 of [I-D.ietf-mptcp-multiaddressed], that allows finding

a connection during the establishment of new subflows. 

2. An architecture for Multipath transport

Section 4 of the MPTCP architecture document [I-D.ietf-mptcp-

architecture] describes the functional decomposition of MPTCP. It lists

four entities, namely Path Management, Packet Scheduling, Subflow

Interface and Congestion Control. These entities can be further grouped

based on the layer at which they operate: 

Transport layer: This includes Packet Scheduling, Subflow

Interface and Congestion Control, and is grouped under the term
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"Multipath Transport (MT)". From an implementation point of view,

they all will involve modifications to TCP. 

Any layer: Path Management. Path management can be done in the

transport layer, as is the case of the built-in path manager (PM)

described in [I-D.ietf-mptcp-multiaddressed]. That PM discovers

paths through the exchange of TCP options of type ADD_ADDR or the

reception of a SYN on a new address pair, and defines a path as

an endpoint_id (saddr, sport, daddr, dport). But, more generally,

a PM could be any module able to expose multiple paths to MPTCP,

located either in kernel or user space, and acting on any OSI

layer (e.g. a bonding driver that would expose its multiple links

to the Multipath Transport).

Because of the fundamental independence of Path Management compared to

the three other entities, we draw a clear line between both, and define

a simple interface that allows MPTCP to benefit easily from any

appropriately interfaced multipath technology. In this document, we

stick to describing how the functional elements of MPTCP are defined,

using the built-in Path Manager described in [I-D.ietf-mptcp-

multiaddressed], and we leave for future separate documents the

description of other path managers. We describe in the first subsection

the precise roles of the Multipath Transport and the Path Manager. Then

we detail how they are interfaced with each other. 

2.1. MPTCP architecture

Although, when using the built-in PM, MPTCP is fully contained in the

transport layer, it can still be organized as a Path Manager and a

Multipath Transport Layer as shown in Figure 1. The Path Manager

announces to the MultiPath Transport what paths can be used through

path indices for an MPTCP connection, identified by the fendpoint_id

(first endpoint id). The fendpoint_id is the tuple (saddr, sport,

daddr, dport) seen by the application and uniquely identifies the MPTCP

connection (an alternate way to identify the MPTCP connection being the

conn_id, which is a token as described in Section 2 of [I-D.ietf-mptcp-

multiaddressed]). The Path Manager maintains the mapping between the

path_index and an endpoint_id. The endpoint_id is the tuple (saddr,

sport, daddr, dport) that is to be used for the corresponding path

index. 

Note that the fendpoint_id itself represents a path and is thus a

particular endpoint_id. By convention, the fendpoint_id is always

represented as path index 1. As explained in [I-D.ietf-mptcp-

architecture], Section 5.6, it is not yet clear how an implementation

should behave in the event of a failure in the first subflow. We

expect, however, that the Master subsocket should be kept in use as an

interface with the application, even if no data is transmitted anymore

over it. It also allows the fendpoint_id to remain meaningful
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throughout the life of the connection. This behavior has yet to be

tested and refined with Linux MPTCP. 

Figure 1 shows an example sequence of MT-PM interactions happening at

the beginning of an exchange. When the MT starts a new connection

(through an application connect() or accept()), it can request the PM

to be updated about possible alternate paths for this new connection.

The PM can also spontaneously update the MT at any time (normally when

the path set changes). This is step 1 in Figure 1. In the example, 4

paths can be used, hence 3 new ones. Based on the update, the MT can

decide whether to establish new subflows, and how many of them. Here,

the MT decides to establish one subflow only, and sends a request for

endpoint_id to the PM. This is step 2. In step 3, the answer is given:

<A2,B2,0,pB2>. The source port is unspecified to allow the MT ensure

the unicity of the new endpoint_id, thanks to the new_port() primitive

(present in regular TCP as well). Note that messages 1,2,3 need not be

real messages and can be function calls instead (as is the case in

Linux MPTCP). 

                            Control plane    

+---------------------------------------------------------------+

|                     Multipath Transport (MT)                  |

+----------------------------------------------------|----------+

  ^                  |           ^                   v  

  |                  |           |          [Build new subsocket,

  | 1.For fendpt_id  |2.endpt_id |                 with endpt_ids

  |<A1,B1,pA1,pB1>   | for path  | 3.<A2,B2,   <A2,B2,new_port(),pB2]

  |Paths 1->4 can be | index 2 ? |   0,pB2>

  |used.             |           |

  |                  |           |

  |                  |           |

  |                  v           |

+---------------------------------------------------------------+

|                         Path Manager (PM)                     |

+---------------------------------------------------------------+

   /                                     \  

  /---------------------------------------\ 

  | mapping table:                        |

  |   Subflow   <--> endpoint_id          |

  |  path index                           |

  |                                       |

  |    [see table below]                  |

  |                                       |

  +---------------------------------------+



The following options, described in [I-D.ietf-mptcp-multiaddressed] ,

are managed by the Multipath Transport: 

MULTIPATH CAPABLE (MP_CAPABLE): Tells the peer that we support

MPTCP and announces our local token. 

MP_JOIN/MP_AUTH: Initiates a new subflow (Note that MP_AUTH is

not yet part of our Linux implementation at the moment)

DATA SEQUENCE NUMBER (DSN_MAP): Identifies the position of a set

of bytes in the meta-flow.

DATA_ACK: Acknowledge data at the connection level (subflow level

acknowledgments are contained in the normal TCP header).

DATA FIN (DFIN): Terminates a connection.

MP_PRIO: Asks the peer to revise the backup status of the subflow

on which the option is sent. Although the option is sent by the

Multipath Transport (because this allows using the TCP option

space), it may be triggered by the Path Manager. This option is

not yet supported by our MPTCP implementation.

MP_FAIL: Checksum failed at connection-level. Currently the Linux

implementation does not implement the checksum in option DSN_MAP,

and hence does not implement either the MP_FAIL option.

The Path manager applies a particular technology to give the MT the

possibility to use several paths. The built-in MPTCP Path Manager uses

multiple IPv4/v6 addresses as its mean to influence the forwarding of

packets through the Internet. When the MT starts a new connection, it

chooses a token that will be used to identify the connection. This is

necessary to allow future subflow-establishment SYNs (that is,

containing the MP_JOIN option) to be attached to the correct

connection. An example mapping table is given hereafter: 

token path index Endpoint id

token_1 1 <A1,B1,0,pB1>

token_1 2 <A2,B2,0,pB1>

token_1 3 <A1,B2,0,pB1>

token_1 4 <A2,B1,0,pB1>

token_2 1 <A1,B1,0,pB2>

token_2 2 <A2,B1,0,pB2>

Example mapping table for built-

in PM

Table 1 shows an example where two MPTCP connections are active. One is

identified by token_1, the other one with token_2. As per [I-D.ietf-
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mptcp-multiaddressed], the tokens must be unique locally. Since the

endpoint identifier may change from one subflow to another, the

attachment of incoming new subflows (identified by a SYN + MP_JOIN

option) to the right connection is achieved thanks to the locally

unique token. The built-in path manager currently implements the

following options The following options (defined in [I-D.ietf-mptcp-

multiaddressed]) are intended to be part of the built-in path manager: 

Add Address (ADD_ADDR): Announces a new address we own

Remove Address (REMOVE_ADDR): Withdraws a previously announced

address

Those options form the built-in MPTCP Path Manager, based on declaring

IP addresses, and carries control information in TCP options. An

implementation of Multipath TCP can use any Path Manager, but it must

be able to fallback to the default PM in case the other end does not

support the custom PM. Alternative Path Managers may be specified in

separate documents in the future. 

2.2. Structure of the Multipath Transport

The Multipath Transport handles three kinds of sockets. We define them

here and use this notation throughout the entire document: 

Master subsocket: This is the first socket in use when a

connection (TCP or MPTCP) starts. It is also the only one in use

if we need to fall back to regular TCP. This socket is initiated

by the application through the socket() system call. Immediately

after a new master subsocket is created, MPTCP capability is

enabled by the creation of the meta-socket. 

Meta-socket: It holds the multipath control block, and acts as

the connection level socket. As data source, it holds the main

send buffer. As data sink, it holds the connection-level receive

queue and out-of-order queue (used for reordering). We represent

it as a normal (extended) socket structure in Linux MPTCP because

this allows reusing much of the existing TCP code with few

modifications. In particular, the regular socket structure

already holds pointers to SND.UNA, SND.NXT, SND.WND, RCV.NXT,

RCV.WND (as defined in [RFC0793]). It also holds all the

necessary queues for sending/receiving data. 

Slave subsocket: Any subflow created by MPTCP, in addition to the

first one (the master subsocket is always considered as a subflow

even though it may be in failed state at some point in the

communication). The slave subsockets are created by the kernel

(not visible from the application) The master subsocket and the

slave subsockets together form the pool of available subflows
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that the MPTCP Packet Scheduler (called from the meta-socket) can

use to send packets. 

2.3. Structure of the Path Manager

In contrast to the multipath transport, which is more complex and

divided in sub-entities (namely Packet Scheduler, Subflow Interface and

Congestion Control, see Section 2), the Path Manager just maintains the

mapping table and updates the Multipath Transport when the mapping

table changes. The mapping table has been described above (Table 1). We

detail in Table 2 the set of (event,action) pairs that are implemented

in the Linux MPTCP built-in path manager. For reference, an earlier

architecture for the Path Management is discussed in Appendix Appendix

A.1. Also, Appendix Appendix A.2 proposes a small extension to this

current architecture to allow supporting other path managers. 





event action

master_sk bound: This event is

triggered upon either a

bind(), connect(), or when a

new server-side socket becomes

established.

Discovers the set of local addresses

and stores them in local_addr_table

ADD_ADDR option received or

SYN+MP_JOIN received on new

address

Updates remote_addr_table

correspondingly

local/remote_addr_table

updated

Updates mapping_table by adding any new

address combinations, or removing the

ones that have disappeared. Each

address pair is given a path index.

Once allocated to an address pair, a

path index cannot be reallocated to

another one, to ensure consistency of

the mapping table.

Mapping_table updated

Sends notification to the Multipath

Transport. The notification contains

the new set of path indices that the MT

is allowed to use. This is shown in 

Figure 1, msg 1.

Endpoint_id(path_index)

request received from MT

(Figure 1, msg 2)

Retrieves the endpoint_ids for the

corresponding path index from the

mapping table and returns them to the

MT. One such request/response is

illustrated in Figure 1, msg 3. Note

that in that msg 3, the local port is

set to zero. This is to let the

operating system choose a unique local

port for the new socket.

(event,action) pairs implemented in the built-in PM



3. MPTCP challenges for the OS

MPTCP is a major modification to the MPTCP stack. We have described

above an architecture that separates Multipath Transport from Path

Management. Path Management can be implemented rather simply. But

Multipath Transport involves a set of new challenges, that do not exist

in regular TCP. We first describe how an MPTCP client or server can

start a new connection, or a new subflow within a connection. Then we

propose techniques (a concrete implementation of which is done in Linux

MPTCP) to efficiently implement data reception (at the data sink) and

data sending (at the data source). 

3.1. Charging the application for its CPU cycles

As this document is about implementation, it is important not only to

ensure that MPTCP is fast, but also that it is fair to other

applications that share the same CPU. Otherwise one could have an

extremely fast file transfer, while the rest of the system is just

hanging. CPU fairness is ensured by the scheduler of the Operating

System when things are implemented in user space. But in the kernel, we

can choose to run code in "user context", that is, in a mode where each

CPU cycle is charged to a particular application. Or we can (and must

in some cases) run code in "interrupt context", that is, interrupting

everything else until the task has finished. In Linux (probably a

similar thing is true in other systems), the arrival of a new packet on

a NIC triggers a hardware interrupt, which in turn schedules a software

interrupt that will pull the packet from the NIC and perform the

initial processing. The challenge is to stop the processing of the

incoming packet in software interrupt as soon as it can be attached to

a socket, and wake up the application. With TCP, an additional

constraint is that incoming data should be acknowledged as soon as

possible, which requires reordering. Van Jacobson has proposed a

solution for this [VJ_prequeues]: If an application is waiting on a

recv() system call, incoming packets can be put into a special queue

(called prequeue in Linux) and the application is woken up. Reordering

and acknowledgement are then performed in user context. The execution

path for outgoing packets is less critical from that point of view,

because the vast majority of processing can be done very easily in user

context. 

In this document, when discussing CPU fairness, we will use the

following terms: 

User context: Execution environment that is under control of the

OS scheduler. CPU cycles are charged to the associated

application, which allows to ensure fairness with other

applications. 

Interrupt context: Execution environment that runs with higher

priority than any process. Although it is impossible to

*
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completely avoid running code in interrupt context, it is

important to minimize the amount of code running in such a

context. 

VJ prequeues: This refers to Van Jacobson prequeues, as explained

above[VJ_prequeues]. 

3.2. At connection/subflow establishment

As described in [I-D.ietf-mptcp-multiaddressed], the establishment of

an MPTCP connection is quite simple, being just a regular three-way

exchange with additional options. As shown in Section 2.2 this is done

in the master subsocket. Currently Linux MPTCP attaches a meta-socket

to a socket as soon as it is created, that is, upon a socket() system

call (client side), or when a server side socket enters the ESTABLISHED

state. An alternate solution is described in Appendix Appendix A.3. 

An implementation can choose the best moment, maybe depending on the

OS, to instantiate the meta-socket. However, if this meta-socket is

needed to accept new subflows (like it is in Linux MPTCP), it should be

attached at the latest when the MP_CAPABLE option is received.

Otherwise incoming new subflow requests (SYN + MP_JOIN) may be lost,

requiring retransmissions by the peer and delaying the subflow

establishment. 

The establishment of subflows, on the other hand, is more tricky. The

problem is that new SYNs (with the MP_JOIN option) must be accepted by

a socket (the meta-socket in the proposed design) as if it was in

LISTEN state, while its state is actually ESTABLISHED. There is the

following in common with a LISTEN socket: 

Temporary structure: Between the reception of the SYN and the

final ACK, a mini-socket is used as a temporary structure.

Queue of connection requests: The meta-socket, like a LISTEN

socket, maintains a list of pending connection requests. There

are two such lists. One contains mini-sockets, because the final

ACK has not yet been received. The second list contains sockets

in the ESTABLISHED state that have not yet been accepted.

"Accepted" means, for regular TCP, returned to the application as

a result of an accept() system call. For MPTCP it means that the

new subflow has been integrated in the set of active subflows.

We can list the following differences with a normal LISTEN socket. 

Socket lookup for a SYN: When a SYN is received, the

corresponding LISTEN socket is found by using the endpoint_id.

This is not possible with MPTCP, since we can receive a SYN on

any endpoint_id. Instead, the token must be used to retrieve the

meta-socket to which the SYN must be attached. A new hashtable

must be defined, with tokens as keys.
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Lookup for connection request: In regular TCP, this lookup is

quite similar to the previous one (in Linux at least). The 5-

tuple is used, first to find the LISTEN socket, next to retrieve

the corresponding mini-socket, stored in a private hashtable

inside the LISTEN socket. With MPTCP, we cannot do that, because

there is no way to retrieve the meta-socket from the final ACK.

The 5-tuple can be anything, and the token is only present in the

SYN. There is no token in the final ACK. Our Linux MPTCP

implementation uses a global hashtable for pending connection

requests, where the key is the 5-tuple of the connection request.

An implementation must carefully check the presence of the MP_JOIN

option in incoming SYNs before performing the usual socket lookup. If

it is present, only the token-based lookup must be done. If this lookup

does not return a meta-socket, the SYN must be discarded. Failing to do

that could lead to mistakenly attach the incoming SYN to a LISTEN

socket instead of attaching it to a meta-socket. 

3.3. Subflow management

Further research is needed to define the appropriate heuristics to

solve these problems. Initial thoughts are provided in Appendix

Appendix B.1. 

Currently, in a Linux MPTCP client, the Multipath Transport tries to

open all subflows advertised by the Path Manager. On the other hand,

the server only accepts new subflows, but does not try to establish new

ones. The rationale for this is that the client is the connection

initiator. New subflows are only established if the initiator requests

them. This is subject to change in future releases of our MPTCP

implementation. 

3.4. At the data sink

There is a symmetry between the behavior of the data source and the

data sink. Yet, the specific requirements are different. The data sink

is described in this section while the data source is described in the

next section. 

3.4.1. Receive buffer tuning

The MPTCP required receive buffer is larger than the sum of the buffers

required by the individual subflows. The reason for this and proper

values for the buffer are explained in [I-D.ietf-mptcp-architecture]

Section 5.3. Not following this could result in the MPTCP speed being

capped at the bandwidth of the slowest subflow. 

An interesting way to dynamically tune the receive buffer according the

bandwidth/delay product (BDP) of a path, for regular TCP, is described

in [Fisk_Dynamic] and implemented in recent Linux kernels. It uses the

COPIED_SEQ sequence variable (sequence number of the next byte to copy

*



to the app buffer) to count, every RTT, the number of bytes received

during that RTT. This number of bytes is precisely the BDP. The

accuracy of this technique is directly dependent on the accuracy of the

RTT estimation. Unfortunately, the data sink does not have a reliable

estimate of the SRTT. To solve this, [Fisk_Dynamic] proposes two

techniques: [I-D.ietf-mptcp-multiaddressed], section 3.3.3, the MPTCP

advertised receive window is shared by all subflows. Hence, no per-

subflow information can be deduced from it, and the second technique

from [Fisk_Dynamic] cannot be used. [I-D.ietf-mptcp-architecture]

mentions that the allocated connection-level receive buffer should be

2*sum(BW_i)*RTT_max, where BW_i is the bandwidth seen by subflow i and

RTT_max is the maximum RTT estimated among all the subflows. This is

achieved in Linux MPTCP by slightly modifying the first tuning

algorithm from [Fisk_Dynamic], and disabling the second one. The

modification consists in counting on each subflow, every RTT_max the

number of bytes received during that time on this subflow. Per subflow,

this provides its contribution to the total receive buffer of the

connection. This computes the contribution of each subflow to the total

receive buffer of the connection. 

Using the timestamp option (quite accurate). 

Computing the time needed to receive one RCV.WND [RFC0793]

worth of data. It is less precise and is used only to compute

an upper bound on the required receive buffer. 

As described in 

3.4.2. Receive queue management

As advised in [I-D.ietf-mptcp-multiaddressed], Section 3.3.1, "subflow-

level processing should be undertaken separately from that at

connection-level". This also has the side-effect of allowing much code

reuse from the regular TCP stack. A regular TCP stack (in Linux at

least) maintains a receive queue (for storing incoming segments until

the application asks for them) and an out-of-order queue (to allow

reordering). In Linux MPTCP, the subflow-level receive-queue is not

used. Incoming segments are reordered at the subflow-level, just as if

they were plain TCP data. But once the data is in-order at the subflow

level, it can be immediately handed to MPTCP (See Figure 7 of [I-

D.ietf-mptcp-architecture]) for connection-level reordering. The role

of the subflow-level receive queue is now taken by the MPTCP-level

receive queue. In order to maximize the CPU cycles spent in user

context (see Section 3.1), VJ prequeues can be used just as in regular

TCP (they are not yet supported in Linux MPTCP, though). 

An alternate design, where the subflow-level receive queue is kept

active and the MPTCP receive queue is not used, is discussed in 

Appendix Appendix A.4. 

1. 

2. 



3.4.3. Scheduling data ACKs

As specified in [I-D.ietf-mptcp-multiaddressed], Section 3.3.2, data

ACKs not only help the sender in having a consistent view of what data

has been correctly received at the connection level. They are also used

as the left edge of the advertised receive window. 

In regular TCP, if a receive buffer becomes full, the receiver

announces a receive window. When finally some bytes are given to the

application, freeing space in the receive buffer, a duplicate ACK is

sent to act as a window upate, so that the sender knows it can transmit

again. Likewise, when the MPTCP shared receive buffer becomes full, a

zero window is advertised. When some bytes are delivered to the

application, a duplicate DATA_ACK must be sent to act as a window

update. Such an important DATA_ACK should be sent on all subflows, to

maximize the probability that at least one of them reaches the peer.

If, however, all DATA_ACKs are lost, there is no other option than

relying on the window probes periodically sent by the data source, as

in regular TCP. 

In theory a DATA_ACK can be sent on any subflow, or even on all

subflows, simultaneously. As of version 0.5, Linux MPTCP simply adds

the DATA_ACK option to any outgoing segment (regardless of whether it

is data or a pure ACK). There is thus no particular DATA_ACK scheduling

policy. The only exception is for a window update that follows a zero-

window. In this case, the behavior is as described in the previous

paragraph. 

3.5. At the data source

In this section we mirror the topics of the previous section, in the

case of a data sender. The sender does not have the same view of the

communication, because one has information that the other can only

estimate. Also, the data source sends data and receives

acknowledgements, while the data sink does the reverse. This results in

a different set of problems to be dealt with by the data source. 

3.5.1. Send buffer tuning

As explained in [I-D.ietf-mptcp-architecture], end of Section 5.3, the

send buffer should have the same size as the receive buffer. At the

sender, we don't have the RTT estimation problem described in Section

3.4.1, because we can reuse the built-in TCP SRTT (smoothed RTT).

Moreover, the sender has the congestion window, which is itself an

estimate of the BDP, and is used in Linux to tune the send buffer of

regular TCP. Unfortunately, we cannot use the congestion window with

MPTCP, because the buffer equation does not involve the product

BW_i*delay_i for the subflows (which is what the congestion window

estimates), but it involves BW_i*delay_max, where delay_max is the

maximum observed delay across all subflows. An obvious way to compute

the contribution of each subflow to the receive buffer would be:



2*(cwnd_i/SRTT_i)*SRTT_max. However, some care is needed because of the

variability of the SRTT (measurements show that, even smoothed, the

SRTT is not quite stable). Currently Linux MPTCP estimates the

bandwidth periodically by checking the sequence number progress. This

however introduces new mechanisms in the kernel, that could probably be

avoided. Future experience will tell what is appropriate. 

3.5.2. Send queue management

                            Application

                                |

                                v

                              | * |

 Next segment to send (A)  -> | * |

                              |---| <- Shared send queue

Sent, but not DATA-acked(B)-> |_*_|

                                |

                                v

                          Packet Scheduler

                               /  \

                              /    \

                             |      |

                             v      v

Sent, but not acked(B)  ->  |_|    |_| <- Subflow level congestion

                             |      |     window

                             v      v

                            NIC    NIC

As MultiPath TCP involves the use of several TCP subflows, a scheduler

must be added to decide where to send each byte of data. Two possible

places for the scheduler have been evaluated for Linux MPTCP. One

option is to schedule data as soon as it arrives from the application

buffer. This option, consisting in pushing data to subflows as soon as

it is available, was implemented in older versions of Linux MPTCP and

is now abandoned. We keep a description of it (and why it has been

abandoned) in Appendix Appendix A.5. Another option is to store all

data centrally in the Multipath Transport, inside a shared send buffer

(see Figure 2). Scheduling is then done at transmission time, whenever

any subflow becomes ready to send more data (usually due to

acknowledgements having opened space in the congestion window). In that

scenario, the subflows pull segments from the shared send queue

whenever they are ready. Note that several subflows can become ready

simultaneously, if an acknowledgement advertises a new receive window,

that opens more space in the shared send window. For that reason, when

a subflow pulls data, the Packet Scheduler is run and other subflows



may be fed by the Packet Scheduler in the same time. [Hsieh_ptcp],

presents several advantages: 

Each subflow can easily fill its pipe. (As long as there is data

to pull from the shared send buffer, and the scheduler is not

applying a policy that restricts the subflow). 

If a subflow fails, it will no longer receive acknowledgements,

and hence will naturally stop pulling from the shared send

buffer. This removes the need for an explicit "failed state", to

ensure that a failed subflow does not receive data (As opposed to

e.g. SCTP-CMT, that needs an explicit marking of failed subflows

by design, because it uses a single sequence number space [I-

D.tuexen-tsvwg-sctp-multipath]). 

Similarly, when a failed subflow becomes active again, the

pending segments of its congestion window are finally

acknowledged, allowing it to pull again from the shared send

buffer. Note that in such a case, the acknowledged data is

normally just dropped by the receiver, because the corresponding

segments have been retransmitted on another subflow during the

failure time. 

Despite the adoption of that approach in Linux MPTCP, there are still

two drawbacks: 

There is one single queue, in the Multipath Transport, from which

all subflows pull segments. In Linux, queue processing is

optimized for handling segments, not bytes. This implies that the

shared send queue must contain pre-built segments, hence

requiring the same MSS to be used for all subflows. We note

however that today, the most commonly negotiated MSS is around

1380 bytes [Barre_Multipath], so this approach sounds reasonable.

Should this requirement become too constraining in the future, a

more flexible approach could be devised (e.g., supporting a few

Maximum Segment Sizes). 

Because the subflows pull data whenever they get new free space

in their congestion window, the Packet Scheduler must run at that

time. But that time most often corresponds to the reception of an

acknowledgement, which happens in interrupt context (see Section

3.1). This is both unfair to other system processes, and slightly

inefficient for high speed communications. The problem is that

the packet scheduler performs more operations that the usual

"copy packet to NIC". One way to solve this problem would be to

have a small subflow-specific send queue, which would actually

lead to a hybrid architecture between the pull approach

(described here) and the push approach (described in Appendix

*
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Appendix A.5). Doing that would require solving non-trivial

problems, though, and requires further study. 

As shown, in Figure 2, a segment first enters the shared send queue,

then, when reaching the bottom of that queue, it is pulled by some

subflow. But to support failures, we need to be able to move segments

from one subflow to another, so that the failure is invisible from the

application. In Linux MPTCP, the segment data is kept in the Shared

send queue (B portion of the queue). When a subflow pulls a segment, it

actually only copies the control structure (struct sk_buff) (which

Linux calls packet cloning) and increments its reference count. The

following event/action table summarizes these operations: 

event action

Segment

acknowledged at

subflow level

Remove references to the segment from the subflow-

level queue

Segment

acknowledged at

connection level

Remove references to the segment from the connection-

level queue

Timeout

(subflow-level)

Push the segment to the best running subflow

(according to the Packet Scheduler). If no subflow is

available, push it to a temporary retransmit queue

(not represented in Figure 2) for future pulling by

an available subflow. The retransmit queue is

parallel to the connection level queue and is read

with higher priority.

Ready to put new

data on the wire

(normally

triggered by an

incoming ack)

If the retransmit queue is not empty, first pull from

there. Otherwise, then take new segment(s) from the

connection level send queue (A portion). The pulling

operation is a bit special in that it can result in

sending a segment over a different subflow than the

one which initiated the pull. This is because the

Packet Scheduler is run as part of the pull, which

can result in selecting any subflow. In most cases,

though, the subflow which originated the pull will

get fresh data, given it has space for that in the

congestion window. Note that the subflows have no A

portion in Figure 2, because they immediately send

the data they pull. 

(event,action) pairs implemented in the Multipath Transport queue

management

IMPORTANT: A subflow can be stopped from transmitting by the congestion

window, but also by the send window (that is, the receive window

announced by the peer). Given that the receive window has a connection

level meaning, a DATA_ACK arriving on one subflow could unblock another

subflow. Implementations should be aware of this to avoid stalling part



of the subflows in such situations. In the case of Linux MPTCP, that

follows the above architecture, this is ensured by running the Packet

Scheduler at each pull operation. This is not completely optimal,

though, and may be revised when more experience is gained. 

3.5.3. Scheduling data

As several subflows may be used to transmit data, MPTCP must select a

subflow to send each data. First, we need to know which subflows are

available for sending data. The mechanism that controls this is the

congestion controller, which maintains a per-subflow congestion window.

The aim of a Multipath congestion controller is to move data away from

congested links, and ensure fairness when there is a shared bottleneck.

The handling of the congestion window is explained in Section 3.5.3.1.

Given a set of available subflows (according to the congestion window),

one of these has to be selected by the Packet Scheduler. The role of

the Packet Scheduler is to implement a particular policy, as will be

explained in Section 3.5.3.2. 

3.5.3.1. The congestion controller

The Coupled Congestion Control provided in Linux MPTCP implements the

algorithm defined in [I-D.ietf-mptcp-congestion]. Operating System

kernels (Linux at least) do not support floating-point numbers for

efficiency reasons. [I-D.ietf-mptcp-congestion] makes an extensive use

of them, which must be worked around. Linux MPTCP solves that by

performing fixed-point operations using a minimum number of fractions

and performs scaling when divisions are necessary. 

Linux already includes a work-around for floating point operations in

the Reno congestion avoidance implementation. Upon reception of an ack,

the congestion window (counted in segments, not in bytes as proposed in

[I-D.ietf-mptcp-congestion] does) should be updated as cwnd+=1/cwnd.

Instead, Linux increments the separate variable snd_cwnd_cnt, until

snd_cwnd_cnt>=cwnd. When this happens, snd_cwnd_cnt is reset, and cwnd

is incremented. Linux MPTCP reuses this to update the window in the CCC

(Coupled Congestion Control) congestion avoidance phase: snd_cwnd_cnt

is incremented as previously explained, and cwnd is incremented when

snd_cwnd_cnt >= max(tot_cwnd / alpha, cwnd) (see [I-D.ietf-mptcp-

congestion]). Note that the bytes_acked variable, present in [I-D.ietf-

mptcp-congestion], is not included here because Linux MPTCP does not

currently support ABC [RFC3465], but instead considers acknowledgements

in MSS units. Linux uses for ABC, in Reno, the bytes_acked variable

instead of snd_cwnd_cnt. For Reno, cwnd is incremented by one if

bytes_acked>=cwnd*MSS. Hence, in the case of a CCC with ABC, one would

increment cwnd when bytes_acked>=max(tot_cwnd*MSS / alpha, cwnd*MSS). 

Unfortunately, the alpha parameter mentioned above involves many

fractions. The current implementation of MPTCP uses a rewritten version

of the alpha formula from [I-D.ietf-mptcp-congestion]: 



                          cwnd_max * scale_num

alpha = tot_cwnd * ----------------------------------

                  /     rtt_max * cwnd_i * scale_den \ 2

                  | sum -----------------------------|

                  \  i              rtt_i            /

This computation assumes that the MSS is shared by all subflows, which

is true under the architecture described in Section 3.5.2 but implies

that implementations choosing to support several MSS cannot use the

above simplified equation. The variables cwnd_max and rtt_max in the

above equation are NOT resp. the maximum congestion window and RTT

across all subflows. Instead, they are the values of subflow i such

that cwnd_i / rtt_i² is maximum. This corresponds to the numerator of

the equation provided in [I-D.ietf-mptcp-congestion]. 

scale_num and scale_den have to be selected in such a way that

scale_num > scale_den^2. A good choice is to use scale_num=2^32 (using

64 bits arithmetic) and scale_den=2^10. In that case the final alpha

value is scaled by 2^12, which gives a reasonable precision. Due to the

scaling, it is necessary to also scale later in the formula that

decides whether an increase of the congestion window is necessary or

not: snd_cwnd_cnt >= max((tot_cwnd<<12) / alpha,cwnd). 

3.5.3.2. The Packet Scheduler

Whenever the Congestion Controller (described above) allows new data

for at least one subflow, the Packet Scheduler is run. When only one

subflow is available the Packet Scheduler just decides which packet to

pick from the A section of the shared send buffer (see Figure 2).

Currently Linux MPTCP picks the bottom most segment. If more than one

subflow is available, there are three decisions to take: 

Which of the subflows to feed with fresh data: As the only Packet

Scheduler currently supported in Linux MPTCP aims at filling all

pipes, it always feeds data to all subflows as long as there is

data to send. 

In what order to feed selected subflows: when several subflows

become available simultaneously, they are fed by order of time-

distance to the client. We define the time-distance as the time

needed for the packet to reach the peer if given to a particular

subflow. This time depends on the RTT, bandwidth and queue size

(in bytes), as follows: time_distance_i = queue_size_i/

bw_i+RTT_i. Given that with the architecture described in Section

3.5.2, the subflow-specific queue size cannot exceed a congestion

window, the time_distance becomes time_distance_i~=RTT_i. This

scheduling policy favors fast subflows for application-limited

communications (where all subflows need not be used). However,

for network-limited communications, this scheduling policy has

*
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little effect because all subflows will be used at some point,

even the slow ones, to try minimizing the connection-level

completion time. 

How much data to allocate to a single subflow: this question

concerns the granularity of the allocation. Using big allocation

units allows for better support of TCP Segmentation Offload

(TSO). TSO allows the system to aggregate several times the MSS

into one single segment, sparing memory and CPU cycles, by

leaving the fragmentation task to the NIC. However, this is only

possible if the large single segment is made of contiguous data,

at the subflow level and the connection level (see also important

note below). 

IMPORTANT: When scheduling data to subflows, an implementation must be

careful that if two segments are contiguous at the subflow-level, but

non-contiguous at the connection level, they cannot be aggregated into

one. As Linux (and probably other systems) merges segments when it is

under memory pressure, it could easily decide to merge non-contiguous

MPTCP segments, simply because they look contiguous from the subflow

viewpoint. This must be avoided, because the DATA_SEQ mapping option

would loose its meaning in such a case, leading to all possible kinds

of misbehaviors. 

3.6. At connection/subflow termination

In Linux MPTCP, subflows are terminated only when the whole connection

terminates, because the heuristic for terminating subflows (without

closing the connection) is not yet mature, as explained in Section 3.3.

At connection termination, an implementation must ensure that all

subflows plus the meta-socket are cleanly removed. The obvious choice

to propagate the close() system call on all subflows does not work. The

problem is that a close() on a subflow appends a FIN at the end of the

send queue. If we transpose this to the meta-socket, we would append a

DATA_FIN on the shared send queue (see Section 3.5.2). That operation

results in the shared send queue not accepting any more data from the

application, which is correct. It also results in the subflow-specific

queues not accepting any more data from the shared send queue. The

shared send queue may however still be full of segments, which will

never be sent because all gates are closed. 

IMPORTANT: Upon a close() system call, an implementation must refrain

from sending a FIN on all subflows, unless the implementation uses an

architecture with no connection-level send queue (like the one

described in Appendix Appendix A.5). Even in that case, it makes sense

to keep all subflows open until the last byte is sent, to allow

retransmission on any path, should any one of them fail. 

Currently, upon a close() system call, Linux MPTCP appends a DATA_FIN

to the connection-level send queue. Only when that DATA_FIN reaches the

bottom of the send queue is the regular FIN sent on all subflows. 

*



DISCUSSION: In the Linux MPTCP behavior described above, a connection

could still stall near its end if one path fails while transmitting its

last congestion window of data (because the maximum size of the

subflow-specific send queue is cwnd). This can be avoided by waiting

just a bit more before to trigger the subflow-FIN: Instead of sending

the FIN together with the DATA_FIN, send the DATA_FIN alone and wait

for the corresponding DATA_ACK to trigger a FIN on all subflows. This

however augments by one RTT the duration of the overall connection

termination. 

4. Configuring the OS for MPTCP

Previous sections concentrated on implementations. In this section, we

try to gather guidelines that help getting the full potential from

MPCTP through appropriate system configuration. Currently those

guidelines apply especially to Linux, but the principles can be applied

to other systems. 

4.1. Source address based routing

As already pointed out by [I-D.ietf-mif-problem-statement], the default

behavior of most operating systems is not appropriate for the use of

multiple interfaces. Most operating systems are typically configured to

use at most one IP address at a time. It is more and more common to

maintain several links in up state (e.g. using the wired interface as

main link, but maintaining a ready-to-use wireless link in the

background, to facilitate fallback when the wired link fails). But

MPTCP is not about that. MPTCP is about simultaneously using several

interfaces (when available). It is expected that one of the mostly used

MPTCP configurations will be through two or more NICs, each being

assigned a different address. Another possible configuration would be

to assign several IP addresses to the same interface, in which case the

path diverges later in the network, based on the particular address

that is used in the packet. 

Usually an operating system has a single default route, with a single

source IP address. If the host has several IP addresses and we want to

do MultiPath TCP, it is necessary to configure source address based

routing. This means that based on the source address, selected by the

MultiPath TCP-module in the operating system, the routing-decision is

based on a different routing table. Each of these routing tables

defines a default route to the Internet. This is different from

defining several default routes in the same routing table (which is

also supported in Linux), because in that case only the first one is

used. Any additional default route is considered as a fallback route,

used only in case the main one fails. 

It is easier to understand the necessary configuration by means of an

example. Let a host have two interfaces,I1 and I2, both connected to

the public Internet and being assigned addresses resp. A1 and A2. Such

a host needs 3 routing tables. One of them is the classical default



routing table, present in all systems. The default routing table is

used to find a route based on the destination address only, when a

segment is issued with the undetermined source address. The

undetermined source address is typically used by applications that

initiate a TCP connect() system call, specifying the destination

address but letting the system choose the source address. In that case,

after the default routing table has been consulted, an address is

assigned to the socket by the system by applying [RFC3484]. The

additional routing tables are used when the source address is

specified. If the source address has no impact on the route that should

be chosen, then the default routing table is sufficient. But this is a

particular case (e.g., a host connected to one network only, but using

two addresses to exploit ECMP paths later in the network). In most

cases, a source address is attached to a specific interface, or at

least a specific gateway. Both of those cases require defining a

separate routing table, one per (gateway, outgoing interface) pair. To

select the proper routing table based on the source address, an

additional indirection level must be configured. It is called "policy

routing" in Linux and is illustrated at the bottom of Figure 4. 

+----------------------------------------------------+

|                   Default Table                    |

+----------------------------------------------------+

| Dst: 0.0.0.0/0  Via: Gateway-IP1 Dev: I1           |

| Dst: 0.0.0.0/0  Via: Gateway-IP2 Dev: I2           |

| Dst: Gateway1-Subnet Dev: I1 Src: A1  Scope: Link  |

| Dst: Gateway2-Subnet Dev: I2 Src: A2  Scope: Link  |

+----------------------------------------------------+

+----------------------------------------------------+

|                      Table 1                       |

+----------------------------------------------------+

| Dst: 0.0.0.0/0  Via: Gateway-IP1 Dev: I1           |

| Dst: Gateway1-Subnet Dev: I1 Src: A1 Scope: Link   |

+----------------------------------------------------+

+----------------------------------------------------+

|                      Table 2                       |

+----------------------------------------------------+

| Dst: 0.0.0.0/0  Via: Gateway-IP2 Dev: I2           |

| Dst: Gateway2-Subnet Dev: I2 Src: A2 Scope: Link   |

+----------------------------------------------------+

+----------------------------------------------------+

|                 Policy Table                       |

+----------------------------------------------------+

|   If src == A1 , Table 1                           |

|   If src == A2 , Table 2                           |

+----------------------------------------------------+



If only the default routing table were used, only the first default

route would be used, regardless of the source address. For example, a

packet with source address A2, would leave the host through interface

I1, which is incorrect. 

4.2. Buffer configuration

[I-D.ietf-mptcp-architecture], Section 5.3 describes in details the

new, higher buffer requirements of MPTCP. Section 3.4.1 and Section

3.5.1 describe how the MPTCP buffers can be tuned dynamically. However,

it is important to note that even the best tuning is capped by a

maximum configured at the system level. When using MultiPath TCP, the

maximum receive and send buffer should be configured to a higher value

than for regular TCP. There is no universal guideline on what value is

best there. Instead the most appropriate action, for an administrator,

is probably to roughly estimate the maximum bandwidth and delay that

can be observed on a particular connectivity setup, and apply the

equation from [I-D.ietf-mptcp-architecture], Section 5.3 to find a

reasonable tradeoff. This exercise could lead an administrator to

decide to disable MPTCP on some interfaces, because it allows consuming

less memory while still achieving reasonable performance. 

5. Future work

A lot of work has yet to be done, and there is much space for

improvements. In this section we try to assemble a list of future

improvements that would complete this guidelines. 

Today's host processors have more and more CPU cores. Given

Multipath TCP tries to exploit another form of parallelism, there

is a challenge in finding how those they can work together

optimally. An important question is how to work with hardware

that behaves intelligently with TCP (e.g. flow to core affinity).

This problem is discussed in more details in [Watson_offload]. 

An evaluation of Linux MPTCP exists [Barre_Multipath]. But many

optimizations are still possible and should be evaluated.

Examples of them VJ prequeues (Section 3.1), MPTCP fast path

(that is, a translation of the existing TCP fast path to MPTCP)

or DMA support. VJ prequeues, described in Section 3.1, are

intended to defer segment processing until the application is

awoken, when possible. 

Currently, support for TCP Segmentation Offload remains a

challenge because it plays with the Maximum Segment Size. Linux

MPTCP currently works with a single MSS across all subflows (see 

Section 3.5.2). Adding TSO support to MPTCP is certainly

possible, but requires further work (Section 3.5.2). Also,

support for Large Receive Offload has not been investigated yet. 

*
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There are ongoing discussions on heuristics that would be used to

decide when to start new subflows. Those discussions are

summarized in Appendix Appendix B.1, but none of the proposed

heuristics have been evaluated yet. 
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Appendix A. Design alternatives

In this appendix, we describe alternate designs that have been

considered previously, and abandoned for various reasons (detailed as

well). We keep them here for the archive and possible discussion. We

also describe some potential designs that have not been explored yet

but could reveal to be better in the future, in which case that would

be moved to the draft body. 

Appendix A.1. Another way to consider Path Management

In a previous implementation of MPTCP, it was proposed that the

multipath transport had an even more abstract view of the paths in use

than what is described in Section 2. In that design, the sub-sockets

all shared the same tuple (saddr,sport,daddr,dport), and was

disambiguated only by the path index. The advantage is that the

Multipath Transport needs only to worry about how to efficiently spread

data among multiple paths, without any knowledge about the addresses or

ports used by each particular subflow. 

That design was particularly well suited for using Shim6 as a Path

Manager, because Shim6 is already designed to work in the network layer

and rewrite addresses. The first version of the Linux MPTCP

implementation was using Shim6 as path manager. It looks also well

suited to path managers that don't use addresses (e.g. path managers

that write a label in the packet header, later interpreted by the

network). Finally, it removes the need for the token in the multipath

transport (connection identification is done naturally with the tuple,

shared by all subflows). The token hence becomes specific to the built-

in path manager, and can be just ignored with other path managers (the

context tag plays a similar role in shim6, nothing is needed if the

path manager just sets labels to the packets). 
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However, this cleaner separation between Multipath Transport and Path

Management suffers from three drawbacks: 

It requires a heavy modification to the existing stacks, because

it modifies the current way to identify sockets in the stack.

They are currently unambiguously identified with the usual 5-

tuple. This architecture would require extending the 5-tuple with

the path index, given all subflows would share the same 5-tuple. 

Although correctly implemented stacks could handle that new

endpoint identifier (5-tuple+path index), having several flows

with same 5-tuple could confuse middleboxes. 

When the path manager involves using several addresses, forcing

the same 5-tuple for all subflows at the Multipath Transport

level implies that the Path Manager needs to rewrite the address

fields of each packet. That rewriting operation is simply avoided

if the sockets are bound to the addresses actually used to send

the packets. Hence, this alternate design would involve avoidable

costs for path managers that belong to the "multi-address"

category. 

Appendix A.2. Implementing alternate Path Managers

In Section 2, the Path Manager is defined as an entity that maintains a

(path_index<->endpoint_id) mapping. This is enough in the case of the

built-in path manager, because the segments are associated to a path

within the socket itself, thanks to its endpoint_id. However, it is

expected that most other path managers will need to apply a particular

action, on a per-packet basis, to associate them with a path. Example

actions could be writing a number in a field of the segment or choosing

a different gateway than the default one in the routing table. In an

earlier version of Linux MPTCP, based on a Shim6 Path Manager, the

action was used and consisted in rewriting the addresses of the

packets. 

To reflect the need for a per-packet action, the PM mapping table (an

example of which is given in Table 1) only needs to be extended with an

action field. As an example of this, we show hereafter an example

mapping table for a Path Manager based on writing the path index into a

field of the packets. 

token path index Endpoint id Action (Write x in DSCP)

token_1 1 <A1,B1,0,pB1> 1

token_1 2 <A1,B1,0,pB1> 2

token_1 3 <A1,B1,0,pB1> 3

token_1 4 <A1,B1,0,pB1> 4

token_2 1 <A1,B1,0,pB2> 1

*

*

*



token path index Endpoint id Action (Write x in DSCP)

token_2 2 <A1,B1,0,pB2> 2

Example mapping table for a label-based PM

Appendix A.3. When to instantiate a new meta-socket ?

The meta-socket is responsible only for MPTCP-related operations. This

includes connection-level reordering for incoming data, scheduling for

outgoing data, and subflow management. A natural choice then would be

to instantiate a new meta-socket only when the peer has told us that it

supports MPTCP. In the server it is naturally the case since the master

subsocket is created upon the reception of a SYN+MP_CAPABLE. The

client, however, instantiates its master subsocket when the application

issues a socket() system call, but needs to wait until the SYN+ACK to

know whether its peer supports MPTCP. Yet, it must already provide its

token in the SYN. 

Linux MPTCP currently instantiates its client-side meta-socket when the

master-socket is created (just like the server-side). The drawback of

this is that if after socket(), the application subsequently issues a

listen(), we have built a useless meta-socket. The same happens if the

peer SYN+ACK does not carry the MP_CAPABLE option. To avoid that, one

may want to instantiate the meta-socket upon reception of an MP_CAPABLE

option. But this implies that the token (sent in the SYN), must be

stored in some temporary place or in the master subsocket until the

meta-socket is built. 

Appendix A.4. Forcing more processing in user context

The implementation architecture proposed in this draft uses the

following queue configuration: Section 3.1). VJ prequeues allow forcing

user context processing when the application is waiting on a recv()

system call. Otherwise the subflow-level reordering must be done in

interrupt context. This remains true with MPTCP because the subflow-

level implementation is left unmodified when possible. With MPTCP, the

question is: "Where do we perform connection-level reordering ?". This

alternate architecture answer is: "Do it always in user context". This

was the strength of that architecture. Technically, the task of each

subflow was to reorder its own segments and put them in their own

receive queue, until the application asks for data. When the

application wants to eat more data, MPTCP searches all subflow-level

receive queue for the next bytes to receive, and reorder them as

appropriate by using its own reordering queue. As soon as the number of

requested bytes are handed to the application buffer, the MPTCP

reordering task finishes. 

Subflow level: out-of-order queue. Used for subflow-level

reordering. 

*



Connection level: out-of-order queue. Used for connection-level

reordering. 

Connection level: receive queue. Used for storing the ordered

data until the application asks for it through a recvmsg() system

call or similar. 

In a previous version of Linux MPTCP, another queue configuration has

been examined: 

Subflow level: out-of-order queue. Used for subflow-level

reordering. 

Subflow level: receive queue. Used for storing the data until the

application asks for it through a recvmsg() system call or

similar. 

Connection level: out-of-order queue. Used for connection-level

reordering. 

In this alternate architecture, the connection-level data is lazily

reordered as the application asks for it. The main goal for this was to

ensure that as many CPU cycles as possible were spent in user context

(See 

Unfortunately, there are two major drawbacks about doing it that way: 

The socket API supports the SO_RCVLOWAT option, which allows an

application to ask not being woken up until n bytes have been

received. Counting those bytes requires reordering at least n

bytes at the connection level in interrupt context. 

The DATA_ACK [I-D.ietf-mptcp-multiaddressed] should report the

latest byte received in order at the connection level. In this

architecture, the best we can do is report the latest byte that

has been copied to the application buffers, which would slightly

change the DATA_ACK semantic described in section 3.3.2 of [I-

D.ietf-mptcp-multiaddressed]. This change could confuse peers

that try to derive information from the received DATA_ACK. 

Appendix A.5. Buffering data on a per-subflow basis

In previous versions of Linux MPTCP, the configuration of the send

queues was as shown in Figure 5. 

*

*

*

*

*

*

*



                               Application

                                   |

                                   v

                             Packet Scheduler

                                  /  \

                                 /    \

                                |      |

                                v      v

                              | * |  |   |

 Next segment to send (A)  -> | * |  | * |

                              |---|  |---|  <- Separate send queue

 Sent, but not acked (B)   -> |_*_|  |_*_|

                                |      |

                                v      v

                               NIC    NIC

In contrast to the architecture presented in Section 3.5.2, there is no

shared send queue. The Packet Scheduler is run each time data is

produced by the application. Compared to Figure 5, the advantages and

drawbacks are basically reversed. Here are the advantages: Section

3.5.1. However, when scheduling in advance a full send buffer of data,

we may be allocating a segment hundreds of milliseconds before it

actually goes to the wire. The task of the Packet Scheduler is then

complicated because it must predict the path properties. If the

prediction is incorrect, two subflows may try to put on the wire

segments that are very distant in terms of DATA_SEQ numbers. This can

eventually result in stalling some subflows, because the DATA_SEQ gap

between two subflows exceeds the receive window announced by the

receiver. The Packet Scheduler can relatively easily compute a correct

allocation of segments if the path properties do not vary (just because

it is easy to predict a constant value), but the implementation was

very sensitive to variations in delay or bandwidth. The previous

implementation of Linux MPTCP solved this allocation problem by

verifying, upon each failed transmission attempt, if it was blocked by

the receive window due to a gap in DATA_SEQ with other subflows. If

this was the case, a full reallocation of segments was conducted.

However, the cost of such a reallocation is very high, because it

involves reconsidering the allocation of any single segment, and do

this for all the subflows. Worse, this costly reallocation sometimes

needed to happen in interrupt context, which removed one of the

advantages of this architecture. 

This architecture supports subflow-specific Maximum Segment

Sizes, because the subflow is selected before the segment is

built. 

The segments are stored in their final form in the subflow-

specific send queues, and there is no need to run the Packet

*
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Scheduler at transmission time. The result is more fairness with

other applications (because the Packet Scheduler runs in user

context only), and faster data transmission when acknowledgements

open the congestion window (because segments are buffered in

their final form and no call to the Packet Scheduler is needed. 

The drawback, which motivated the architecture change in Linux MPTCP is

the complexity of the data allocation (hence the Packet Scheduler), and

the computing cost involved. Given that there is no shared send buffer,

the send buffer auto-tuning must be divided into its subflow

contributions. This buffer size can be easily derived from 

Yet, under the assumption that the subflow-specific queue size is

small, the above drawback almost disappears. For this reason the

abandoned design described here could be used to feed a future hybrid

architecture, as explained in Section 3.5.2. For the sake of comparison

with Table 3, we provide hereafter the action/table implemented by this

architecture. 

event action

Segment acknowledged

at subflow level

Remove references to it from the subflow-level

queue

Segment acknowledged

at connection level
No queue-related action.

Timeout (subflow-

level)

Push the segment to the best subflow (according

to the Packet Scheduler). In contrast with the

solution of Section 3.5.2, there is no need for a

connection-level retransmit queue, because there

is no requirement to be available immediately for

a subflow to accept new data.

Ready to put new

data on the wire

(normally triggered

by an incoming ack)

Just send the next segment from the A portion of

the subflow-specific send queue, if any. Note

that the "IMPORTANT" note from Section 3.5.2

still applies with this architecture.

(event,action) pairs implemented in a queue management based on

separate send queues

Appendix B. Ongoing discussions on implementation improvements

This appendix collects information on features that have been currently

implemented nowhere, but can still be useful as hints for implementers

to test. Feedback from implementers will help converging on those

topics and propose solid guidelines for future versions of this memo. 

Appendix B.1. Heuristics for subflow management

Some heuristic should determine when it would be beneficial to add a

new subflow. Linux MPTCP has no such heuristic at the moment, but the



topic has been discussed on the MPTCP mailing list, so this section

summarizes the input from many individuals. MPTCP is not useful for

very short flows, so three questions appear: 

How long is a "too short flow"

How to predict that a flow will be short ?

When to decide to add/remove subflows ?

To answer the third question, it has been proposed to use hints from

the application. On the other hand the experience shows that socket

options are quite often poorly or not used, which motivates the

parallel use of a good default heuristic. This default heuristic may be

influenced in particular by the particular set of options that are

enabled for MPTCP (e.g. an administrator can decide that some security

mechanisms for subflow initiation are not needed in his environment,

and disable them, which would change the cost of establishing new

subflows). The following elements have been proposed to feed the

heuristic, none of them tested yet: 

Check the size of the write operations from the applications.

Initiate a new subflow if the write size exceeds some threshold.

This information can be taken only as a hint because applications

could send big chunks of data split in many small writes. A

particular case of checking the size of write operations is when

the application uses the sendfile() system call. In that

situation MPTCP can know very precisely how many bytes will be

transferred. 

Check if the flow is network limited or application limited.

Initiate a new subflow only if it is network limited. 

It may be useful to establish new subflows even for application-

limited communications, to provide failure survivability. A way

to do that would be to initiate a new subflow (if not done before

by another trigger) after some time has elapsed, regardless of

whether the communication is network or application limited. 

Wait until slow start is done before to establish a new subflow.

Measurements with Linux MPTCP suggest that slow start could be a

reasonable tool for determining when it is worth starting a new

subflow (without increasing the overall completion time). More

analysis is needed in that area, however. Also, this should be

taken as a hint only if the slow start is actually progressing

(otherwise a stalled subflow could prevent the establishment of

another one, precisely when a new one would be useful). 
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Use information from the application-layer protocol. Some of them

(e.g. HTTP) carry flow length information in their headers, which

can be used to decide how many subflows are useful. 

Allow the administrator to configure subflow policies on a per-

port basis. The host stack could learn as well for what ports

MPTCP turns out to be useful. 

Check the underlying medium of each potential subflow. For

example, if the initial subflow is initiated over 3G, and WiFi is

available, it probably makes sense to immediately negotiate an

additional subflow over WiFi. 

It is not only useful to determine when to start new subflows, one

should also sometimes decide to abandon some of its subflows. An MPTCP

implementation should be able to determine when removing a subflow

would increase the aggregate bandwidth. This can happen, for example,

when the subflow has a significantly higher delay compared to other

subflows, and the maximum buffer size allowed by the administrator has

been reached (Linux MPTCP currently has no such heuristic yet). 
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